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Abstract: In this paper, experimental tensile tests for pre-cracked high Carbon steel ‘C90’ specimens
were performed for quasi-static and dynamic loading. High loading velocity affects the crack patterns
by preventing deflection. On the other hand, an efficient numerical tool based on the phase field
model was developed and validated to predict brittle fracture trajectories. A staggered numerical
scheme was adopted to solve the displacement and damage fields separately. Implementation
efficiency in initiating and propagating cracks, even from an undamaged microstructure, was proved.
The effect of the critical fracture energy density Gc on the crack path was tested; with smaller Gc, the
crack patterns become more complex. In addition, the impact of loading velocities was examined,
and earlier and faster crack formation and greater crack branching is observed with higher impact
velocity. In this study, bidimensional plane stress cases were treated. The phase field model with
hybrid formulation was able to predict crack pattern and especially crack arrest and branching found
in the literature. The developed model accurately determined the transition zone of the crack path
topology that has been observed experimentally.

Keywords: experimental tensile test; quasi-static and dynamic loading; phase field model; brittle
fracture; staggered scheme; hybrid formulation

1. Introduction

Crack propagation in solids, whether brittle or ductile, can have devastating financial
effects and put people’s lives in peril. Consequently, both scientists and engineers are
interested in looking for predictive description tools regarding this phenomenon. Grif-
fith [1] proposed one of the first successful descriptions which, although functioning, is too
cumbersome to measure and implement in engineering cases. Dynamic crack initiation
and propagation cannot be predicted using this theory; however, this remains an active
topic of research due to its complexity.

Practical engineering cases, with the exception of a few theoretical cases, are gener-
ally too complicated to be solved using analytical expressions. Consequently, numerical
approaches are extremely important in fracture analysis. Both discrete and continuous
methods can be used to model cracks. Although molecular dynamics [2,3] provides a pow-
erful overview of the physics of fracture initiation, the length and time scales are very small
for application in practical cases. Discrete element simulations [4] overcome the problem
of scale. However, despite the advantages of discrete techniques, continuous description
is the most frequently utilized approach. Using various enrichments, the finite elements
approach was proven capable of modeling dynamic fracture propagation. The cohesive
zone method [5–7] is focused on the separation of predetermined surfaces, supposing a
finite treatment zone at the fracture’s front. A finite displacement step is introduced at the
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crack front in ‘the strong discontinuity approach’ [8]. The eXtended Finite Element Method
(XFEM) [9] has been successfully used to study dynamic fracture propagation in elastic
brittle [10] and ductile [11] materials. Gomez et al. [12] used the boundary element method
(BEM) to predict crack propagation for fatigue fracture in mixed modes (I + II). Fractures
are treated as discrete discontinuities in the methods mentioned above. Consequently,
treating crack initiation or branching is complicated and frequently requires special criteria.

Another approach is provided by non-local damage models [13–16]. The thick level
set approach calculates the fracture trajectory on the basis of the damage progression at the
crack point, and the discontinuities are explicitly taken into account. However, discontinu-
ities are not directly employed in other models, such as the phase field method. Rather, the
crack effect is defined by a smooth transition. The completely damaged regions, as well as
the undamaged material, are linked by a unique damage variable. The non-local damage
models applied to Griffith’s theory are based on the variational formulation developed by
Francfort and Marigo [17,18] and implemented by Bourdin et al. [19]. Complex fracture
processes in two- and three-dimensional [20] solids, such as crack initiation, propagation,
and branching, can be processed automatically without any additional ad hoc strategies.

The monolithic scheme [21–26] and the staggered scheme [19,27–30] are the two most
important numerical methods adopted to simulate the mechanical problem and determine
the fracture pattern. When the fracture propagates closely to an initial crack, monolithic
algorithms eventually converge. However, these algorithms struggle to converge in the
case of unstable crack initiation and propagation. The non-convexity of global energy
and the jumps in the solution are the causes of this problem [31]. To avoid this, a variety
of modifications [24,31,32] have been proposed. The staggered scheme is derived from
the alternate minimization algorithm developed by Bourdin et al. [19]. Two well-posed
convex problems are solved separately. Even in unstable cases, this iterative method was
shown to be very robust [29]. Therefore, staggered implementation was considered as
the right approach to use in this paper. The only drawback of this technique is that it
necessitates a relatively small time step [30]; thus, a high computational time is needed.
To overcome this issue, several research works were adopted, such as detecting unstable
propagation and reducing the external load variation [22,23,30,33–35], deactivating damage
variables until an equivalent stress reaches a critical value σc [36], optimizing the assembly
matrices [37], etc.

Decomposing the stored elastic energy into two parts, one associated with a compres-
sive strain and the other with a tensile one, is a common approach in solving the problem of
crack propagation. The decomposition of the elastic energy density in volumetric-deviatoric
parts [28] and the spectral decomposition of the strain tensor [21] are two examples of
decomposition methods that have been investigated. Hybrid formulation [38–40] is another
technique applied to deal with asymmetric tensile and compressive behavior. Although it
is variationally inconsistent, the resulting model is substantially more efficient computa-
tionally than the spectral decomposition models [41].

The remainder of this paper is organized as follows: In Section 2, experimental tensile
tests on pre-cracked plates with a center hole were performed for different distances
between the pre-crack and the hole axis to show their influence on the crack patterns for
quasi-static and dynamic loading. Section 3 details the governing equations of the phase
field model for brittle fracture based on the variational approach. Section 4 introduces four
sets of illustrative numerical examples to prove the capability of the suggested model in
depicting the quasi-static and dynamic fracture propagation. Then, the effectiveness of the
hybrid formulation in predicting the crack patterns achieved experimentally is proven. The
most relevant conclusions are drawn in Section 5 before suggesting some future potential
perspectives.

2. Quasi-Static and Dynamic Tensile Experiments

The available experimental results to confirm the crack trajectory predicted by the
phase field formulations are actually scarce in the literature. In this section, we experimen-
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tally investigated the crack path for a notched plate under quasi-static and dynamic tension.
In the experimental tests, we used a brittle material, i.e., non-alloy steel with a high Carbon
percentage C90 in the as-quenched state [37].

2.1. Specimen Description

Since there are no norms for testing brittle fracture propagation, we selected a simple
and particular specimen geometry conceived to obtain various crack trajectories during the
experiments. The simple geometry is set as a rectangular plate with a central hole and an
initial pre-crack. Different distances between the pre-crack and the central hole axis, noted
as h, were considered (Figure 1). To avoid slipping in the contact regions of the specimen
jaw during the tensile tests, holes were machined.
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Figure 1. Geometry of the pre-cracked specimen.

2.2. Experimental Design

In these tests an axial displacement is applied, with a tensile machine for quasi-static
cases and fast jack for dynamic ones (INSTRON VHS 65/20), with a maximum displacement
velocity of 20 m/s for the cross bar. During tensile tests, some specimens were painted with
a black and white speckle pattern to allow for a better visualization of crack propagation.
A high-speed Manta camera G-1236 from Allied Vision Company-Germany (12.4 million
pixels, full resolution: 4112 × 3008, lens Mount: C) was used to film the tests. Vimba X 6.1
software was used for data acquisition and image processing. The tests consist of applying
an imposed displacement load to the top face of the specimen. The crack trajectories
observed for the test specimens were obtained after three repeatable tests for each case.

2.3. Experimental Results and Analysis

In the quasi-static tensile tests, the controlled displacement load was imposed at a
velocity of 0.01 mm/min. Figure 2 shows the experimental crack trajectories. For h = 5
and 6 mm, the crack starts to propagate from the pre-crack to the hole, then a new crack
was initiated and propagated from the hole to the right edge, and for h = 9 mm the crack
propagated horizontally from the pre-crack to the right edge.
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In the dynamic tests, the loading velocity is 1 m/s as shown in Figure 3, and for
h = 5 and 9 mm the crack trajectories are the same as those achieved in the quasi-static
case. However, for h = 6 mm, the crack propagated horizontally without passing through
the hole.
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In this test, we can see the effect of loading velocity on the crack trajectory. In fact, the
inertial effect can change the crack path. The crack has no time to deviate to the hole and
propagate directly toward the opposite edge.

3. Brittle Fracture Phase Field Model

Let us consider an arbitrary solid Ω, with ∂Ω the external boundary and Γ the internal
discontinuity boundary, which represents an initial fracture. The displacement field in the
solid is designated by u. A body force acting on the solid b and a surface force f on the
boundary ∂ΩF are considered.

According to Griffith’s theory, Bourdin et al. [34] proposed a variational approach for
fracture problems. This indicates that the critical fracture energy density Gc, also known as
the critical energy release rate, is equivalent to the energy needed to generate a fracture
surface per unit area. The total potential energy Etot(u, Γ) is formulated as follows:

Etot(u, Γ) =
∫
Ω

ψ0(ε) dΩ +
∫
Γ

GcdS −
∫
Ω

b.u dΩ −
∫

∂Ω

f.u dS (1)

where, ε = ε(u) is the linear strain tensor and dS is the surface element.
The elastic energy density ψ0(ε) in the isotropic linear elasticity is provided by:

ψ0 =
1
2

λtr2(ε) + µtr(ε2) (2)

where µ and λ are Lamé constants.
Furthermore, according to the variational approach [34], the crack initiates, propagates

and branches when the minimum potential is reached and the irreversible condition is
fulfilled. The irreversible condition means that a material cannot regain its initial state after
a crack formation.

3.1. Diffusive Crack Energy Approximation Using Phase Filed Method

The brittle fracture variational approach was applied with success by Miehe et al. [21,27],
Bourdin et al. [34] and Borden et al. [42]. To represent the fracture surface Γ (Figure 4a),
a phase field α(x, t) ∈ [0,1] is defined (see also Figure 4b). α(x, t) represents a diffusive
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crack topology. α = 1 indicates the cracked zone and α = 0 indicates the uncracked zone.
Therefore, the solid crack surface density γ is defined by Miehe et al. [27] as:

γ(α,∇α) =
α2

4η
+ η|∇α|2 (3)

where η is the length scale parameter that regulates the width of the transition region of
the phase field (Figure 4b). The crack region width increases with the scale parameter η
(see Figure 4b). The fracture energy is calculated using Equation (3):

∫
Γ

GcdS =
∫

Ω
Gc

[
α2

4η
+ η|∇α|2

]
dΩ (4)
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3.2. Governing Equations

According to Francfort and Marigo [17], the fracture surface energy is obtained from
the elastic energy, which determines the damage variable evolution. The elastic energy
is decomposed into tensile and compressive components to ensure that only the tensile
component of such density is governing the phase field variable evolution. This assumption
cannot predict the crack initiation in the case of uniaxial specimen compression as a
concrete compression test. It also discards the influence of the crack roughness [12] on the
propagation phenomena. Here, the decomposition method described by Miehe et al. [27]
was adopted and the decomposition of the strain tensor is as follows:

ε− =
d
∑

a=1
⟨εa⟩−na ⊗ na

ε+ =
d
∑

a=1
⟨εa⟩+na ⊗ na

(5)

where ε− and ε+ are the compressive and tensile strain tensors, respectively. The operators
⟨.⟩+ and ⟨.⟩− are the positive and the negative parts, respectively. εa is the principal strain
and na is its direction vector.

Using the spectral decomposition of the strain tensor, the elastic energy density is
illustrated by the following equation:ψ+

0 = 1
2 λ⟨tr(ε)⟩2

+ + µ tr(ε2
+)

ψ−
0 = 1

2 λ⟨tr(ε)⟩2
− + µ tr(ε2

−)
(6)

To model the stiffness reduction due to damage phase propagation, the following
equation was used [42]:

ψ0(ε) = ((1 − α)2 + k)ψ+
0 (ε) + ψ−

0 (ε) (7)
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where k is a numerical parameter that prevents numerical singularities if the phase field
variable α tends towards 1. Furthermore, this parameter has to be positive and very small
compared to 1.

In dynamic fracture propagation, the kinetic energy of the body is added to the energy
balance. The kinetic energy of a solid is given by the following equation:

Ecin(
.
u) =

1
2

∫
Ω

ρ
.
u.

.
udΩ (8)

where
.
u = ∂u

∂t is the velocity vector and ρ is the mass density of the material.
The total Lagrange energy functional is given by the following equation:

L = − 1
2

∫
Ω

ρ
.
u.

.
udΩ −

∫
Ω
[((1 − α)2 + k)ψ+

0 (ε) + ψ−
0 (ε)]dΩ −

∫
Ω Gc

[
α2

4η + η|∇α|2
]
dΩ

+
∫
Ω

b.u dΩ +
∫

∂Ω
f.u dS

(9)

The functional L’s variation may be calculated, and its first variation must be 0, which
leads us to the governing Equation (10) given by Ambati et al. [38]:

∂σ
∂x + b = ρ

..
u

−4η2∆α + α = 4η
Gc
(1 − α)H

∀x : ψ+
0 < ψ−

0 ⇒ α = 0

(10)

where
..
u = ∂2u

∂t2 is the acceleration vector, σ the stress tensor and I is the unit tensor Rd × d.
The law of damaged material behavior given by the thermodynamic of continuums

using Equations (6) and (7) is:

σ = ∂Ψ0
∂ε = λ

[(
(1 − α)2 + k

)
⟨tr(ε)⟩+ + ⟨tr(ε)⟩−

]
I

+2µ
(
[ε−] +

(
(1 − α)2 + k

)
[ε+]

) (11)

To reduce the computational time, we adopted the hybrid formulation of stress tensor
proposed by Ambati et al. [38] and given by the following equation:

σ = [(1 − α)2 + k][λtr(ε)I+2µ ε] (12)

During compression or unloading, the irreversibility condition is required to ensure
a monotonically increasing phase field variable. Consequently, a strain-history field H(x,
t) [20,27], defined as shown below, was introduced:

H(x, t) = maxτ∈[0,t]ψ
+
0 (ε(x, τ)) (13)

To solve this problem, the finite element method in the case of plane problems was
used. The adopted elements are a three-node triangular model with a linear interpolation.
This program was implemented in the Matlab 2015 software, using the Flowcharts of
Figures 5 and 6 detailed in Appendices A and B.
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4. Numerical Examples

This section deals with quasi-static and dynamic computational examples to prove the
proposed model’s ability to reproduce the experimental crack paths.

4.1. Crack Growth under Quasi-Static Loading
4.1.1. Quasi-Static Tensile Test of Notched Specimens

This example was considered to demonstrate the capability of the staggered scheme
with the hybrid formulation to predict the experimental crack trajectory obtained in the
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previous section for different ‘h’ values between the pre-crack and the hole under quasi-
static loading. The boundary conditions are a fixed edge and an imposed axial displacement
on the opposite edge (Figure 7). The domain was meshed with triangular elements with a
characteristic size s = 0.1 mm. The material properties are E = 210 GPa, Gc = 0.03 kN/mm,
and ν = 0.3. The length scale parameter was chosen as η = 2 × s = 0.2 mm.
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The crack paths given by the numerical simulations are illustrated in Figure 8. The
obtained crack paths are in agreement with those found experimentally (see Figure 2). In
fact, in the case of h = 5 and 6 mm, the cracks changed direction and pass through the hole
and, in the case of h = 9 mm, the cracks propagated directly to the opposite edge.
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4.1.2. Compression Test of a Regularly Dispersed Pores Microstructure

In this example, a microstructure built of plaster with holes spaced at regular intervals
was considered. Nguyen et al. and Sammis and Ashby [43,44] have investigated this
example numerically and experimentally. Figure 9 shows the compression test geometry of
a plate with 23 holes of diameter d = 0.2 mm. The specimen’s dimensions are 2 mm and
3 mm.

The material properties were adopted from [43]: E = 12 GPa, ν = 0.3 and Gc = 1.4 ×
10−6 kN/mm. Monotonic increments of compressive displacement ∆u = 1.5 × 10−4 mm
were prescribed. The length scale parameter was chosen as η = 0.03 mm.
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Experimentally, Sammis and Ashby [44] found that the cracks initiate and propagate
vertically from the holes. Nguyen et al. [43] obtained, in addition to the vertical cracks
observed in the tests, an initiation of cracks from the left and right sides of the holes, which
is unphysical, due to high compression stress in these regions. Figure 10 shows the crack
path simulation given by our models. This demonstrates the ability of the developed model
to initiate cracks from a microstructure that is not damaged, with a correctly predicted
crack trajectory after nucleation.
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4.2. Crack Propagation under Dynamic Loading
4.2.1. Dynamic Tensile Test of Notched Specimens

This example was dealt with to validate the crack paths obtained experimentally under
dynamic loading with the same geometry proposed in Section 2.1, while the elements’ size
and material properties are as in the example studied in Section 4.1.1.

The numerically obtained crack paths are illustrated in Figure 11. The transition of
the crack pattern observed experimentally for h = 6 mm was correctly achieved with our
model. The obtained crack trajectories are in agreement with those found experimentally
(see Figure 3). Compared to the quasi-static case, a change in the crack path was observed
in the case of 6 mm distance between the pre-crack and the central hole axis.
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4.2.2. Dynamic Shear Loading of Kalthoff Experiment

The treated example for a dynamic fracture is related to a doubly notched specimen
subjected to an impact load, commonly referred to as the Kalthoff–Winkler experiment [45],
which has already been investigated by many other researchers [46–54]. The specimen
geometry is shown in Figure 12, and the impact loading is generated by a projectile. The
symmetry conditions are adopted to reduce the computational cost.
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The following velocity v =

{
t
t0

v0 t ≤ t0

v0 t > t0
was applied with t0 = 1 µs and v0 = 16.5 m/s.

The material parameters were as stated in [42]: E = 190 GPa, ρ = 8 × 10−6 kg/mm3,
ν = 0.3 and Gc = 22.2 × 10−3 kN/mm. The length scale parameter ηwas fixed as 0.4 mm
and the time step ∆t was defined as 0.04 µs. The fracture began to propagate at 24 µs. The
angle between the horizontal axis was 68◦, which corresponded well with the experimental
results of Kalthof–Winkler [48] and the numerical results of Zhou et al. [54].

Then, the effect of Gc, on the crack path, was tested. The phase field variable distribu-
tions at 90 µs for Gc = 5 × 10−3, Gc = 10 × 10−3, Gc = 22.2 × 10−3 and Gc = 30 × 10−3 kN/mm
are displayed in Figure 13. For smaller Gc, more complicated crack schemes were found.
When Gc = 5 × 10−3 and 10 × 10−3 kN/mm, crack branching occurs. The reflected wave
caused secondary cracks in the lower right-hand corner of the specimen, as shown by Zhou
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et al. [54]. However, only one crack was observed for a greater Gc. The principal crack
pattern, which began from the point of the pre-existing crack, was unaffected by changes
in Gc.

Eventually, higher impact velocities of v0 = 25, 40 and 60 m/s were examined. The
crack paths are given in Figure 14. As the impact velocity increased, earlier and faster crack
formation and greater crack branching were observed.
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As a result, the developed model can easily capture multiple dynamic crack branching
with appropriately refined meshes. When several small fractures exist along a major domi-



Appl. Sci. 2024, 14, 4000 12 of 18

nant one, this result is intriguing for the study of dynamic crack instability problems [55].
It is worth mentioning that the tension-compression slit model [56] affects the development
of the crack patterns.

4.2.3. Dynamic Crack Propagation under Mixed-Mode Loading

In this part, we introduced a third example of the numerical simulations of a dynamic
fracture test performed by Grégoire [57]. The specimen was directly impacted by a fast jack
with an impact velocity of 10 m/s and the compressive loading was transformed by the
circular hole into tensile loading in the vicinity of the initial notch. The specimen geometry
is shown in Figure 15. The geometry was discretized by 60,000 triangular elements whose
characteristic size is s = 0.2 mm. The material properties were those adopted in [57]:
E = 2.4 GPa, ρ = 1.18 × 10−6 kg/mm3, ν = 0.42 and Gc = 7 × 10−4 kN/mm. The length scale
parameter was η = 0.4 mm and the time step was ∆t = 0.5 × 10−4 ms. Figure 16 illustrates
the dynamic crack propagation obtained by simulation.

The crack propagation began from the initial crack with an angle of −76◦, which
corresponded well to the experimental result of Grégoire [57]. In Figure 17, we superposed
the experimental result and the numerical result obtained with phase field and XFEM
method treated by Grégoire [57]. Clearly, the phase field method has a greater ability to
reproduce the experimental observations. In fact, the crack path obtained by the developed
program and the experimental are practically similar.
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4.2.4. Crack Arrest Due to Compressive Stress

The last example considered in this sub-section was the ‘one crack two holes’ studied
by Grégoire [57] and Li et al. [56]. The aim was to better understand the effect of holes
presence at the cracks; initiation and propagation, as treated by Fageehi and Alshoaibi [58].
The specimen was directly impacted by a fast jack with an impact velocity of 10 m/s. The
specimen geometry is shown in Figure 18. The material properties and the mesh size are
the same as in the preceding example. Figure 19 shows the dynamic crack propagation
obtained for different time steps.
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The crack propagated from the initial crack and its arrest occurs at 0.13 ms in the
vicinity of the high-compression area located under the right circular hole. The predicted
crack arrested in the same way as the experimental one. Then, at the boundary of the right
circular hole, a secondary crack nucleation was observed at 0.135 ms under high tension.
This result is very similar to that obtained by Li et al. [56]. However, this phenomenon was
not observed experimentally by Grégoire [57].

For length scale η = 0.2 mm, no nucleation of secondary crack was detected at
t = 0.135 ms (see Figure 20). This result highlights, again, the importance of internal length
as a material parameter.
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5. Conclusions

Several 2D plane stress benchmark examples for quasi-static and dynamic crack
propagations were investigated. The effects of critical energy release rate, velocity and
length scale parameter on the results were also checked. It can therefore be concluded from
this study that, with the hybrid formulation, the phase field method provides a hopeful tool
for managing fracture problems and complicated crack path topologies with correct crack
patterns and satisfactory accuracy. We conducted tensile tests on pre-cracked specimens
with a central hole made in quenched steel C90 due to the limited number of experimental
results that demonstrated the dynamic effect on the crack path in brittle materials. The
trajectory of the crack is a function of the distance between the pre-crack and the hole
axis as well as the loading types: quasi-static or dynamic tests. The numerical analysis
revealed the same phenomena. In 2D problems, the implementation of this model is simpler
and requires less time to calculate than the case of anisotropic formulation. The results
obtained with the phase field method using a hybrid formulation are extremely useful. In
fact, this method is capable of capturing various dynamic fracture phenomena including
fragmentation, crack arrest, crack branching, and multiple branching.

As future perspectives, we will first focus on the enhancement of the energy expression
in order to be able to predict the crack initiation in the case of a uniaxial compression test
and will take into account the crack roughness on the propagation phenomena. We will
also extend this work to study three-dimensional brittle crack propagation and ductile
fracture, taking into account the plastic behavior of the material.

The drawback of this technique is that it requires a small mesh size to ensure correct
crack path estimation. Thus, a great deal of computing time and a very powerful computer
to carry out the simulations in the case of real engineering structures are needed. The hybrid
formulation should be enhanced to predict the crack initiation in the case of a uniaxial
compression test and to take into account the effect of crack roughness on propagation
phenomena.
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Appendix A. Finite Element Discretization

We numerically solved the phase field models based on the finite element method
for the hybrid formulations. We used the staggered scheme, in which the displacement
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field and the phase field are updated alternatively. This scheme was chosen to ensure the
robustness of the numerical solutions. In MATLAB, the finite element method is used with
the weak form of the governing equations given by:∫

Ω

(−ρ
..
u.δudΩ − σ : δε)dΩ +

∫
Ω

b.δu dΩ +
∫

∂Ω

f.δu dS = 0 (A1)

and ∫
Ω

−2H(1 − α)δαdΩ +
∫

Ω
Gc

(
2η∇α∇δα +

1
2η

αδα

)
dΩ = 0 (A2)

Using Voigt notation in a 2D setting, the primary variables can be discretized as follows:

u =
m

∑
i=1

Nu
i ui, α =

m

∑
i=1

Niαi (A3)

in which

Nu
i =

[
Ni 0
0 Ni

]
(A4)

where Ni is the shape function associated with node i, ui =
{

ux, uy
}T

i and αi are the
displacement and phase field values at node i. In this work we opted for the use of the
standard 3-node triangular element, so that the index m = 3. The corresponding derivative
quantities are given by:

ε =
m

∑
i=1

Bu
i ui, ∇α =

m

∑
i=1

Bα
i αi (A5)

with

Bu
i =

Ni,x
0

Ni,y

0
Ni,y
Ni,x

, Bα
i =

[
Ni,x
Ni,y

]
(A6)

As a consequence, the test functions and their derivatives were discretized as

δu =
m
∑

i=1
Niδui, δα =

m
∑

i=1
Niδαi

δε =
m
∑

i=1
Bu

i δui, ∇δα =
m
∑

i=1
Bα

i δαi

(A7)

After discretization, the Equations (A1) and (A2) are written as:

−
∫
Ω

(ρNuT
i NuT

j dΩ
..
ui︸ ︷︷ ︸

Fine
u = M

..
u

−
∫
Ω

BuT
i CBu

j dΩui︸ ︷︷ ︸
Fint

u = Kuu

+
∫
Ω

NuT
i b dΩ +

∫
∂Ω

NuT
i fdS

︸ ︷︷ ︸
= 0

Fext
u

(A8)

−
∫
Ω

[
2GcηBαT

i Bα
j + (

Gc

2η
+ 2H)NiNj

]
dΩαi︸ ︷︷ ︸

Fint
α = Kαα

+
∫
Ω

2HNidΩ

︸ ︷︷ ︸
= 0

Fext
α

(A9)

where Fine
u , Fint

u and Fext
u are the inertial, internal, and external forces for the displacement

field and Fint
α and Fext

α are the internal and external force terms of the phase field. C is the
elasticity tensor.
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Additionally, the mass and stiffness matrices can be written as
M =

∫
Ω

ρNuT
i NuT

j dΩ

Ku =
∫
Ω

BuT
i CBu

j dΩ

Kα =
∫
Ω

[
2GcηBαT

i Bα
j + (Gc

2η + 2H)NiNj

]
dΩ

(A10)

Appendix B. Implicit Dynamics Solver

In order to solve the dynamic equilibrium Equation (A8), the Newmark integration
(Newmark, [59]) was adopted in this work with β = 1/4 and γ = 1/2 to ensure the algo-
rithm stability.

At the beginning of the instant t0, the initial accelerations a0 are calculated on the
basis of the a priori boundary and initial conditions. Subsequently, the current nodal
displacements and velocities are predicted from the following equations:

upred
n+1 = un + ∆t

.
un +

∆t2

4
..
un (A11)

.
upred

n+1 =
.
un +

∆t
2

..
un (A12)

Then the nodal accelerations are solved from the governing equation:(
M +

∆t2

2
Ku

)
..
un+1 = Fext

u n+1 − Kuupred
n+1 (A13)

Later, the current nodal displacements and velocities are updated from equations:

un+1 = upred
n+1 +

∆t2

4
..
un+1 (A14)

.
un+1 =

.
upred

n+1 +
∆t
2

..
un+1 (A15)
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