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Featured Application: This study shows the validation of an effective methodology for determin-
ing the residual stresses of components obtained with a 3D-printed polymer such as PLA based
on the DIC and the hole-drilling method.

Abstract: The hole-drilling method (HDM) is a common technique used for the determination of
residual stresses, especially for metal alloy components, though also for polymers. This technique
is usually implemented with strain gages, though other methods for determining the fields of
displacements are quite mature, such as the use of digital image correlation (DIC). In the present paper,
this combined methodology is applied to a 3D-printed PLA precurved specimen that is flattened in
order to impose a bending distribution which can be considered known with a reasonable accuracy.
The back-calculated stress distribution is in agreement with the expected (imposed) bending stress,
however, a converging iterative procedure for obtaining the solution is introduced and discussed in
the paper.

Keywords: hole-drilling method; digital image correlation; 3D-printed PLA; residual stresses;
precurved specimen; depth resolution

1. Introduction

The hole-drilling method (HDM) is a well known technique with a strong tradition,
which allows to evaluate the residual stresses at the surface and within a certain initial
depth, usually on the order of 1 mm [1–3]. The HDM is usually implemented with a strain
gage rosette that measures the relaxed (or relieved) strains. HDM with strain gages can
be performed either as a through-hole (such as for thin sheet metal specimens), or more
often as an incremental blind hole. Incremental hole-drilling requires that the strain gage
readings are collected and saved for each step of the milling tool, and then converted into a
certain distribution of stresses. These methodologies (through-hole and incremental blind
hole) are covered by the ASTM E837 standard [4,5], which provides a reference for the
implementation of the method, including best practices and calculation instructions to
obtain the calibration coefficients. The implementation of this measurement technique can,
however, require attention to certain details that are disregarded by the standard, such as the
plasticity effect [6–8], possible small thickness of the plate in which the residual stress needs
to be measured [9], the possibility of a chamfer at the bottom of the hole [10], and imperfect
local planarity of the specimen, such as when the residual stress measurement is performed
at the external surface of a cylindrical shaft [11]. Another source of uncertainty is the
hole’s eccentricity; however, this can be corrected provided that the eccentricity itself is
accurately known [12–15]. Several analyses have been published in past years on different
HDM errors and categorizing the different sources of error [16–19]. A general description
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of the ill-posed HDM inverse problem was recently provided by Beghini et al. [20]. In
light of this ill-posedness property, regularization approaches and techniques such as in
the recent ASTM E837 standard (2020 and 2013 editions) [4,5] are discussed, which are
based on the Tikhonov regularization [21]. For example, this approach is followed and
implemented in several studies by Smit et al. [22–24]. However, other approaches are
possible, such as simple polynomial, spline filtering, or other techniques such as Gaussian
Process Regression [25]. However, the role of the regularization must be balanced in terms
of the degrees of freedom introduced, which depends both on the quality of the measured
data and the assumptions imposed in reaching the solution [20].

Regularization approaches can be tested on a known solution, which is very seldom
available when operating with residual stresses. Of course, independent measures can be
carried out and comparisons provided; however, even in this way, sources of incompat-
ibility can arise between the solutions under comparison. For this reason, an interesting
approach is to use a bending bench for validation, in which a well-known and simple
stress distribution is imposed, and then retrieved, to test the quality of the inversion and its
regularization [26–28].

The HDM can alternatively be implemented by recording and analysing the displace-
ments near the drilled hole instead of reading the strains at specific locations, as with the
strain gage rosette. This is basically done by combining the hole-drilling with one of two
techniques: electronic speckle pattern interferometry (ESPI) [29–31] or the digital image
correlation (DIC) [31–36]. Recently, dedicated equipments have been proposed to imple-
ment the HDM in combination with the DIC technique [37,38], confirming the promising
opportunity of this approach.

The DIC method can, in fact, be extensively and efficiently applied to different moni-
toring methods, especially of components produced by any additive manufacturing tech-
nique [39]. In particular, this full-filed optical observation can provide the relaxation dis-
placements of the entire surface of a component after the removal of clampings, which can in
turn be interpreted to evaluate the residual stresses, as recently shown by Boruah et al. [40].

In the present paper, the HDM combined with the DIC technique (HDM-DIC) is
implemented by initially proposing a finite element (FE) model based on the influence
functions to obtain the analytical tool needed for the inversion. In order to impose a simple
and known stress, a precurved specimen is then introduced and designed on the basis
of the material properties. In principle, this resembles the use of a validation bending
bench, as a certain flexural load can be imposed and then retrieved as the procedure output.
The specimen was manufactured by means of 3D printing using a polylactic acid (PLA)
material. The advantage of producing the specimen with this technique is twofold: first,
the precurved specimen can be manufactured easily, reducing the required time and cost;
second, the HDM-DIC can be tested on a 3D printed polymer, which can be a natural
field of application of this technique, as despite the lower stresses, the (local) relieved
displacements tend to be higher than in metals due to the lower stiffness.

The CAD file of the proposed specimen is available as a Supplementary Electronic
Attachment to this paper for the dissemination and promotion of this methodology.

2. Numerical Analysis
2.1. Determination of the Relieved Displacements

The hole-drilling problem requires the determination of calibration coefficients af-
ter having imposed the analytical form of the solution. The determination of these coeffi-
cients is usually performed by running different load cases and collecting the displacement
results. In order to solve this problem with high resolution and accuracy within a reason-
able computation time, a plane axisymmetric harmonic model is strongly recommended.
As shown in Figure 1a, the radial displacement due to the relief of a circular volume
and an equibiaxial stress distribution can be seen as the difference between the hole without
the stress at the boundary and the hole (before drilling) with the stress at the boundary.
The difference of these two loadings is equivalent to an inverse stress at the hole bound-
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ary and with no far-field stress. A similar approach can be applied to the shear loading
(see Figure 1b), in which the tangential traction needs to be applied to the hole bound-
ary along with the radial one and both stresses show an angular variability according to
either cos(2ϑ) or sin(2ϑ), still with no far-field boundary conditions. The radial and the
tangential displacements follow the same angular dependency. This ϑ variability for the
two loadings is in principle only valid in a half-space geometry, which is often a reasonable
assumption. On the contrary, specific analyses are required on more complex geometries,
requiring dedicated 3D modelling, for example with the cylindrical components in [11].
In this paper, the half-space was assumed to be representative of the analysed geometry
under investigation.
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Figure 1. Relieved displacement distributions obtained as the difference between the holed and the
non-holed configurations for (a) equibiaxial stress and (b) shear stress.

Following the concept described in Figure 1, it is evident that the load reduces to a
traction at the cylindrical hole without far-field stresses. For this reason, the geometry
reduces to a cylinder in a half-space with the far boundaries not loaded. Moreover, as the
angular dependency is either constant or related to sinusoidal functions in terms of 2ϑ,
the FE analyses can be performed with axisymmetric harmonic elements, e.g., PLANE25
in Ansys. According to this modelling, only a section with a plane through the axis of the
hole is required, without the need to introduce any cumbersome and heavy 3D analysis.

The FE model and its features are presented in Figure 2. The half-space is modelled
as a large cylindrical geometry with respect to the hole. Otherwise, the outer boundary
can play a role, as discussed in [41]. As there are small features and large global model
dimensions in the same model, a strong mesh size variation is required from the hole region
to the periphery. As shown in the figure, the hole radius was set equal to 1 mm. The region
near the hole was imposed with a mesh of 0.01 mm and the mesh size was increased with a
factor of ×2 at each transition, which was repeated five times from the hole region to the
periphery. Despite only the radius R = 1 mm was analysed, a rescale of the problem can
be applied, as discussed below, allowing different sizes to be easily considered with almost
equal degrees of accuracy.
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According to the ASTM E837 standard [4,5], the residual stresses can be well approxi-
mated by piecewise-constant distributions. Under this assumption, and with the principle
of superposition being valid (as the system is linear), the effect at the surface in terms of
displacements can be obtained as the sum of the single stress contributions σi along the
depth. Each of these needs to be multiplied by its weight U∗i for a general component
of displacement; this weight is the displacement generated by a unitary σi and applied
individually (see Figure 3a). In principle, this can be considered satisfactorily, especially
when small steps are imposed. However, a more versatile approach can be obtained by
replacing the summation with an integral of any continuous stress distribution. Thus, for
each depth position there is a function fU∗(z), here called the influence function, which
resembles the unitary weight U∗i for an infinitesimal depth increment dz (see Figure 3b).
Examples of the concept of the influence functions (sometimes called weight functions, such
as in fracture mechanics) can be found in [42,43] in the context of the HDM with strain
gages. In principle, given the integral definition of such functions, the value at a certain
depth z0 can be found as the integral with a Dirac delta function which is singular at z0,
as shown in Figure 3c, in which the units are recalled.

(a)

X

Y

15.04 
mm

170.24 mm

Modelled plane with
harmonic axisymmetric elements

Number of nodes: 331'821
Number of elements: 330'608

×2
×2

×2

…×2  …×2

Transition method

Exact dependence wrt ϑ as sin/cos(nϑ), with: n = 0 or 2

Reference FE hole radius: R = D/2 = 1 mm

Half space
(far boundaries)

FE model 
resolution: 
0.01 mm

Five size transition, 
external element size: 
0.01×25 = 0.32 mm

(b)

(c)

(d)

Figure 2. Details of the axisymmetric harmonic FE model: (a) identification of the modelled plane
and definition of the hole radius, (b) overall view of the FE model and dimensions, (c) number of
nodes and elements, and element sizes, (d) mesh transition method.

The finite element (FE) technique offers a direct way to apply a Dirac delta function,
as the load can be concentrated in single points (which are the nodes), while the values of
these functions can be alternatively inferred from their cumulative results, as proposed by
Beghini et al. [42]. However, this requires the introduction of a model, such as a polynomial
function, for each of them. In the present application, the use of a polynomial function
would be complicated compared to the classical HDM with strain gage rosette due to the
number of IFs being high. In fact, each point of the surface mesh grid starting from the hole
rim up to a certain distance requires its own IFs in order to cover a large enough region
around the hole.
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The plane stress components at the surface of the specimen or the part to be inves-
tigated are σx, σy, τxy. It is well known that for the HDM the use of alternative stress
components is preferential, according to the following:

P =
σy+σx

2

Q =
σy−σx

2

T = τxy

(1)

Here, the P load is the equibiaxial stress, while Q and T are the shear stresses at 45◦ and
0◦, respectively. Therefore, the Q and T loads are the same type of loading; for this reason,
the FE simulation only requires P and one of the other two. Here, the Q load is reported
in the initial Figure 1 and implemented in the following. The P load only generates a
radial displacement, whereas the Q load implies both normal and shear tractions and in
turn generates two components of displacements (the radial and the tangential ones; see
Figure 4a and 4b, respectively). The use of point loadings according to the Dirac delta
function can be easily performed for just the nodes along the depth; the displacements are
recorded in terms of amplitude to be multiplied by either cos(0 × ϑ) = 1 for the P load or
cos(2ϑ) or sin(2ϑ) for the radial and the tangential components related to the Q load. We
used a resolution of 0.01 mm at the hole region for both the radial distribution of the IFs
and the depth variable, as shown in Figure 4.
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Figure 3. (a) Piecewise-constant distribution of the residual stress and displacement obtained as a
summation of unitary weights. (b) Integral definition of a generic influence function. (c) Extraction of
the influence function values by introducing a Dirac delta function.

In principle, the IFs are properly defined (i.e., not singular) for any point of the surface
around the hole except for the rim point. When the Dirac delta function is applied at that
point, the local displacement is singular. This problem is avoided by simply discarding the
point at the very boundary of the hole. Thus, the first point, where the IFs are defined, is at
r = 1.01. At this point, when z = 0 the Dirac delta function is close to but not exactly at that
point; nevertheless, when the delta function is too close to the point under consideration,
even when it is not superimposed, the solution is not expected to be extremely accurate,
as the finite element introduces a local perturbation of the solution. This issue can be
apparently circumvented by deducing the IFs from the cumulative displacement; however,
this is inappropriate, as in an FE model any distribution of stresses can be seen as a
superimposition of loads at the nodes, making it again a superimposition of the Dirac delta
function solutions.
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Figure 4. Dirac delta loadings at different points along the depth for (a) P and (b) Q components
and numerically defined influence functions at the surface nodal points.

An example of IFs along the radial path at the hole region is provided in Figure 5,
in which the IFs are shown at single depth values of the Dirac delta function. From this
graph, it is evident that large displacements can only be found close to the hole rim. For
comparison with the strain gage method, the overall size of the usual grid is shown in the
figure overlapped with the IF distributions. It is evident that the grid is relatively far from
the hole rim where the IFs are lower. More precisely, the dependency of the displacements
along the radial direction is not actually the IF itself, which on the contrary is the variability
of these displacements depending on the depth position of the Dirac delta function.

AIAS2023 | 6-9 Settembre | Genova

Reference FE hole radius

1 mmR =

0Urf

Strain gage grid (real scale)

P loading

Scale depending on 

E and slightly on ν

Figure 5. Example of the displacements induced by the load component P along the radial coordinate
for different depths of the Dirac delta function, and position and size comparison with a rosette strain
gage grid.

The other loading type (component Q) is shown in Figure 6, where for each point
there is a radial displacement and a tangential displacement. The former follows cos(2ϑ),
while the latter follows sin(2ϑ); thus, the maximum tangential displacement can be found
at the angle ϑ = 45◦. The sign of the influence functions shown in Figures 6 and 7 are in
agreement with a positive P residual stress component and a positive pure shear Q residual
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stress, while the scales of these distributions mainly depend on the Young’s modulus and
the depth of the hole.

Each IF actually depends on several terms: the material elastic properties (Young’s
modulus and Poisson’s ratio, denoted as E and ν, respectively), the radial position at which
the displacements are evaluated, the hole depth H, and finally the depth position z, which
is the location at which the Dirac delta function can be applied to explicitly found the IF.
The hole radius R = D/2 is another parameter that the IFs depend on; however, this latter
geometrical variable is discussed later, and the hole depth is initially assumed to have
R = 1 mm. Among these parameters, the only variability is the z coordinate, along which
the integral needs to be performed after multiplying by the IF for the corresponding stress
component according to the following.

Ur0 =
∫ H

0 P(z) fUr0(z)dz

Ur2 =
∫ H

0 Q(z) fUr2(z)dz

Uϑ2 =
∫ H

0 Q(z) fUϑ2(z)dz

(2)

When the stress directions are not the principal ones, a third stress component needs to be
considered. This is the load T, which is again a pure shear, although now at an angular
offset of 45◦ with respect to the load Q. As this is again a shear stress, the same IFs need to
be multiplied.

U′
r2 =

∫ H
0 T(z) fUr2(z)dz

U′
ϑ2 =

∫ H
0 T(z) fUϑ2(z)dz

(3)
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Figure 6. Example of the displacements induced by the tangential load component Q, along the
radial coordinate and for different positions of the Dirac delta function: (a) radial displacements and
(b) tangential displacements.

These numerical integrations can be easily obtained according to the strategy reported
in Figure 7a. The stress distribution along the depth is initially sampled at the depths
corresponding to the nodes for which the weight functions were evaluated.
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summation of the products of trapezoidal distributions: (a) integration resolution according to the FE
model, (b) augmented resolution for a generic piecewise linear stress distribution.

A piecewise linear stress distribution is assumed, and this can be found in agreement
with the evaluation of the IFs at just the z points at which the Dirac delta function was
iteratively applied. Thus, each of the IF integrals can be solved as shown below.

U∗ =
∫ H

0 σ(z) fU∗(z)dz = ∑n
i
∫ zi

zi−1
(α1 + β1z)(α2 + β2z)dz

= ∑n
i=1 α1α2∆z + (α1β2 + α2β1)

∆z2

2 + β1β2
∆z3

3

(4)

This approach is already quite accurate due to the high resolution of the mesh, which
implies a high density of the sampling points. However, an even more accurate calcu-
lation of the integral can be obtained by splitting the hundredth of a millimetre step if
the stress distribution is introduced piecewise-linear with the interval points not coinci-
dent with the node positions. Therefore, the IFs were linearly interpolated on the same
intervals, meaning that the calculation remains the summation of the trapezoidal product
integrals (Equation (4)) except on an augmented set of intervals. The described approach
for deducing the IFs directly from the FE simulations by means of the Dirac delta loadings
allows to avoid any elaboration on the FE results themselves, with the exception of these
simple linear interpolations, as shown in Figure 7b and discussed later. Only the final
analytical integration of Equation (4) is required, which can be easily implemented in any
coding language.

According to the procedure explained here, the calculation could be possible only for
specific values of the hole depth H, namely those actually modelled with the FE simulations.
In principle, this could may not be a significant limitation due to the high resolution of the
FE model. However, given any H/R ratio, it is possible to obtain the evaluation of the IFs
at the Dirac delta loading points by interpolating the numerical data of two depths which
are multiples of the discretization steps and are higher and lower than the specific H/R
ratio, as graphically explained in Figure 8a. The last point of the IF evaluations (along the
horizontal red line) corresponds to the Dirac delta load just applied at the bottom of the
hole, i.e., at depth H. The IFs in this configuration can either be obtained by extrapolating
the last two points, i.e., by moving horizontally (meaning at a fixed H), or alternatively
through interpolation by moving diagonally, as shown in the figure, meaning that the load
is imposed at the bottom while varying the depth H. This latter approach is more accurate,
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as interpolation is in principle preferred over extrapolation. This interpolation procedure is
not performed when the H/R ratio is exactly coincident with a multiple of the mesh step.
This is actually only effective for nominal cases or approximated measures obtained from
rounded dimensions, which can, however, provide important reference cases for validation.
The resolution based on 0.01 mm/1.00 mm is used for the initial depths, while larger steps
are introduced later to avoid a heavy amount of data while preserving numerical accuracy.

izH
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R

/  ( : position of  loads)i iz R z 

In
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rp
o

la
ti

o
n

Resolution transitions at different depths

(b)(a) 0.25 =
0.3 =

0.35 =
0.4 =

0.45 =

Piecewise linear interpolation of the 

databases on the Poisson’s ratio

Figure 8. (a) Definition of the simulated configurations in terms of hole depth and Dirac delta function
applications points along with possible intermediate interpolations; (b) different databases with the
same resolution and loading points obtained with different values of the Poisson’s ratio.

The FE database was performed for a unique value of the Young’s modulus E; this
does not limit the generality of the problem, as all the displacements are linearly related
to E. On the contrary, the variation of the Poisson’s ratio modifies the numerical results
of the displacements in a way that cannot be exactly predicted. For this reason, five
Poisson’s ratios were considered, and the full FE simulation set was repeated for these
values. A piecewise linear interpolation was again performed for intermediate values
of the Poisson’s ratio (see Figure 8b). In order to avoid extrapolations, this procedure
is not recommended for values of the Poisson’s ratio outside the range of the simulated
values, i.e., from ν = 0.25 to ν = 0.45, which is expected to include most materials of
structural interest.

According to the procedure presented so far, the hole radius is R = 1 mm, and this
would be a strong limitation if the radius were to be imposed. However, the scaling
approach can be applied for this variable, which is an exact procedure. If the radius is
different than unitary as modelled in the FE analysis, a simple scalar (dimensionless)
parameter can be calculated for scaling the entire model: λ = D/(2 mm) = R/(1 mm),
where D and R are the actual hole diameter and radius, respectively.

When the stress load distribution corresponding to a Dirac delta loading is applied,
assuming that the problem is geometrically scaled by λ and considering the same applied
traction, the problem simply scales with respect to the original configuration in which
the diameter has a unitary radius. Accordingly, the corresponding points share the same
solution in terms of strains; thus, the displacements are scaled by the same factor λ.
The corresponding points are those obtained by scaling the coordinates, again by the λ
factor. Reconsidering the IFs in this situation, the whole integral along the depth is higher or
lower than the reference geometry by a factor of λ, as the z integration is scaled accordingly.
This is due to the Dirac delta load being a limit distribution and the described scaling
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rule being valid for any instance of this limit. In conclusion, the displacements and the
Dirac delta functions share the same scaling factor; therefore, the Dirac delta function with
unitary integral generates the same displacements at the corresponding points, which in
turn are just the influence function values. In the end, the IFs do not scale with λ; while
the corresponding point coordinates scale instead. According to this rule, it is possible to
retrieve the IFs at the surface points after scaling their radial coordinates from the original
FE model. Finally, the integration of Equations (2) and (3) can be solved using the same
method shown in Figure 7.

An example of the application of IF integration and determination of the displacements
around the hole is shown in Figure 9, in which the parameters of the load, geometry, and
material properties are similar to the experimental configuration reported later.

x

y

xy

rU
U

1.8 mm

2500 MPa

0.35

D

E



=

=

=

Radial displ. Tangential displ.

x, mm

y, mm

x, mm

y, mm

Ur, mm
Uϑ, mm

x

y

(a) (b)

(c) (d)

Figure 9. Example of applying the procedure to obtain the displacements at the top surface: (a) stress
distribution assumed as known, (b) definitions of the stress components and orientation of the output
displacements, (c) radial and (d) tangential obtained displacements.

2.2. Inverse Determination of the Residual Stresses

The availability of the displacements at the upper surface when the residual stress
is known can be referred to as the “direct problem”. This tool actually allows us to solve
the “inverse problem”, which consists of finding the residual stress distribution that would
produce the actually measured relaxed (or relieved) displacements. In principle, this turns
out to be a minimization problem, which consists of finding the best distribution to obtain
the minimum differences between the calculated and measured displacements. This mini-
mization can be naturally solved according to the least-squares method due to the linearity
between the residual stresses to be found and the relaxed displacements. As schematically
shown in Figure 10, the displacements can be interpreted as a superposition of different
stress contributions. In particular, if a piecewise-linear distribution of the stresses is as-
sumed, then each step can be seen as the sum of two triangular stress distributions, which
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in turn can be seen as the scaling of a triangular distribution with the unity value at the
maximum and the scaling factor equal to the stress at that vertex.

At each depth, the simple σi shown in the figure is actually the term for stresses σx, σy, τxy,
or equivalently for stresses P, Q, T; thus, the following linear system can be imposed.

[A]



P1

Q1

T1

...
Pn

Qn

Tn


=



Ur,1

Uϑ,1

...
Ur,i

Uϑ,i
...
Ur,N

Uϑ,N


(5)

The matrix [A] in Equation (5) is 2N × 3n, in which n is the number of vertexes of the linear
piecewise distribution, i.e., the number of stress steps +1, and N is the number of points
detected by the DIC algorithm, for which two displacement components are available.
As is obvious from the experimental side, N needs to be much larger than n such that [A]
is a vertical matrix, otherwise the experimental data would be inappropriate with respect
to the number of stress variables to be found. From Equation (5), each single column of
the matrix [A] can be found by imposing a unitary component among P, Q, T and zero all
the others, then repeating this for all three components of all the n stresses. For example,
the first column is obtained by calculating the radial and the tangential displacements at the
DIC points by imposing P1 = 1 MPa, Q1 = 0, T1 = 0, P2 = 0, . . . , Tn = 0, then the second
column is obtained by imposing Q1 = 1 MPa and zero all the others, and so on. Each of
these single distributions of stresses can be solved as a generic imposed stress by applying
the algorithm presented above, in which the load is linearly varying and the step depths
can be completely unrelated to the mesh points. Since the number of imposed equations
(the measured displacements at the DIC points) is larger than the number of unknown
stresses to be found, potentially even much larger, the system of equations is inconsistent
(or even impossible). The natural way to find a solution is by imposing least-squares
minimization, which can be obtained by calculating the pseudo-inverse of the matrix [A]
and left-multiplying that by the column of the measured displacements.

1 

1

2 
1

= + ...+

1

2

n

Displacements

(both rad. and tang.)

Figure 10. Superposition of triangular unitary stresses, each scaled by a stress term which is the
value at the vertex of the piecewise distribution to match the actual (measured) displacements at the
upper surface.
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3. Materials and Methods
3.1. Tensile Specimen for Elastic Properties

In principle, the proposed methodology is valid for determining the residual stresses
on a specimen of any material provided that the constitutive relation remains within the
linearity during the relaxation, i.e., when the hole is drilled. In this study, the material
investigated is polylactic acid (PLA), which is a well-known and very common material in
3D printing, especially when combined with the fused deposition modelling (FDM) process.

A tensile test was initially performed to characterize the material, i.e., to find both
the elastic properties (Young’s modulus and Poisson’s ratio) and the maximum tensile
stress. As is evident in Figure 11a, the tensile specimen was 3D printed according to
the plate type with a flat section, as proposed in the ASTM E8 tensile test standard [44].
However, the cross-section had to be quite large in order to allow the application of both
the extensometer and additional strain gages. The Young’s modulus was determined by
following the approach proposed by the dedicated ASTM 111 standard [45] and considering
the extensometer measurement. Figure 11b shows the tensile curve up to large strains,
where most of the section was fractured, as this fracture happened gradually. The very
initial part of the curve was obviously of more interest for the present application. As is
evident in Figure 11c, the first part of the curve was a ramp with a constant slope at least up
to a certain limit, which was approximately at 20 MPa. After that stress, the curve shows
a progressive curvature and the maximum stress of 35 MPa is reached. After selecting
a section of the curve below the proportional limit, the Young’s modulus of the printed
material was obtained. This value was considered in the subsequent analysis instead of
data from the literature, as this parameter is somewhat affected by the direction of the
printing texture, the size of the filament, and other details of the printing process.
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E = 2580 MPa
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(or linearity limit) 

defined wrt 0.05%

(a)

(b) (c)
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Figure 11. (a) Tensile test specimen in PLA with both extensometer and strain gages. (b) Tensile curve
up to almost complete fracture, obtained with the extensometer measurement. (c) First part of the
tensile curve, showing the Young’s modulus determination and the proportional limit.
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As discussed before, the numerical procedure assumes a linear isotropic material,
which requires the Young’s modulus and the Poisson’s ratio. Despite small variations of the
latter, the material parameters produce little effect in terms of the back-calculated stresses;
thus, an experimental determination of the Poisson’s ratio was pursued. Two strain gage
grids were aligned with the longitudinal direction and the transversal directions. These
two grids were obtained with a strain gage rosette, in which only the two orthogonal
strain gages were wired and measured (see Figure 12a). In principle, the longitudinal
strain gage and the extensometer should provide identical measurements. As shown in
Figure 12b, these two values were indeed quite similar, especially within the first strain
range from 0 to 500 µε. After that, some small bending effects or any other source of
misalignment could cause deviation between the two measures. The ratio between the
transversal (absolute value) and the longitudinal strain slopes was calculated for the initial
small strains, obtaining the Poisson’s ratio. As shown in Figures 11 and 12, the two obtained
material parameters were E = 2580 MPa and ν = 0.353.

Slope ratio:

0.353 =

Extensometer, με
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Figure 12. Acquisition of transverse and longitudinal grids for the determination of the Poisson’s ratio:
(a) wiring of two orthogonal grids of a strain gage rosette, (b) ratio between the different slopes with
respect to the extensometer.

3.2. Precurved Specimen

The versatility of 3D printing was exploited in this study to design and manufacture a
specimen allowing for the generation of a distribution of bending stress which could be
considered known with sufficient accuracy to be used for a validation. The shape proposed
here is a precurved plate which is flattened when three-point bending is applied (see
Figure 13). This idea is not new, as a similar approach was proposed by Baldi [35] and
previously by Schajer [46]. However, their specimens were initially flat, and a curved seat
was prepared to impose a certain degree of bending.

As our specimen is precurved, the seat of the specimen is flat and rigid enough to
keep the specimen itself flat. The stiffness requirement can be easily fulfilled due to the
printed material being quite flexible; thus, a simple planar support is enough to impose the
bending of the specimen and ensure that it is ready for the HDM operation.

The design of the precurved specimen is simply obtained by imposing the opposite of
the displacement to be experienced under the load. The beam theory under bending was
assumed, as the width was intentionally quite small with respect to the length. Despite
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the material being quite flexible, the large displacement theory was not required, as the
maximum imposed stress was limited up to the proportional limit (see Figure 11c).

(a) (b)

(c) (d)

x, mm

y, mm

z,
 m

m

Midsurface

Thickness applied to 

the CAD midsurface

xy

z'

z

Support 

structures

Printing process completed

xy z

2L=140 mm

b = 40 mm

h = 6 mm

Figure 13. Design and manufacturing of the precurved specimen: (a) definition of the plate midsurface
by sampling points, (b) 3D solid obtained in CAD environment, (c) 3D printing operation with small
supports to allow the curved shape, and (d) completed printing operation, showing the supports at
the bottom surface to be removed.

The midsurface sampling points shown in Figure 13a were obtained according to the
following equation, which takes into account the anticlastic curvature according to the
beam theory (y dependency):

z =
F

EI

(
L

x2

2
− |x|3

6

)
− ν

F(L − |x|)
2EI

|y|2 (6)

where z is the vertical upwards direction. A further vertical axis z′ can be added along
the depth direction with the opposite orientation (see Figure 13b). After this, the depth
coordinate in the previous section should in principle be replaced with z′.

The maximum height z obtained at x = ±L is the same as the maximum deflection of
the cantilever beam formula:

zmax =
FL3

3EI
. (7)

When bending is imposed and the entire zmax is recovered at both sides, the bending load
at the central line (x = 0) is

σ =
FL
W

, (8)

where for the simple rectangular section I = (1/12)bh3 and W = (1/6)bh2, with h being the
specimen thickness (Figure 13b). More precisely, this latter bending formula (Equation (8))
was initially inverted to find the force F that generates a stress not exceeding the propor-
tional limit, as discussed above. Equation (6) was used to find the points of the midsurface
(Figure 13a). The surface generated with these points was then extruded in a CAD en-
vironment (Figure 13b) and the slots for the two screws were added. The specimen was
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printed with FDM (Figure 13c,d), for which a Tenlog Hands 2 Pro 3D printer equipped
with a 0.4 mm nozzle was used, setting the extruder temperature to 205 ◦C and the layer
height to 0.2 mm. The same printing parameters were used for the previously introduced
tensile test specimen, and the longitudinal orientation of the precurved specimen, namely,
the x axis, was the same as the tensile test direction to ensure the most similar material
properties between the two specimens and that the loading was along the same printing
direction.

As is evident in Figure 14a,b, and as introduced before, the precurved specimen was
set to planar by two screws, generating three-point bending.

(a)

(b)

(c)

Precurved specimen (stress free)

2F

F F

Anticlastic 

curvature 

(small effect)
Imposed 

displacement 

to flat

Imposed zero 

displacement

Figure 14. Bending loading on the precurved specimens: (a) initial positioning of the specimen and
the screws, (b) application of the vertical forces generated by of the lateral screws and force reaction
at the centre, and (c) bending distribution simulated by FE and verification of the planarity of the
shape under loading.

The exact distribution of the contact pressure at the central point where the force 2F is
applied depends on a number of factors, including the accuracy of the printing, the stiffness
of the specimen seat, and the planarity of the seat. Controlling this distribution accurately
is quite difficult; however, as the stress of interest is at the upper side, it is not as affected by
the contact at the other side, as is evident in Figure 14c. This is investigated further below.

3.3. Stress Distribution

The stress distributions along the thickness of the plate specimen are in principle
available from the beam theory. However, the distribution at the centre of the precurved
plate is not perfectly in agreement with the theory, mainly because there is the contact with
the load 2F in that region at the bottom surface, which implies a nonlinear distribution
of the bending stress along the thickness (see Figure 15a). Despite this nonlinearity being
more pronounced at the bottom side, it is advisable to apply the load and evaluate the
stresses, not just the central point, but at a slight distance in order to avoid the effect of the
contact and obtain a distribution more similar to that of the bending of a beam. Simple FE
simulations allowed for estimating the position at which the solution is linear; for better
accuracy, the stress distribution obtained with the FE model is preferred over the beam
solution. Moreover, this side positioning, as shown Figure 15a, allowed for exploiting
specimens with two distinguished measuring points.

More precisely, the contact at the bottom surface could be distributed in a different way
than how it is modelled here. If the actual Poisson’s ratio were (slightly) higher than the
value determined above (Figure 12a), then the lateral sides would lose contact earlier than
when the specimen is set flat, which would concentrate the force at the centre, as modelled
here. On the contrary, if ν were lower than the measured value, the contact would remain
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distributed at the bottom middle line of the plate specimen. In this situation, the effect of
Figure 15a is smeared along this length and locally reduced. It is worth noting that only the
very initial distribution of the upper surface is of interest, as the hole depth is 1 mm or less,
as shown below, and within this depth these perturbation effects are negligible.

(a) (b)

Axial 

midline

Axial 

midline

Offset 4 mm

Figure 15. Stress distributions along the thickness of the plate: (a) at the centre of the plate, showing
the perturbation effect due to the bottom contact and (b) at a slightly lateral position, where the
solution is more similar to the beam theory distribution and is expected to be more reliable.

3.4. Theoretical Framework and Implementation of Digital Image Correlation

Digital image correlation is a well-established technique to precisely measure displace-
ments through image processing. The method is based on the presence of random features
in the images, which can be tracked through a dedicated algorithm. These features can be
naturally present on the specimen (e.g., surface roughness or texture) or can be added in the
form of random speckle patterns to improve robustness. Due to the printing process, the
3D-printed specimen used in this paper presents a repetitive texture which is not suitable
for DIC analysis; thus, black speckles were sprayed on the top white surface before the
measurements. When such a random pattern is present, it is possible to perform DIC
measurements by comparing the deformed image to the undeformed one. Many different
DIC algorithms are available in the literature, most of them based on a two-step procedure
involving rough displacement estimation at the pixel level through correlation followed by
fine subpixel measurements through interpolation schemes [47]. In this paper, the Digital
Image Correlation and Tracking algorithm was used [48]. To accomplish the first step,
a measurement grid can be arbitrarily defined on the image. An example grid is shown
in Figure 16a with red dots. Then, a square subset is defined around each measurement
point, e.g., the red box in Figure 16a. The algorithm then iteratively moves the subset in the
deformed image, as exemplified in Figure 16b with the green box. The correlation between
the moved subset and the original subset in the reference image is then computed using
the following equation [48]:

C(u, v) =
∑i,j(r(i, j)− r̄))(d(i − u, j − v)− d̄)√

∑i,j(r(i, j)− r̄))2 ∑i,j(d(i − u, j − v)− d̄)2
(9)
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where u and v refer to the iterative tentative displacements along the horizontal and
vertical directions, respectively. The indexes i and j refer to the image pixels, while r and d
represent reference and deformed image subsets, respectively. Additionally, the terms r̄
and d̄ represent the mean value of both reference and deformed subsets, and are defined
for normalization purposes. The correlation result C is a matrix that contains information
about the correlation value, i.e., a scalar between 0 and 1, for each tentative displacement
u,v. It is worth noting that because the images are discrete matrices, the values of u
and v at this step must be integers to allow for the selection of the pixel intensity values.
The resulting correlation map can be used to detect the maximum correlation at the pixel
level, which represents the rough displacement between the reference and deformed images.
To improve the method’s sensitivity, it is possible to refine the measurements for subpixel
accuracy. In particular, a sub-array of C is defined by selecting eight points around the
rough maximum, for a total of nine measurement points. These points are then used to
define a two-variable quadratic polynomial fitting function, which allows for analytical
detection of its maximum. The peak of this polynomial function is assumed to be the actual
maximum of the correlation map, and the fitting procedure allows for an accuracy between
1/10 and 1/100 of a pixel.

x

y
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Ux

Uϑ

(a) (b)

reference 

(no hole)

full depth 

hole

r
d

1 mm

Figure 16. DIC procedure, definitions of reference (a) and shifted (b) subsets, and introduction of the
displacement components with respect to the hole centre coordinate system.

3.5. Experimental Setup

The experimental setup was implemented on a milling machine to ensure easy and
well controlled translational displacements (see Figure 17). The specimen was flattened
on a plate, which was fixed to the (movable) base of the machine. The DIC camera was
fixed to the upper frame of the machine so that it was fixed along any direction, and a light
ring was positioned at the extremity of the camera lens to improve the local lightening and
reduce the exposure time. A global shutter DMK 38UX540 camera (The Imaging Source)
was used, having a resolution of 5320 × 4600 (24.5 MP). The field of view was set to be
approximately 8 × 7 mm2, for a scaling factor of about 1.549 µm/pxl. The vertical distance
between the camera lens and the specimen was initially fixed to ensure the best focus
at the hole’s upper surface. The milling tool was initially brought into contact with the
upper surface of the specimen. In order to avoid slight damage to the surface before the
actual cutting, a calibrated thickness was placed between the milling tool and the specimen
surface, while rotating the former for detection. This thickness was taken into account to
finally set the column vertical position corresponding to the zero depth of the milling tool.
This latter was then set to contact while not rotating and a depth indicator was introduced
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at this position, which was fixed to the vertically sliding column of the machine, leaving it
fixed with respect to the milling tool’s vertical position. At this status the depth indicator
was zeroed, as represented in Figure 17. Despite the tip of the depth indicator being far
from the milling tool, the rigidity of the machine frames ensured the same translational
displacement between the indicator and the milling tool. After this zeroing, the cutting
tool was initially brought up (along with the depth indicator), then the base was moved
leftwards by a length equal to the distance between the camera and the milling tool axes.
After taking the initial DIC picture without the hole, the base was again repositioned below
the milling tool. The drilling operation was then started with accurate control of the drilled
depth due to the depth indicator. The rotating speed of the milling tool was imposed
at 200 rpm and the feed rate was 0.1 mm/s. These values were kept low to avoid local
overheating and melting of the specimen material. After drilling, the base was again moved
to the position that the specimen was below the camera, and the final DIC image (with the
hole) could be obtained.

Depth
indicator at
zero depth

DIC 
Camera

Light ring

Flattened precurved specimen 

Milling tool 
at zero depth

Vertically connected

Movable base

Figure 17. Picture of the experimental setup, including the milling tool, DIC camera, and depth
indicator. The movable base allows the specimen to be positioned either below the DIC camera or
below the cutting tool axis.

Despite the depth being measured with a good accuracy, the diameter of the generated
hole is only known as a nominal value. An accurate acquisition of the diameter is obviously
required, as it is both the main parameter of the HDM and the scaling length of the
DIC displacement measurement. After the drilling and the DIC acquisition (Figure 18a),
an optical device was used to observe the drilled hole with a thin frame (Figure 18b). This
latter can be translated and the frame movement was associated with a dial gage with a
resolution of one hundredth of a millimetre (Figure 18c). This device was available with
the RESTAN instrument supplied by SINT Technology Srl, Florence, Italy. By moving the
frame with respect to the specimen, it is possible to align one of the two lines (horizontal
or the vertical) with the lateral rim of the hole, and then the gage translation to reach the
other side can be easily measured. This can be repeated for the other line, allowing the
average between the two diametral lengths to be finally calculated. The produced holes
showed accurate roundness, confirming the correct applicability of the cutting parameters
to the PLA.
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Figure 18. Measuring the hole diameter: (a) holes at the upper surface of the specimen, (b) observation
of the thin movable frame, and (c) dial gage with a resolution of one hundredth of a millimetre.

4. Results

This HDM-DIC procedure was applied to different holes manufactured with an offset
of a few millimetres with respect to the axis of the specimen, as shown in Figure 18a and
motivated by Figure 15. In this analysis, the results of two tests at two different nominal
depths of 1 mm and 0.5 mm are presented. The resulting hole diameters were 1.805 mm
and 1.815 mm, respectively, and were obtained with the typical milling tools used for the
HDM combined with the strain gages. The results obtained here can be directly compared
to the stress distributions shown in Figure 15b at the corresponding initial depths, either
1 mm or 0.5 mm for the two cases.

In principle, the stresses induced in the present specimen should not be defined as
“residual”, as the specimen is loaded remotely instead of actually carrying those stresses.
More precisely, the initial depth could be affected by both residual stresses induced by
the manufacturing operations and by the imposed bending stress. The possible residual
stresses were not evaluated in this study; they were assumed to be relatively low with
respect to the bending, as the spring back was almost imperceptible after manufacturing.

Taking into account the shape of the IFs presented before, it is quite evident and
obvious that the largest displacements are close to the hole rim and rapidly vanish. For this
reason, not all of the observed points with displacements measured by the DIC should
have the same significance when the stress inversion is performed; in particular, the points
quite far from the hole should be excluded from the evaluation. In order to apply this,
a simple approach could be to define an annular region of selection. However, according to
the solution, the displacements could be high along some directions, while they could be
rapidly falling along others. The strategy proposed here is an iterative procedure in which
the remote points or those with little displacements are iteratively disregarded. Initially, all
of the points are considered and a first solution is found. According to this first estimate of
the stress distribution, the displacements are calculated at the DIC points themselves, then



Appl. Sci. 2024, 14, 3992 20 of 25

a selection criterion is implemented. A (dimensionless) accuracy factor f is initially found
for each DIC point:

UN =
√

U2
r,N + U2

ϑ,N

f = 1
UN

√
Ur,EUr,N + Uϑ,EUϑ,N

(10)

where Ur,N, Uϑ,N, Ur,E, Uϑ,E are the radial and tangential displacement components, respec-
tively obtained numerically (N), from the first solution, and the experimental ones (E).
According to this, a first selection of the points was taken on the basis of this accuracy factor.
An effective choice was 0.667 ≤ f ≤ 1.5. This criterion was combined with the selection of
those DIC points having UN ≥ 0.05 UN,max, where UN,max is the maximum displacement
norm (numerically evaluated) of the whole observed field. The application of this criterion
provides a deselection of both the outliers, which can have a significant weight (especially
when the measured displacements are very different than expected), and of those points
which are too far from the hole rim, thus showing small displacements. It is worth noting
that the far points may have large weights, as the area of the peripheral region is significant
with respect to the area close to the hole region. Moreover, some spurious effects (such as
nearby constraints or lateral edges) can introduce inaccuracies between the measure and
the model, even if at very small scale of the displacements, especially far from the hole.

After the first selection of the points, the solution was calculated again and the selection
was repeated. This new selection was performed starting back from all the initial points, as
some points which were initially disregarded could turn out to be well correlated as the
solution evolves. This iteration was repeated and the procedure was found to converge
quickly to a stable selection of points in approximately 10 iterations.

The results of the first hole (nominal depth 1 mm) are presented in Figure 19. The se-
lection of the points at the end of the iterations is reported in Figure 19a, while the iterative
solution is shown in Figure 19b; the same graph also presents the expected stresses for
validation. The displacements at the end of the iteration procedure are shown in Figure 20,
which presents both radial and tangential components, along with both the numerical and
the experimental distributions, which are the variables involved in the evaluation of the
accuracy factor in Equation (10).
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Figure 19. Residual stress determination for the hole with depth 1 mm: (a) selection of the points with
accurate correlation and large displacement, (b) obtained stresses at the different iterations (lighter
lines) and at convergence (solid lines), and validation with the expected stresses (dashed lines).
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(a) (b)

(c) (d)
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Radial displacements – Ur,N Tangential displacements – Uϑ,N 

Full field (numerical) Full field (numerical)
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Figure 20. Relieved displacement components for the hole with 1 mm depth: (a) radial experimental
Ur,E, (b) tangential experimental Uϑ,E, (c) radial numerical Ur,N, and (d) tangential numerical Uϑ,N.

The same analysis was repeated for the second hole with nominal depth 0.5 mm.
In this situation, the solution was less stable in terms of component gradients because of
the smaller depth.

For this reason, the same procedure was equally repeated after imposing the condition
of a uniform stress for each component along the entire depth of the solution. Recalling
Figure 10, this was easily implemented by imposing the same levels of the superimposed
triangular distributions; in other words, the same stress was shared by the two unitary
distributions covering the entire depth, for each of the P, Q, T components, leading to just a
single unknown for each of them.

The obtained stress distribution and selection of the points are shown in Figure 21.
In this situation, the procedure converged even faster (approximately 3 to 5 iterations were
enough to find a stable result), and again the obtained stresses were found to be quite in
agreement with the expected ones.

The components of relieved displacements are shown in Figure 22. The pattern of
the selected points changes slightly, and because of the smaller depth, the magnitude
of the displacements is somewhat lower than the previous example. However, these
displacements were still well detectable with the present settings by means of the DIC
technique even for this shallower hole with 0.5 mm depth.



Appl. Sci. 2024, 14, 3992 22 of 25

(a) (b)Selected pointsUnselected

x – coordinate

y 
–

 c
o
o
rd

in
at

e

Figure 21. Residual stress determination for the hole with depth 0.5 mm: (a) selection of the points
with accurate correlation and large displacement and (b) obtained stresses at the different iterations
(lighter lines) and at convergence (solid lines), and validation with the expected stresses (dashed lines).
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Figure 22. Relieved displacement components for the hole with 0.5 mm depth: (a) radial experimental
Ur,E, (b) tangential experimental Uϑ,E, (c) radial numerical Ur,N, and (d) tangential numerical Uϑ,N.

The same approach could be proposed for the previous test with higher hole depth, as
the slopes of the obtained stress distributions are not in perfect agreement with expectations.
A similar stability and solution convergence rate was obtained for the 1 mm hole depth (not
shown for brevity). However, the uniform stress combined with the proposed DIC point
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selection procedure would be more interesting for shallow hole depths even lower than
0.5 mm. In fact, an accurate evaluation of the stresses could be more useful quite close to
the upper surface, where the residual stresses may be higher and most damaging, especially
considering that the imposed uniform stress is more acceptable on a smaller depth.

Other techniques can be applied to smooth the DIC relived displacements, as pro-
posed in Refs. [31,35]. On the contrary, the method proposed in this study uses just the
raw displacements to avoid any artifacts due to displacement smoothing or further data
postprocessing. However, a certain number of acquired points need to be disregarded from
the initial whole acquisition, according to the iterative procedure, to have a stable solution
which was found to be accurately matching with the expected stresses.

5. Conclusions

The present paper proposes a high-resolution numerical method for calculating the
relieved strains based on axisymmetric harmonic finite elements and direct determination
of the influence functions (IFs). This allows for an efficient solution of the hole-drilling
method (HDM) combined with the DIC technique. In addition, this paper proposes a
precurved specimen which can be easily 3D printed with any additive manufacturing
technique, e.g., fused deposition modelling (FDM). This specimen can be flattened on a
rigid ground and the induced stresses can be easily determined with the beam theory,
or more accurately with a simple FE analysis to consider the small variations with respect
to the bending formula. In the experimental part of this study, specimens were printed with
polylactic acid (PLA), with the FDM technique, and evaluation of the induced bending
stresses was performed on two holes of different depths. The results were found to be
in good agreement with the expected bending stresses; however, a deselection of the
measured DIC points was required, and thus an iterative procedure was proposed which
turned out to be efficient and quickly converging. An interesting result was obtained
by imposing a uniform stress distribution for a hole with lower depth. The procedure
converged even faster and the final distribution was in good agreement with the imposed
stresses, confirming that this technique can be applied to this kind of material even at
shallow depths.
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