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Featured Application: The work specifically targets the enhancement of cooling mechanisms in
high-power permanent magnet electrical machines, with a direct application in improving the
thermal management of stator windings in such devices. This advancement can significantly
benefit sectors like aerospace, where the efficiency, reliability, and longevity of electrical machines
are critical.

Abstract: This paper investigates innovative methods for enhancing heat transfer efficiency in
high-power permanent magnet electrical machines. The objectives are to quantify the effects of
increasing the air speed, increasing the turbulence intensity, and introducing the spacing between
windings on cooling performance. The cooling of stator windings is studied through experimental
wind tunnel testing and Computational Fluid Dynamics (CFD) modelling. The CFD model is
validated against wind tunnel measurements to within 4 Kelvin (K). The results demonstrate that
each enhancement method significantly improves the cooling capability. Increasing the air speed from
10 m/s to 40 m/s reduces the winding hotspot temperature by 34%. Introducing a high turbulence
intensity of 40% leads to a 21% lower hotspot temperature compared to 0.5% turbulence intensity.
Creating a 1.5 mm spacing between coils also substantially improves convection and conduction
heat transfer. Overall, combining these optimised design parameters yields over a 40% reduction in
hotspot temperature compared to the original design. This research provides practical guidance for
maximising heat transfer efficiency in high-power permanent magnet machines, without increasing
complexity. The findings will lead to higher machine efficiency, reliability, and longevity for aerospace
and other applications.

Keywords: stator windings; thermal design; air cooling; CFD modelling; experimental testing

1. Introduction

Over the past fifty years, civil aviation has experienced a remarkable growth rate of
9% per annum, which has inevitably led to an increase in the production of greenhouse
gases, and is currently responsible for approximately 2.5% of global CO2 emissions [1]. The
current gas turbine technology possesses limited potential for further emission reductions,
and yet the industry has committed to ambitious targets, including reductions of up to 70%
in carbon dioxide, 80% in oxynitride, and 70 dB in noise [2]. These stringent emission targets
have spurred extensive research into the development of Hybrid Electric Aircraft (HEA).

Electric propulsion systems for HEA necessitate electrical machines with exceptional
power density and efficiency [3]. Moreover, these machines must endure extreme operating
conditions, such as high air speeds, low ambient temperatures, and low atmospheric
pressure. Effective thermal management is crucial for the successful implementation of a
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high-power-density motor design. Historically, thermal design has often been considered
secondary to electromagnetic performance within this field [4]. However, the generation
of high power at high efficiency with minimal size and mass is heavily reliant upon high
electric loading, rendering thermal design a critical factor. Furthermore, a reduction in
the operating temperature can significantly extend the machine’s lifetime, as an increase
of 10 ◦C can halve the insulation life [5]. Consequently, it is essential to employ effective
thermal management strategies to minimise internal temperatures and thermal cycling.

Thermal management is a persistent challenge in high-power-density electrical ma-
chines, with inefficient heat dissipation potentially limiting their performance and lifes-
pan [6,7]. Stator windings, integral to machine function, are particularly receptive to
thermal stress [8]. Permanent magnet (PM) motors, known for their efficiency, face ad-
ditional thermal concerns due to the sensitivity of the magnets to high temperatures [9].
Diverse thermal management strategies have been explored, including conventional air
cooling, liquid cooling, and emerging techniques with phase-change materials [10]. While
air cooling offers simplicity, optimising airflow and heat transfer within complex winding
geometries remains an active research area [11].

Direct air cooling is a compelling alternative to liquid cooling systems, which often
introduce complexity and potential failure points. One key parameter for optimising air-
cooling efficiency is freestream turbulence intensity. Studies in turbine blade film cooling
have demonstrated that increasing the turbulence intensity can significantly improve
cooling effectiveness [12–14]. The mechanisms of film cooling, where injected air forms a
protective layer, share similarities with convective cooling over complex surfaces such as
stator windings. This suggests that turbulence intensity may offer similar benefits within
electrical machines. This concept has been subsequently applied to the cooling performance
of natural wind on solar PV panels, resulting in a substantial 40% enhancement by merely
increasing the freestream turbulence intensity [15,16]. These successes make it worthwhile
to investigate the potential benefits of freestream turbulence intensity on the cooling of
newly designed winding configurations.

Computational Fluid Dynamics (CFD) plays a vital role in understanding thermal
behaviour and designing effective cooling solutions [17,18]. Modelling advancements now
enable detailed simulation of stator windings and their complex geometries, improving
accuracy and design iteration speed. Despite progress, challenges remain in accurately
capturing conjugate heat transfer, interfacial effects, and the influence of intricate winding
features on airflow patterns. In prior research on Computational Fluid Dynamics (CFD)
concerning the thermal efficiency of electrical motors, significant challenges have been
identified. These encompass the implementation of conjugate heat transfer principles,
especially in relation to the utilisation of slot liners and the refinement of mesh structures;
the detailed representation and computational analysis of stator windings, with a particular
emphasis on the terminal windings; and the precision of numerical outcomes derived from
CFD simulations, as discussed in [19].

This study addresses these ongoing challenges by focusing on stator winding thermal
management in permanent magnet motors. Concentrating on the thermal management of
stator windings within aerospace electrical systems, our investigation evaluates three critical
elements influencing the thermal regulation of these windings. The aim is to discover a prac-
tical strategy for improving the thermal management of stator windings, thereby enhancing
their cooling efficiency without introducing complicated supplementary mechanisms.

The paper is structured into several core sections following this introduction. The Mod-
elling Description section outlines the technical specifications and simulation assumptions
of the permanent magnet machine. Within this, Approximation of Stator Windings and
Description of CFD Simulations detail the modelling approaches for simulating stator wind-
ing thermal dynamics. Wind Tunnel Validation for CFD Simulations presents an empirical
validation of the CFD model, ensuring its accuracy. Thermal Design Investigations with
the Validated CFD Model examines the impacts of airflow velocity, turbulence intensity,
and winding spacing on cooling efficiency, highlighting effective thermal management
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strategies. Section 5 summarises the study’s key findings, underscoring the enhanced
heat transfer efficiency in high-power permanent magnet motors and offering practical
industrial applications.

2. Modelling Description

The choice of a permanent magnet (PM) machine as the focal point of this study stems
from its notable power-to-weight ratio and high efficiency. Design parameters of the PM
machine are described in Table 1. Only copper loss is considered in the simulations, as
electromagnetic calculations indicate that it dominates the thermal performance of the
stator, accounting for the majority of the heat generation within the windings.

Table 1. Technical details of the selected PM machine.

Rated
Power

Number of
Stator Teeth

Slot Fill
Factor

Stator
Length Stator OD Rotor ID Stator

Slot Area
Winding
Length

250 kW 72 43.4% 50 mm 404.4 mm 300 mm 193 mm2 63.4 mm

The analysed machine design assumes unrestricted airflow into the machine body
(stator/winding/rotor). This is achieved by employing an open-frame arrangement, which
differs from traditional closed-frame designs by allowing unrestricted airflow into the
machine body. The endcaps used in this design are similar to those employed in the
Siemens motor developed for aircraft propulsion [20]. In this initial study, the effect of
endcaps on the mass and heat transfer are neglected. The simulations of the forced air
cooling are based on an open-ended inlet, which is inspired and simplified from the
industrial lightweight design of the end shield by Airbus, Rolls-Royce, and Siemens [20].
This reduces the weight of the machine and leaves more space for air channels to increase
the air mass flow rate, leading to improved heat convection performance with direct air
cooling. The simulated machine is presented in Figure 1a, and a unit of the machine’s
active part is extracted to conduct the simulations, as shown in Figure 1b.
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Figure 1. (a) Demonstration of the active part of the PM machine. (b) An extracted unit used in the 
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highlight the unit extracted from the entirety of the active area for focused simulation analysis. 

  

Figure 1. (a) Demonstration of the active part of the PM machine. (b) An extracted unit used in
the simulation, including the stator core back, end winding, slot liner, and rotor. Red solid lines in
(a) highlight the unit extracted from the entirety of the active area for focused simulation analysis.

2.1. Approximation of Stator Windings

To streamline the thermal analysis and to diminish computational demands, the simu-
lations employ an approximated representation of stator windings using an anisotropic
lumped material model. This approach simulates the combined effects of the composite
coils, restricting airflow solely to the windings’ exterior surfaces, thereby eliminating air-
flow between individual conductors. The lumped material model represents a composition
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comprising copper, enamel, and an impregnating agent (varnish, in this instance). It ac-
knowledges that in a realistic scenario, the thermal resistance is affected by the presence of
air pockets, a consequence of manufacturing variations. Additionally, the model incorpo-
rates a slot liner to reflect the application of Nomex paper in the model, measuring 0.25 mm
in thickness.

In representing the copper loss within the windings, a loss density value of 106 W/m3

is used, correlating to an equivalent current density of about 12.0 ampere/mm2. The
winding exhibits anisotropic thermal characteristics, defined along axes parallel and per-
pendicular to the conductors. The equivalent anisotropic thermal conductivity values(

kx, ky, kz
)

are determined in Cartesian coordinates, aligning with the principal directions(
⇀
ex,

⇀
ey,

⇀
ez

)
. The conductivity matrix is formulated as follows:

kij = kxexiexj + kyeyieyj + kzeziezj (1)

This method, however, does not adequately account for the unique geometry of the end
windings, whose curved structure introduces additional complexities in the simulation. To
address these challenges, the model adopts a local cylindrical coordinate system, aligning
the system’s axis with the central axis of the end winding on either side. Within this
framework, the equivalent anisotropic thermal conductivity is recalibrated to reflect radial,
tangential, and axial orientations, with the adaptations detailed in Figure 2.
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Figure 2. Local cylindrical coordinates for the end windings and Cartesian coordinates for the
mid windings.

2.2. Description of CFD Simulations

CFD simulations emerge as a vital complementary technique to traditional thermal
experimental testing, offering significant advantages in terms of cost and time efficiency
for thermal management strategies. The computational domain for these simulations is
illustrated in Figure 3. To accurately follow the true geometric conditions of the model while
conserving computational resources, periodic boundary conditions are applied to the side
planes of the domain. The model uses both fluid and solid meshes created in Ansys ICEM
CFD, specifically designed to address the conjugate heat transfer problem. This includes a
refined proximity mesh around the unit to particularly model heat dissipation. The mesh’s
total size is approximately one million cells, a figure determined after verifying that the
simulation results are mesh-independent. The defined computational domain employs a
velocity inlet and a pressure outlet, facilitating the process of air-cooling simulations and
allowing for a comprehensive analysis of thermal management within the system.
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Figure 3. The CFD simulation domain with boundary conditions.

The CFD simulations are conducted in a commercial fluid simulation software ANSYS
Fluent 2020, using an iterative solver with a convergence criterion of 1 × 10−6 for both
energy and momentum equations. The simulations are considered converged when the
residuals for all equations drop below the specified criterion and remain stable. The k-
epsilon turbulence model with the scalable wall function is used to provide an accurate
solution to the turbulence modelling. Moreover, a wall function is needed because the
standard k-epsilon turbulence model often fails to predict flow separations. Here, the
scalable wall function is selected due to the local y+ of the boundary layer. For grids
designed with a y+ < 11.225, this wall function virtually displaces the local y+ of the
boundary layer to approximately 11.225, and for those with a y+ > 11.225, the scalable wall
function provides identical results to the standard wall function. The y+ of the current case
ranges from 10 to 15, hence the scalable wall function is an appropriate wall function to
apply to the turbulence model. The unit of temperature is set to Kelvin, denoted as K.

3. Wind Tunnel Validation for CFD Simulations

Prior to advancing with additional numerical analyses, it is essential to validate the
CFD simulation model against empirical data. In this study, wind tunnel experiments
were performed on a constructed stator winding prototype to assess its thermal behaviour
under specific airflow conditions. For this, the experimental setup was divided into three
segments, including two lateral sections that offered structural integrity and enclosed
the central testing segment, which mirrors the genuine stator winding arrangement, as
shown in Figure 4. The lateral segments were fabricated using high-temperature resin,
chosen for its thermal resistance of up to 238 ◦C, ensuring the model’s durability under
high temperatures.

The central testing section employed materials that closely simulate those found
in the actual machinery, including iron teeth and copper windings, to achieve a realistic
representation. This section was composed of five iron teeth units and three copper winding
units, supplemented by two 3D-printed winding blocks designed to minimise thermal
leakage at the sides. The configuration of the middle section meticulously aligned with that
of the original simulation design, incorporating slot liners but omitting impregnation to
mirror the simulated conditions as accurately as possible.

It is noteworthy that the rotor was excluded from the CFD model as well as from the
experimental framework, based on the premise that rotor-associated losses are not under
consideration for this particular analysis. This decision ensures that the CFD simulation
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model directly corresponds with the experimental setup, focusing solely on the stator’s
thermal performance for validation purposes.
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Figure 4. Schematic illustration of the experimental setup and the assembled model for wind tunnel
testing, which serves as a basis for the CFD simulation domain and boundary conditions.

Our experimental investigation was performed within an open-return wind tunnel.
The dimensions of the tunnel’s test section were specified as 350 mm in height, 450 mm
in width, and 3000 mm in length. Depending on the Reynolds number, the turbulence
intensity (TI) within this section ranged from 0.4% to 0.6%, and the airflow velocity could
be adjusted up to 35 m/s. The setup of this experimental arrangement is detailed in
Figure 5, utilising the generated data to corroborate the numerical simulations and to refine
the model as needed. Through this calibration process, the model is enhanced for more
accurate CFD analyses concerning the motor assembly.
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Five Type-K plug-in thermocouples were used in temperature monitoring within the
experiment, strategically placed at five distinct locations to capture temperature variations
accurately. These positions are illustrated in Figure 6, and ensured that all end-winding
measurement sites were positioned on the downstream side to prevent any disturbance
to airflow. Precision in the temperature measurements was optimised by situating all
sensors at the central unit of each tooth and winding assembly. Additionally, ambient
temperature readings were collected to establish temperature differentials across all five
designated points. A prerequisite for data collection required the wind tunnel’s operation
for a minimum duration of 60 min, ensuring the establishment of a steady-state condition
prior to logging any measurements.
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Figure 6. Thermal monitoring positions demonstrated in an extracted unit. Position 2 (P2) is at
the symmetrical position of Position 1 (P1). Hollow circles indicate the positions where the surface
temperature is monitored, while solid circles denote the positions where the temperature is monitored
5 mm below the surface.

Upon conducting the experiments at an airflow speed of 10 m/s and a turbulence
intensity of 0.5%, temperature increases across various locations were recorded, with find-
ings detailed in Figure 7. In response to these empirical outcomes, simulation parameters
were fine-tuned to align with the experimental conditions, facilitating a direct comparison
between the simulated and actual temperature rises, as illustrated in the same Figure.
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Figure 7. Comparison of experimental and numerical results at five monitoring positions.

The strategy of employing an equivalent anisotropic lumped material to simulate the
composite coils within the CFD framework demonstrated remarkable effectiveness. This
approximation method successfully mirrored the thermal behaviour observed in the exper-
iments, especially in predicting temperature rises on the surface of both middle and end
windings. This comparison underscores the validity of the simulation approach, highlight-
ing its potential as a reliable predictor of thermal dynamics in practical applications. The
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close match between the simulated results and experimental data reinforces the accuracy
of the CFD model, suggesting that the simplifications made for the simulation did not
significantly compromise the integrity of its predictions regarding thermal performance.

The CFD results slightly overestimated the temperature of the stator at Position 1 and
Position 5, but generally provide a good match. The small overestimation indicates that
the heat transferred through conduction (winding → slot liner → stator) in the experiment
is less than that in the CFD simulation, as Positions 1 and 5 are in the stator rather than
the winding. The reduced conducted heat in the experiment is due to the unavoidable
existence of air pockets inside and around the windings in the experimental coil. These
air pockets introduce extra thermal resistance to the winding block, reducing the thermal
conductivity between the winding and the slot liner/stator and hence leading to a lower
temperature in the stator compared to the CFD simulations. Other reasons should also be
considered, such as the errors introduced by simulating heat transfer between different
materials, including lumped winding blocks, slot liners, and stator tooth units, and the
accuracy of the measuring positions due to the small size of the tooth.

It is noted that the reduced thermal conductivity due to the existence of air pockets
should result in overestimated temperature values in the winding in the experimental
testing, whilst the CFD results match the experimental measurements quite well at Positions
2, 3, and 4. This is possibly due to the factors such as the roughness of the winding surface
and effective contact surface area between the winding and the air. In real life, the winding
surfaces are formed through many turns of the copper wire. The surfaces are hence not
flat, but rather full of surface irregularities introduced by the individual conductors. These
“local bumps” effectively increase the roughness of the winding surface, as well as the
contact area with the airflow, leading to higher heat transfer coefficients and hence a
lower temperature value in the winding in the experiment testing. This underestimation
counteracts the overestimation due to the air pockets, resulting in matching results at the
winding position.

The CFD simulation model receives robust validation from the wind tunnel experi-
ments across all five monitored positions, once stable temperature increments are realised
experimentally. The differences observed between the empirical findings and the numerical
predictions remain within a narrow margin of 4 K for each of the monitored locations.
Additionally, the data illustrated in Figure 6 suggest that steady-state conditions within this
experimental setup are attained roughly after a 20 min period. This revelation is crucial for
understanding the dynamics of thermal performance and the effectiveness of the simulation
model in capturing these dynamics over time. The consistency in achieving steady-state
conditions in a relatively short time frame enhances the confidence in the experimental
setup and the simulation model, providing a solid foundation for further analysis and
validation efforts.

4. Thermal Design Investigations with the Validated CFD Model

In this section, we discuss the subsequent numerical simulations that were conducted
considering three distinct air velocities and two levels of turbulence intensity. The influence
of varying the air channel within the windings on cooling effectiveness is examined. For
this, a representative model of the rotor geometry, intended to simulate the air gap between
the rotor and stator, was implemented into the simulations. Additionally, an Iso-Surface
spanning the X–Z plane was generated to observe temperature fluctuations within the
aggregated windings, as illustrated in Figure 8.
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Figure 8. An Iso-Surface created across the stator windings.

4.1. Effects of Airflow Velocity

Air velocity plays a crucial role in the efficiency of air-cooling systems. In the con-
ducted simulations, air speeds from 10 to 100 m/s were tested. The conditions for the
ambient temperature and turbulence intensity were standardised at 288 K (15 ◦C) and 0.5%,
respectively. The temperature variation of maximum temperature increments across the
range of air speeds is presented in Figure 9. Generally, the increment in hotspot temperature
relative to the ambient temperature decreased as the air speed increased. However, the rate
of the temperature change relative to the air speed diminished at higher air velocities.
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Figure 9. Rise in temperature of winding hotspot at air speeds ranging from 10 m/s to 100m/s. The
ambient air temperature is 288 K.

It is noted that in all instances the temperature at the upstream end of the winding is
marginally cooler than at the downstream end, attributed to the influence of airflow. This
temperature differential becomes less pronounced with higher air speeds, owing to the
diminished temperature increase.

4.2. Effects of Turbulence Intensity

Turbulent flow, characterised by chaotic changes in the pressure and flow velocity,
significantly enhances the mixing of fluid particles, thereby improving heat transfer rates
from the motor components to the cooling medium. Forced convection, a mechanism
through which fluid motion is generated by an external source (such as fans or pumps),
further augments this effect by actively removing heat from the surface of the stator
windings. This concerted action of turbulent flow and forced convection ensures the
efficient dissipation of heat, crucial for maintaining the operational integrity and extending
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the lifespan of permanent magnet motors. Recognising the complexity and importance
of these thermal dynamics, we highlight their application in the thermal design of stator
windings, presenting a more detailed understanding of the strategies that can be employed
to enhance cooling performance in electrical machines.

Prior studies [21,22] have shown that an increase in turbulence intensity enhances
the heat transfer coefficient, thereby improving cooling effectiveness on surfaces such as
plates or cylinders. Building on this foundation, in our study, an investigation into the
effect of freestream turbulence intensity on heat transfer across stator windings surfaces
was conducted. Figure 10 illustrates the surface temperature distributions on the stator
windings under conditions of low turbulence (0.5%), moderate turbulence (10%), and high
turbulence (40%), at a wind speed of 10 m/s.
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The findings highlight the significant role of freestream turbulence intensity on lo-
calised heat transfer. With a constant air speed of 10 m/s, the maximum surface temperature
on the upwind-side end winding with a turbulence intensity of 0.5% is found to be 12 K
higher than at a turbulence intensity of 40%, and 9 K higher on the downwind-side end
winding. In the low-turbulence scenario, it is noted that laminar flow separation occurs
prominently above the stator tooth, creating a large separation area above the stator core
back. This separation hinders the airflow from efficiently dissipating heat away from the
stator, thus lowering the heat transfer coefficient on the surface and resulting in suboptimal
cooling performance. As the turbulence intensity increases to 10%, the previously open flow
separation zones on the core back and beneath the rotor transform into closed separation
areas, known as laminar separation bubbles in fluid dynamics, markedly affecting the
thermodynamic and aerodynamic efficiency [23]. With a turbulence intensity of 40%, the
adverse-pressure-gradient induced flow separation is minimised due to a more energetic
flow, resulting in extensive areas of attached flow on both the upper and lower surfaces.
The reduction in the separation bubble’s size and its shift towards the very leading edge
of the stator and rotor enhance the surface heat transfer coefficients, thus significantly
improving the cooling efficiency.

Increasing the turbulence intensity to apply this effect is comparatively straightfor-
ward. Globally, inflow turbulence can be induced upstream of the heat source by employing
turbulence grids, while controlling the overall turbulence intensity through varying the grid
sizes. Additionally, local effects can be adjusted by altering the local turbulence intensity,
potentially through the implementation of micro vortex-generators [24] or by modifying
the local surface curvature [25].
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4.3. Effects of Spacing between Windings

The strategy to enhance heat transfer involves adjusting the spacing between individ-
ual winding coils while preserving the same magneto-motive force (MMF). This adjustment
can be realised by increasing the coil fill factor (CFF), reducing the slot fill factor (SFF), or
implementing both modifications. Initially, the windings exhibit an average circumferential
width of 5.0 mm, with a coil fill factor (CFF) of 0.548 and a slot fill factor (SFF) of 0.434,
denoting a standard winding configuration.

This analysis focuses on two distinct approaches to augment the spacing between
windings:

• Concept 1: Keeping the SFF constant while augmenting the CFF. This adjustment
maintains the copper cross-sectional area as the inter-coil channel expands, enhancing
the thermal conductivity of the coil without altering the coil’s loss for a given MMF.

• Concept 2: Preserving the CFF constant and diminishing the SFF, achievable through
reducing the wire diameter. This maintains the thermal conductivity of the winding
constant while increasing the loss density in the copper for a constant MMF.

For this, a 0.25 mm thick Nomex-410 slot liner, with a thermal conductivity of
0.139 W/m/K, was utilised. In certain machines, the slot liner encases each coil entirely
and is therefore positioned near the slot’s centre. Here, the significance of the slot liner’s
presence between the windings was assessed regarding its effect on heat transfer, especially
when cooling is facilitated via airflow down the slot’s centre. At an air speed of 10 m/s and
a turbulence intensity of 0.5%, eliminating the slot liners between the windings resulted
in a temperature decrease of 12 K inside the winding and 10 K at the tooth tip, equating
to improvements of 25% and 20.8%, respectively. This enhancement is attributed to the
Nomex paper’s extremely low thermal conductivity, which limits conductive heat transfer
from the copper losses and obstructs convective heat transfer between the winding and the
cooling medium. Consequently, the Nomex layers between the windings are omitted in
further analyses, establishing a 0.5 mm air channel (comprising two 0.25 mm layers) as the
baseline for subsequent investigations.

Figure 11 illustrates how varying the width of the inter-coil air channel influences
the cooling efficiency at an air speed of 10 m/s and a turbulence intensity of 0.5%. A
comparison of the results achieved with a 0 mm channel and those achieved with a 0.5 mm
channel—representing windings with and without slot liners, respectively—shows identical
temperature rises at these channel sizes, marking the “true” initial condition from a 0.5 mm
channel width.
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Figure 11. Effects of increasing the air channel width between windings upon the hotspot, maintaining
either a constant slot fill factor or a constant conductor fill factor.

In the scenario where the SFF is constant and the CFF is increased, as the channel
width enlarges, there is a corresponding change in the equivalent anisotropic thermal con-
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ductivities due to the altered slot composition. Consequently, as the air channel widens, the
thermal conductivity and coil surface cooling improve, leading to a temperature decrease.
Interestingly, beyond a 1.5 mm width, no substantial further reduction in temperature is
observed, indicating a limit to the benefits of increased compression. The most significant
temperature rise reduction of the hotspot, 28.7 K, is 19.3 K lower than in the original un-
compressed windings with slot liners, and 8.9 K lower than in the uncompressed windings
without slot liners, showcasing improvements of 40% and 24%, respectively. These improve-
ments are attributed to an enhanced conductive heat transfer from the increased thermal
conductivity of the combined winding blocks and improved convective heat transfer from
the greater air channel widths.

Alternatively, maintaining a constant CFF results in the coil retaining anisotropic ther-
mal conductivities equivalent to those of the original winding, since the copper percentage
remains unchanged. Here, convective heat transfer emerges as the primary differential in
cooling performance. However, maintaining the same coil MMF necessitates an increase in
the current density as the copper volume diminishes, leading to a rapid increase in energy
loss density as the channel widens, which counteracts the benefits of the improved convec-
tive heat transfer. The optimal channel width identified in this case is 1.5 mm, yielding a
33.7 K temperature rise of the hotspot, marking a 30% and 10.4% improvement over the
original design with and without slot liners, respectively. When the channel width extends
beyond 1.5 mm, the temperature rises significantly due to the escalating loss density.

Clearly, the first approach, maintaining the SFF while increasing the CFF, results
in lower temperature rises for all channel widths. It is important to note, though, that
practically increasing the CFF while maintaining the SFF (Concept 1) poses technical
challenges, whereas decreasing the SFF while keeping the CFF constant (Concept 2) is more
straightforward. Notably, effective cooling does not necessitate wide channels between
coils. A 1.5 mm channel width, accounting for approximately 14% of the slot width, suffices
for maximal effect in both scenarios. For research purposes, the first concept, which shows
superior performance, is chosen for further investigation.

Figure 12 presents the variation in area-weighted average surface heat transfer coeffi-
cients with increasing channel widths. The removal of the slot liners between the windings
resulted in a mean surface heat transfer coefficient of 52 W/m2/K, which rose to approxi-
mately 77 W/m2/K when the air channel width between the windings increased to 1.5 mm.
No significant change can be observed when the channel width is beyond 1.5 mm, consis-
tent with the variation in the hotspot temperature rise. Further expanding the air channel
beyond this point is not recommended, as there is no significant thermal improvement.
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Figure 12. Area-weighted average surface heat transfer coefficients varying with increasing air
channel widths.
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The distribution of the surface heat transfer coefficients is presented in Figure 13, with
the typical winding–winding channel widths ranging from 0.5 mm to 1.5 mm. It can be
observed that, in terms of the 0.5 mm channel width, the winding surface towards the
downwind-side end windings presents much worse heat transfer coefficients than that near
the upwind-side end windings. The highest heat transfer coefficient at the upwind side is
more than 100 W/m2/K, while the lowest near the downwind side is less than 10 W/m2/K.
This is because the air slows down as it flows axially down the narrow 0.5 mm channel.
The improvement is significant when increasing the winding–winding channel width to
1.0 mm and 1.5 mm. Generally, the lower part of the winding has a better heat transfer
coefficient than the higher part, due to the airflow adjacent to the stator tooth tip.
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Figure 13. Contours of surface heat transfer coefficients with the channel widths of (a) 0.5 mm,
(b) 1.0 mm, and (c) 1.5 mm at a wind speed of 10 m/s and 0.5% turbulence intensity. The flow
direction is from left to right.

The turbulence intensity has a significant impact on cooling performance, as presented
in Section 4.2. At the wind speed of 10 m/s and with the 1.5 mm optimal winding–winding
channel width, the variation in surface heat transfer coefficients at a turbulence intensity of
40% is compared with that at a turbulence intensity of 0.5%. The significant improvements
due to the higher turbulence intensity appear near the upwind-side end winding. It can be
observed that the heat transfer coefficients near the upwind-side end winding at the 40%
turbulence intensity are almost doubled compared to those at the turbulence intensity of
0.5%, leading to an area-weighted average surface heat transfer coefficient of 85 W/m2/K,
which is 10% higher than that of the case at 0.5% turbulence intensity.

4.4. Overall Improvement Analysis

Following the insights detailed in the preceding sections, adjustments were imple-
mented in the initial design to enhance its performance. By increasing the coil fill factor
while keeping the slot fill factor constant and introducing a 1.5 mm separation between the
coils, along with a turbulence intensity of 40%, the revised model is evaluated against the
standard design. It is crucial to note that any performance enhancements must be assessed
at a consistent airflow velocity to accurately highlight the design’s benefits. In the enhanced
design, the peak temperature is reduced by 21 K compared to the original model, resulting
in a 44% improvement. This enhancement is attributed to the increased efficiency in both
the convective and conductive heat transfer. Importantly, these advancements are achieved
without the need for complex modifications and are maintained at a consistent MMF.

In the context of industrial design, understanding the intricacies of heat transfer mech-
anisms, specifically conduction and convection, is of paramount importance. To facilitate
this comprehension, a thermal equivalent circuit has been distilled from the optimised
design, which is explained in Figure 14. In this representation, the variables P (W), R
(K/W), and T (K) signify the user-defined heat power, equivalent thermal resistance, and
local temperature, respectively. Furthermore, the subscripts W, S, and A correspond to
the winding, stator, and ambient conditions, respectively. It should be noted that RS en-
compasses the thermal resistance attributable to conduction within the stator, inclusive
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of slot liners. The thermal resistances RSA and RWA are indicative of the convective heat
transfer from the stator laminations to the ambient environment and from the winding
to the ambient environment, respectively. These resistances are modifiable through the
manipulation of convective parameters such as air velocity and turbulence intensity. Quan-
tification of these thermal resistances can be achieved through the employment of mean
heat transfer coefficients.
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Figure 14. An equivalent thermal circuit of the optimised design.

In the simplified thermal equivalent circuit, the transfer of the input heat power is
divided into two routes: one is the convection route, which is through the winding surface
to the ambient, and the other is the conduction route, which is through the winding to the
stator and subsequently to the ambient. The total surface heat flux through the convection
route is presented in Figure 15. The upwind side of the winding presents a total surface
heat flux higher than 3000 W/m2, while the downwind side only shows that the heat flux
can be lower than 1000 W/m2 in the area where the velocity of the air is extremely low.
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Figure 15. Total surface heat flux distributions through the conduction route in the optimised design.
The flow direction is from left to right.

The transferred heat power through the conduction and convection routes can be
determined by integrating the corresponding total surface heat flux. For this specific case,
63% of the transferred heat power is mitigated through the convection route and 37% is
mitigated through the conduction route.

5. Conclusions

This study provides critical insights into pioneering strategies to boost the heat transfer
efficiency in the stator windings of high-power permanent magnet motors. Through wind
tunnel experimental tests and the calibration of a Computational Fluid Dynamics (CFD)
model, this research examined how increased air velocity, enhanced turbulence intensity,
and the implementation of air channels between the windings impact cooling efficacy. The
results indicated that each of these variables can individually enhance the heat transfer
efficiency by over 25%. This study investigated the importance of maintaining spacing
between coils, presenting two viable solutions that can serve as practical design guidelines
for industrial usage. It was shown that, at a consistent air velocity, the synergistic effect of a
heightened turbulence intensity and an optimal spacing between the windings can lead to
a 44% reduction in the peak temperature. Additionally, this research introduced a thermal
equivalent circuit model to demonstrate the heat transfer dynamics in the optimised design,
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revealing that 63% of the heat loss is mitigated through convection between the windings
and the air.

This investigation not only deepens the understanding of thermal management within
electrical machines, but also provides actionable recommendations for enhancing the
cooling efficiency of high-power permanent magnet motors. Such advancements promise to
improve the efficiency, reliability, and service life of these systems in practical applications,
marking a significant contribution to the field.
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