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Abstract: With the continuous expansion of the transport network, the safe operation of high-speed
railway rails has become a crucial issue. Defect detection on the surface of rails is a key part of
ensuring the safe operation of trains. Despite the progress of deep learning techniques in defect
detection on the rails’ surface, there are still challenges related to various problems, such as small
datasets and the varying scales of defects. Based on this, this paper proposes an improved encoder–
decoder architecture based on Swin Transformer network, named Rail-STrans, which is specifically
designed for intelligent segmentation of high-speed rail surface defects. The problem of a small and
black-and-white rail dataset is solved using self-made large and multiple rail surface defect datasets
through field shooting, data labelling, and data expansion. In this paper, two Local Perception
Modules (LPMs) are added to the encoding network, which helps to obtain local context information
and improve the accuracy of detection. Then, the Multiscale Feature Fusion Module (MFFM) is
added to the decoding network, which helps to effectively fuse the feature information of defects at
different scales in the decoding process and improves the accuracy of defect detection at multiple
scales. Meanwhile, the Spatial Detail Extraction Module (SDEM) is added to the decoding network,
which helps to retain the spatial detail information in the decoding process and further improves
the detection accuracy of small-scale defects. The experimental results show that the mean accuracy
of the semantic segmentation of the method proposed in this paper can reach 90.1%, the mean dice
coefficient can reach 89.5%, and the segmentation speed can reach 37.83 FPS, which is higher than
other networks’ segmentation accuracy. And, at the same time, it can achieve higher efficiency.

Keywords: encoder–decoder architecture; Multiscale Feature Fusion; segmentation of surface defect
on steel rails; Swin Transformer; spatial detail extraction

1. Introduction

The operation environment of high-speed railway lines is becoming increasingly
complex due to their continuous expansion. To ensure safe and smooth operation, it is
necessary to accurately and rapidly detect defects in rails and other vulnerable parts in
complex scenes. This is a prerequisite for achieving high-quality development of high-
speed rail. Practice has shown that high-speed rail capacity increases lead to long-term
repeated loading, which subjects the rail to contact stresses, such as extrusion, impact, and
abrasion, caused by the wheel and rail. Additionally, the microstructure of the material
degrades over time, resulting in a continuous deterioration of its health condition and
performance quality, leading to the formation of defects. If a defect forms, it can quickly
expand. Without timely detection and safety measures, the defect can reach a critical level
and cause major accidents, such as train derailments and overturns, resulting in significant
casualties and property damage [1].

Manual inspection is a traditional method for detecting defects on rail surfaces. It has
the advantages of being simple and cost-effective. However, it also has some shortcomings,
including low detection efficiency, high leakage rates, and poor real-time performance [2].
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The development of inspection technology has led to the widespread use of non-destructive
testing techniques in the railroad inspection system. Commonly used techniques include
three-dimensional detection, eddy current detection, and acoustic wave detection [3]. Xiong
et al. [4] proposed a three-dimensional laser profiling system (3D-LPS) that integrates multi-
ple sensors to automatically detect and classify rail surface defects. The system significantly
improves detection accuracy through high-precision alignment and localization techniques.
Cao et al. [5] proposed a scheme for detecting defects on rail surfaces. The scheme uses a
laser sensor to collect three-dimensional point cloud data and combines it with an alignment
method for digital rail surfaces and improved dynamic defect detection algorithms. This
approach effectively eliminates noise and enhances the stability and anti-interference of the
detection results. The scheme is suitable for online inspection applications. Liu et al. [6]
proposed an online rail defect detection method based on electromagnetic tomography
(EMT) technology to obtain the shape and location information of defects by measuring and
reconstructing the alternating magnetic signals of rail defects, with the aim of improving
inspection efficiency and reducing the risk of accidents caused by rail defects. Fan et al. [7]
proposed for the first time a high-precision distributed online rail defect detection method
based on backscattered enhanced fiber-optic sensing, which achieves precise positioning
of long-distance rail defects through a dual-frequency joint processing algorithm, and the
field test shows that the standard deviation is as low as 0.314 m, providing a new techno-
logical breakthrough for detecting structural defects in railways and other infrastructure.
Kundu et al. [8] investigated the optimum location for placing individual acoustic emission
sensors on rails to detect defects, and analyzed the signals to determine group velocities
using wavelet transforms to accurately detect defects. However, these methods have
the disadvantages of being easily disturbed by various external environments, resulting
in difficult signal processing and blind spot detection and poor real-time performance.
In recent years, machine vision technology has been widely used in rail surface defect
detection due to its advantages of high detection accuracy, high speed, and non-contact.
Machine-vision-based rail surface defect detection methods can be divided into traditional
machine-learning-based detection methods and deep-learning-based detection methods.

In routine applications of machine vision techniques, experts usually manually ana-
lyze the defect images on the rail surface to design features or predefined features. Based
on these features, they develop feature-learning algorithms for classification. Li et al. [9]
proposed a local normalization algorithm designed to enhance the contrast of rail defect
images to facilitate feature extraction. Researchers, such as Dubey [10] and Yuan [11], man-
ually extracted features by analyzing the edges of rail surface defects for defect detection.
In addition, He et al. [12] used the inverse P–M (Perona–Malik) diffusion algorithm to
detect defects on the rail surface and highlighted the defects by differentially processing the
original image with the diffusion image. Although all of these methods are effective for rail
surface defect detection, they generally suffer from low accuracy and recall, especially in the
detection of linear defects, cracks, and microcracks. Later, Shi et al. [13] used an improved
Sobel algorithm to find the available features, which can achieve accurate and efficient
localization and extract more precise defect features and parameters while reducing the
noise. He et al. [14] also proposed a detection algorithm based on background differencing,
which consists of four steps—rail region extraction, background modeling and differencing,
threshold segmentation, and image filtering—to improve the detection accuracy. On the
other hand, Liu et al. [15] proposed a sorting method combining a gray balance model,
phase spectrum, and Otsu threshold segmentation to detect rail defects. Wang et al. [16]
proposed a method incorporating a principal component analysis model to identify rail
surface defects with color features. These methods improve the detection accuracy to some
extent, but the main problem is the lack of generativity. Due to the influence of unfavorable
factors, such as changing lighting conditions and deteriorating visual environments, the
traditional manual feature machine vision technique is not the best choice.

Artificial intelligence has developed rapidly in recent years, and a lot of neural net-
work structure models with high detection accuracy and speed have appeared, so-deep
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learning-based detection methods have been mentioned. Combining these models for rail
surface defect detection can reduce a lot of human and material resources, with a high de-
gree of detection automation, and improve the accuracy and efficiency of detection results.
Kaewunruen et al. [17] apply machine learning techniques for non-destructive detection of
track features by analyzing field data at an advanced level to reduce the time and cost of rail
inspections, and they demonstrate the potential of certain models, such as linear regression,
K-nearest neighbor, gradient boosting, and convolutional neural networks, to improve
detection accuracy. Sresakoolchai et al. [18] developed a method to detect defects in rail
components through supervised and unsupervised machine learning techniques using
rail geometry car data, where deep neural networks and convolutional neural networks
showed high accuracy, while applying clustering and association rule analysis to provide
insights that can help in rail maintenance. Zhang et al. [19] developed a convolutional
neural network method that uses pre-convolution and residual structure to enhance the
accuracy of rail damage identification. The method analyzes vibration signals collected by
piezoelectric ceramic pads and employs deep learning techniques. Li et al. [20] investigated
the application of the modal curvature method and neural network technology to the
often-neglected problem of track substrate defects, and they developed a new algorithm
for detecting and quantifying track substrate defects, which was demonstrated through
numerical simulations and experimental validation to show its effectiveness in both free
and fixed-track inspection. Liu et al. [21] proposed a deep convolutional neural-network-
based transfer learning (DCTL) approach to achieve effective damage identification in the
health monitoring of sharp rail structures through affine transform data enhancement using
a pre-trained Inception-ResNet-V2 model and a 1D signal-to-2D image conversion tech-
nique, and it showed higher performance than the traditional approach in the experiments.
Zheng et al. [22] introduced a deep-learning-based multi-object detection system for the
non-destructive assessment of railway components employing an enhanced YOLOv5 for
localization and Mask R-CNN for defect segmentation on rail surfaces, complemented
by a ResNet framework for fastener classification. Extensively tested on images from the
Shijiazhuang–Taiyuan high-speed railway, the method demonstrates superior performance
over other deep learning approaches, ensuring reliable detection of rail and fastener defects.

Deep-learning-based detection methods can be categorized into three types: image
classification (image level), target detection (region level), and semantic segmentation (pixel
level). Among them, image classification methods cannot provide the exact location of
defects. Although target detection methods can effectively detect the location information
of the target, they cannot realize fine target segmentation or obtain the precise features of
the target. However, semantic segmentation methods can accurately obtain the category
features and location information of the target, which play a crucial role in assessing the
health condition of HSR rails and making maintenance decisions. Therefore, the semantic
segmentation method is the most effective method for rail surface defect detection. Kou
et al. [23] developed a fast and cost-effective method for rail surface defect detection using
only a low-cost camera through deep learning and semantic segmentation techniques,
achieving accuracy comparable to magnetic particle inspection, with the potential to fur-
ther improve detection speed using high-frequency cameras. Aiming at the problems
of small defects and an insufficient number of samples in the detection of rail surface
defects, He et al. [24] introduced a deformable convolution and attention mechanism in
the FPN network to improve the model’s ability to detect defects at different scales, and
they utilized the migration learning strategy to perform the feature extraction in the new
network architecture. Finally, they realized the effective classification of defects through
the multimodal network structure.

In designing the framework for a semantic segmentation network, Long et al. [25]
proposed Fully Convolutional Networks (FCNs). The FCN replaces the last fully connected
layer in a traditional convolutional neural network with an inverse convolutional layer,
allowing for an ‘end-to-end’ semantic segmentation output. Badrinarayanan et al. [26]
proposed the SegNet network architecture based on the FCN. The network employs a
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symmetric encoder–decoder structure and up-samples the input features based on the
maximum pooling index stored in the corresponding encoder layer. This effectively re-
duces the loss of images’ positional information and generates a dense feature map. Chen
et al. [27] proposed DeepLab network architecture based on the FCN and improved the
accuracy of edge segmentation by introducing an atrous spatial pyramid pooling module
to capture multiscale contextual semantic information. Ronneberger et al. [28] proposed a
U-Net network architecture to bridge shallow and deep features through a kind of hopping
connection, which effectively solves the problem of spatial information loss during FCN
downsampling. To improve the segmentation accuracy of defects during the detection
process, Wang et al. [29] designed a multiscale feature pyramid and a multi-level feature
fusion module based on the design idea of the feature pyramid. This effectively fuses
the detail information at the lower level and the semantic information at the higher level,
resulting in fine-grained feature maps enriched with both multiscale and global features,
and it improves the segmentation effect of multiscale targets. Hu et al. [30] improved
pixel classification performance by designing a joint feature pyramid module. They also
constructed a Spatial Detail Extraction Module to capture multi-level local features of the
shallow network and compensate for the loss of geometric information in the downsam-
pling stage. Additionally, they designed a bilateral feature fusion module to fuse spatial
and semantic information, resulting in a good segmentation effect. Gu et al. [31] proposed
a pyramid fusion network model that improves the speed of semantic segmentation by
reducing model complexity. Xiao et al. [32] introduced a global feature pyramid extraction
module and a global attention-connected up-sampling module to improve the network’s
feature representation and efficiently extract global semantic and edge information. Zhang
et al. [33] designed a global context-aware attention module that adaptively captures long-
term semantic contextual relationships. Through the cascaded pyramid attention module,
they effectively solved the target scale variability problem and improved segmentation
accuracy. Dong et al. [34] integrated multiscale contextual information by adding four
global convolutional blocks to the pyramid feature extraction module and enhanced the
network’s focus on the target region by incorporating a guided attention mechanism. Chen
et al. [35] improved the attention pyramid module, reducing network complexity while
effectively capturing contextual information from real-time scenes, thereby enhancing the
model’s accuracy and real-time performance. However, during the detection process, the
conventional convolutional operation can only gather local information from the image and
lacks a global perspective. To enhance the detection accuracy of multi-class and multiscale
targets in complex image scenes, Cui et al. [36] designed an atrous spatial pyramid pooling
module. This module extracts rich multiscale features and obtains local features and decon-
volutional information through jump connections. Chen et al. [37] utilized atrous spatial
pyramid pooling to capture multiscale features while employing the attention mechanism
to enhance features at important locations through deep dense matching. Wu et al. [38]
restructured the atrous spatial pyramid pooling by reducing the number of channels and
using pooling to further simplify the model’s complexity. Liao et al. [39] combined the
null convolution and spatial pyramid modules to extract multiscale features layer by layer.
They reduced network complexity by decreasing the feature channel capacity. Additionally,
they improved segmentation performance without significantly increasing computational
cost by designing the context aggregation and spatial detail modules. Lin et al. [40] pro-
posed a semantic segmentation network with a multipath structure, attention-guided,
feature-weighted fusion, and a multiscale coding structure. These improvements enhance
the network’s working efficiency and segmentation accuracy. Wang et al. [41] improved
the attention mechanism by using deep separable volumes. This simplified the semantic
relationship between spatial and channel dimensions and reduced the model’s complexity.
Zhang et al. [42] designed an attention-guided atrous spatial pyramid pooling module and
a feature fusion up-sampling module. They used these modules to aggregate multiscale
contextual information and fuse different levels of features, respectively. As a result, they
achieved good segmentation accuracy, detection speed, and model size, striking an optimal
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balance. To enhance the detection network’s ability to extract global contextual information
and overcome the limitations of convolutional operators, Vaswani et al. [43] introduced the
Transformer model with a self-attention mechanism. This model enables fast parallel com-
putation and improves the ability to capture long-range dependencies. Parmar et al. [44]
applied the Transformer model to computer vision and introduced the Image Transformer
image generation model, which can fully replace the convolution process. Dosovitskiy
et al. [45] proposed the Vision Transformer model, which directly applies the sequence
of image blocks to the Transformer model and effectively extracts image features. Zheng
et al. [46] proposed a semantic segmentation network based on the Vision Transformer. By
introducing a decoding module, they were able to better realize the semantic segmentation
task. Liu et al. [47] proposed a Swin Transformer backbone network that improves the qual-
ity of extracting multiscale and higher-resolution target features while drastically reducing
computational complexity. This network can be applied to various tasks, such as image
classification, target detection, and semantic segmentation.

This paper proposes an encoder–decoder model for semantic segmentation and detec-
tion of rail surface defects based on improvements made to the Swin Transformer network.
The aim is to address the challenging problem of the intelligent detection of high-speed
rail surface defects in small datasets characterized by scale variability in complex scenes.
Ablation experiments were conducted, and the proposed model was compared with other
classical semantic segmentation methods. The study demonstrates that the proposed
method achieves a mean accuracy of 90.1% for semantic segmentation, a mean dice co-
efficient of 89.5%, and a segmentation speed of 37.83 FPS. These results surpass those of
other network segmentation methods in terms of both accuracy and efficiency. The main
contributions of the paper are as follows:

1. In response to the public rail dataset, which is small and in black and white, this paper
presents a comprehensive and colorful dataset of rail surface defects, derived from
field photography, data tagging, and data expansion.

2. Adding two Local Perception Modules (LPMs) to the Swin Transformer coding net-
work improves segmentation accuracy by providing local context information.

3. The decoding network now includes the Multiscale Feature Fusion Module (MFFM),
which effectively fuses feature information of defects at different scales during the de-
coding process. This results in improved accuracy of multiscale defect segmentation.

4. The decoding network now includes the Spatial Detail Extraction Module (SDEM),
which preserves spatial detail information and enhances the segmentation accuracy
of small-scale defects.

2. Materials and Methods

Figure 1 shows the Rail-STrans network framework, which assumes an encoder–
decoder structure. The encoder is on the left, and the decoder is on the right. The Local
Perception Module (LPM) is added to each stage of the Swin Transformer network in the
encoder to enhance the network’s ability to acquire contextual information. The decoder
comprises the Multiscale Feature Fusion Module (MFFM) and the Spatial Detail Extraction
Module (SDEM). These modules efficiently fuse feature information from different scales
of defects and preserve spatial detail information during the decoding process.
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2.1. Dataset

Deep learning techniques are driven by data and learn from various scenarios to create
a complete model for a specific task. Therefore, the performance of deep learning is limited
by the size and accuracy of the dataset. There are limited publicly available datasets of rail
surface defect images. The most commonly used dataset is the Rail Surface Defect Dataset
(RSDDs). It includes two types of defect images captured from the rails of high-speed trains
(67 images) and ordinary express and heavy transportation trains (128 images). Figure 2
shows the RSDDs dataset used as a training dataset for the network.
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The RSDDs dataset consists of only 195 black-and-white images, which is insufficient
for training the network model. The rail defects identified and localized by the semantic
segmentation network lack intuitive presentation compared to color images. In this paper,
we obtained 545 images of defects on the rail surface by shooting in the field of a specific
section. The images were obtained with the support of relevant departments. The images
were subjected to various forms of data expansion, including horizontal and vertical
flipping, as well as rotation. This process generated 4500 rail surface defect images, of
which 70% were used for training, 20% for testing, and 10% for validation. The resulting
dataset is large-scale and colorful, and it was collected in strict adherence to national
confidentiality laws and regulations. Due to the presence of national secrets in the dataset,
its use is restricted, and it will not be released to the public. Part of the self-constructed
dataset is shown in Figure 3.
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2.2. Local Perception Module (LPM)

The camera-captured images contain valuable information about edges, contours, and
textures. Therefore, this paper proposes using an improved Swin Transformer [47]-based
feature extraction network to effectively extract rich contextual and long-term dependent
information from the images. Figure 4 illustrates the structure of the improved Swin
Transformer network.
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The network framework comprises a Patch Partition module and four cascaded layers
that output four feature maps with varying resolutions in stages. The Patch Partition
module is used to chunk the image, while the first layer contains a Linear Embedding
layer, two Local Perception Modules (LPMs), and two Swin Transformer modules. The
initial layer of the four cascaded layers consists of a Linear Embedding layer, two Local
Perception Modules (LPMs), and two Swin Transformer modules. The Linear Embedding
layer is utilized to modify the number of channels in the feature map. The subsequent
layers consist of a Patch Merging layer, an even number of LPMs, and an even number of
Swin Transformer modules. The Patch Merging layer downsamples the spatial resolution
by 2-fold to reduce the feature resolution and adjust the number of channels.

The Swin Transformer network framework has been improved by utilizing an even
number of cascaded Swin Transformer modules. This allows for the division and merging
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of the surface defect feature map, thus expanding the local receptive field to the global re-
ceptive field. The network framework consists of four levels, each with different-resolution
output feature maps, S1, S2, S3, and S4, which are H

4 × H
4 , H

8 × H
8 , H

16 × H
16 , and H

32 × H
32 ,

respectively. These output feature maps have varying receptive fields, ranging from small
to large, which aids in the segmentation of defect targets of different scales.

The LPM framework, shown in Figure 5, obtains local context information of the image
and reduces the number of network parameters. First, a set of feature vectors are reshaped
into a spatial feature map using Reshape. Then, residual operations are performed on the
outputs of DepthWise Separable Convolution (DWSC) and the SiLU activation module.
Finally, the feature map is reduced to its original dimensions and output to the Swin
Transformer module.
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Figure 6 shows the structure of the Swin Transformer module, which comprises
Window Multi-head Self-Attention (W-MSA), Shift Window Multi-head Self-Attention
(SW-MSA), and Multilayer Perceptron (MLP), each with Layer Normalization (LN).
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LN is used to normalize the features in order to make the training process more stable;
meanwhile, in order to reduce the computational complexity, the W-MSA module confines
the computation of the self-attention to a single window, and the output of its lth level is

ẑl = W-MSA
(

LN
(

zl−1
))

+ zl−1 (1)

And the output of the MLP layer at level l is

ẑl = MLP
(

LN
(

ẑl
))

+ ẑl (2)

In the next cascade module, SW-MSA adds a shift operation to W-MSA. This establishes
information interaction between different windows without increasing computational effort.
The output is as follows:

ẑl+1 = SW-MSA
(

LN
(

zl
))

+ zl (3)

zl+1 = MLP
(

LN
(

ẑl+1
))

+ ẑl+1 (4)

where ẑl+1 represents the output of the SW-MSA module at level l + 1 and zl+1 represents
the output of the MLP module at level l + 1.

In accordance with the methodology outlined in Equation (5), the W-MSA is calculated
in a manner analogous to that of the SW-MSA.

Ω(W-MSA) = 4hwC2 + 2M2hwC (5)

The dimensions of the feature map, represented by the variables h, w, and C, respec-
tively, are defined in terms of the size of each window, denoted by the variable M.

2.3. Multiscale Feature Fusion Module (MFFM)

To improve the accuracy of multiscale defect detection, this subsection proposes
designing an MFFM to effectively fuse feature information from defects of different scales
during the decoding process. The composition of the MFFM is shown in Figure 7.
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In this module, the feature map with a resolution of 1/32 that is output from the
improved Swin Transformer coding model is up-sampled using bilinear interpolation and
then combined with the feature map with a resolution of 1/16 to obtain the feature map fa.
To enhance the model’s sensory field and integrate multiscale contextual information from
different levels, this paper proposes constructing an atrous spatial pyramid pooling module.
The module is designed to avoid the grid effect caused by atrous convolution by adding
atrous convolution operations with different atrous rates in different channels. The loss of
information is reduced by adding cross-layer jump connections. To ensure that the pixel
points of the feature maps cover the entire input feature maps with a resolution of 1/16,
the atrous rates are set as 1, 3, and 5. The outputs of its layers are shown in Equation (6).

Fi
a =


Conv( fa), j = 1
D3,1( fa), j = 2
D3,3

(
D3,1( fa) + F2

a
)
, j = 3

D3,5
(

D3,3
(

D3,1( fa) + F3
a
))

, j = 4
Upsample(Pooling( fa)), j = 5

(6)

where D f ,d represents the atrous convolution with convolution kernel f and atrous ratio d.
Based on the analysis above, the MFFM presented in this paper can expand the

model’s sensory field, fuse multiscale contextual information at different levels, and restore
low-level detail and location information, high-level semantic information, and global
contextual information. This improves the accuracy of multiscale defect segmentation.

2.4. Spatial Detail Extraction Module (SDEM)

As the image undergoes multiple downsampling operations in the encoder model,
spatial detail information is gradually lost, resulting in poor detection of small-scale defects.
To improve the segmentation accuracy of small-scale defects, this paper introduces SDEM,
as shown in Figure 8.
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SDEM consists of two parallel downsampling modules, each of which consists of a
standard convolution layer with a step size of 2 and a maximum pooling layer. The input
characteristic map of the downsampling module has a resolution of H′ × W ′ × Cin

′, while
the output characteristic map has a resolution of H′

2 × W ′
2 × Cout

′. The number of input
channels is represented by Cin

′, and the number of output channels is represented by Cout
′.

Based on the analysis presented above, the SDEM proposed in this paper can capture
more detailed spatial information, thereby enhancing the accuracy of small-scale defect
segmentation.
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2.5. Loss Function and Evaluation Metrics

This paper utilizes dice loss as the loss function and evaluates model performance
using accuracy, dice coefficient, and FPS metrics. Among these, accuracy and dice coefficient
are closely related to the confusion matrix, as shown in Figure 9.
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True Positive (TP) indicates that a sample is predicted to be a positive class and the
true label is positive. False Positive (FP) indicates that a sample is predicted to be a positive
case but the true label is a counterexample. False Negative (FN) indicates that a sample
is predicted to be a counterexample but the true label is a positive case. True Negative
(TN) indicates that a sample is predicted to be a counterexample and the true label is
a counterexample.

Based on the confusion matrix, the accuracy formula can be given as

Accuracy =
TP + TN

TP + FP + FN + TN
(7)

The dice coefficient is a similarity measure commonly used to calculate the similarity
of two samples with a value threshold of [0, 1]. The highest possible segmentation result is
1, while the lowest is 0. The best result of segmentation is 1, and the worst result is 0. The
calculation formula of the dice coefficient is shown in Equation (8).

Dice =
2 × P

FP + 2 × TP + FN
(8)

The dice loss function calculates the overlap between predicted and real results and
minimizes the difference between the two to optimize the model. Its calculation formula
is shown in Equation (9). Compared to the cross-entropy loss function, dice loss handles
category imbalance better by considering the weight of each pixel in its calculation, rather
than just using the number of pixels as weights. The dice loss function is a preferred choice
for dealing with this type of task due to its objectivity and effectiveness. This paper’s
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self-constructed dataset is also an example of an unbalanced dataset, making the dice loss
function a suitable choice for the training process of the network.

Dice Loss = 1 − 2 × TP
FP + 2 × TP + FN

(9)

3. Results

The algorithm model developed in this paper will be implemented on the platform of
the railroad track inspection car, as illustrated in Figure 10 in the frames for the railroad
inspection car. The platform comprises a camera, a light source, an acquisition and cal-
culation module, a power supply, a drive module, and other components. The platform
employs the light source to provide supplementary illumination to the rail surface below
the railroad track inspection vehicle, and it captures an image of the rail surface damage
through the camera and transmits the image to the acquisition and calculation module.
Subsequently, the module loads the algorithm model designed in this paper and performs
segmentation calculations on the acquired image. The final output is the result of the
segmented rail surface damage. Railroad workers can rapidly identify the rail surface
damage using this result.
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3.1. Experimental Environment

The method proposed in this paper was implemented using the Pytorch 1.3 framework
and Python language. All experiments and tests were conducted on NVIDIA Tesla P40
GPU (24G RAM, Single-Precision Performance is 12 TeraFLOPS) running on the Windows
10 operating system. During the training phase, the initial learning rate was set to 0.001,
and the Adam algorithm was used for learning, with a weight decay factor of 0.0005 and a
learning rate decay by cosine annealing. During model training, the preprocessing step
uniformly adjusts the image size to 224 × 224. Figure 11 shows the training graph of the
loss function, which stabilizes after 300 epochs.
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3.2. Experimental Results and Analysis
3.2.1. Ablation Experiments

This paper conducts a series of ablation experiments to demonstrate the effectiveness of
the proposed algorithm. The experiments verify the important role that each module plays
in the algorithm’s improvement, including the LPM, MFFM, and SDEM modules. Table 1
presents the experimental results for each module and their respective combinations. The
data table lists various network configurations and their corresponding evaluation metrics,
such as Params Size, mAcc (mean accuracy), mDice (mean dice coefficient), background
accuracy, defect accuracy, background dice, and defect dice. The original swin_upernet
is an encoder with Swin Transformer as the backbone network and UPerNet [48] as the
encoder–decoder network.

Table 1. Results of the comparison of ablation experiment modules.

Model Model
Size/M mAcc/% mDice

Coefficient/%
Background

Acc/% Defect Acc/%
Background

Dice
Coefficient/%

Defect Dice
Coefficient/%

swin_upernet 701 85.04 72.31 99.27 70.81 99.55 45.07

swin_upernet
+ LPM 701 85.13 84.36 99.44 70.82 99.62 69.10

Swin Transformer
+ SDEM 508 87.56 87.41 99.45 75.67 99.54 75.28

Swin Transformer
+ MFFM 556 86.44 85.11 99.43 73.45 99.56 70.66

Swin Transformer +
LPM + SDEM 508 88.02 87.56 99.51 76.53 99.64 75.48

Swin Transformer +
MFFM + SDEM 357 88.54 88.32 99.52 77.56 99.58 77.06

Swin Transformer +
LPM + MFFM 556 86.98 87.62 99.32 74.64 99.63 75.61

Rail-STrans 357 90.1 89.5 99.42 80.78 99.54 79.46

The ablation experiment results demonstrate the significance of the MFFM (Multiscale
Feature Fusion Module), SDEM (Spatial Detail Extraction Module), and LPM (Local Per-
ception Module). By replacing the decoding network in the original swin_upernet with
the SDEM and MFFM and forming an encoder–decoder semantic segmentation network
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with the Swin Transformer network alone, the model size can be effectively reduced while
improving the mAcc and mDice coefficients.

The MFFM is a feature fusion module that aids the model in capturing features at
various scales. This is essential for semantic segmentation tasks that necessitate precise
identification and localization of defect boundaries in an image. The data show that
Swin Transformer + MFFM enhances mAcc from 85.04% to 86.44% compared to the base
swin_upernet. Additionally, it significantly improves the defect dice coefficients from
45.07% to 70.66%. This suggests that the MFFM has a positive impact on the model’s
performance, particularly in capturing details.

The SDEM concentrates on extracting spatial details, which is essential for enhancing
the segmentation accuracy of the model in complex scenes. The experimental results
indicate that the addition of the SDEM significantly improved the model’s mAcc from
86.44% to 88.54% and its mDice coefficient from 85.11% to 88.32%, on average by 3%. This
suggests that the SDEM enhances the model’s ability to understand detailed information in
the image.

The LPM aims to improve the model’s local perception ability, which is crucial for
recognizing and processing local changes in images. Based on the provided data, it appears
that the addition of the LPM does not improve mAcc, but it does significantly improve the
defect dice coefficient from 45.07% to 69.10%. This improvement is even more pronounced
when used with the SDEM and MFFM, indicating that the LPM plays a role in the model’s
local detail perception.

Finally, Rail-STrans achieves the best performance by combining three modules: the
MFFM, SDEM, and LPM. The MFFM and SDEM significantly improve the model’s perfor-
mance, while the LPM has a relatively small impact and may require further optimization or
tuning to fully exploit its potential role. This paper proposes a model with a small number
of parameters (357 M) and achieves mAcc and mDice of 90.1% and 89.5%, respectively.
These results are significantly better than those of the underlying Swin Transformer net-
work. This suggests that Rail-STrans achieves better overall performance while maintaining
a smaller number of parameters. Figure 12 shows some pictures of ablation experiments.
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3.2.2. Comparison Experiments

To evaluate the effectiveness of the improved algorithm, this paper compares it with
other models, including deeplabv3+ [49], segnext_mscan [50], U-Net, Swin Transformer,
SegFormer [51], and Mask R-CNN+ [22], which were trained on the same dataset. The
results of the comparison are presented in Table 2.

Table 2. Results of comparative experiments.

Model Model
Size/M mAcc/% mDice

Coefficient/%
Background

Acc/%
Defect
Acc/%

Background
Dice

Coefficient/%
Defect Dice

Coefficient/% FPS

deeplabV3+ 340 68.96 72.79 99.48 38.44 99.15 46.43 30.56

segnext_mscan 150 84.54 70.21 99.37 69.7 99.59 40.84 35.43

U-Net 118 53.4 55.72 96.54 10.26 96.21 15.32 39.36

swin_upernet 701 86.76 81.21 98.82 74.69 99.17 63.26 33.87

SegFormer 961 80.96 83.27 99.55 62.37 99.42 67.12 16.31

Mask R-CNN+ 225 87.37 86.66 99.85 74.87 99.44 73.88 39.01

Rail-STrans 357 90.1 89.5 99.42 80.78 99.54 79.46 37.83

To analyze the advantages of Rail-STrans, we compare the performance of Rail-STrans
with other networks on several metrics. Based on the data in Table 2, Rail-STrans shows
advantages in the following aspects:

• Model size: The model size of Rail-STrans is 357 M, which is slightly larger than
deeplabV3+, larger than segnext_mscan, U-Net, and swin_upernet, and much smaller
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than SegFormer. The model size of Rail-STrans is moderate, which is larger than
some lightweight networks, such as U-Net, but much smaller than SegFormer, which
is much smaller, suggesting that it has some model compression advantages while
maintaining high performance.

• mAcc (mean accuracy): Rail-STrans has the highest average accuracy of 90.1%, which
means it has the best overall classification performance.

• mDice (mean dice) coefficient: Rail-STrans also has the highest average dice coefficient
of 89.5%, indicating that it outperforms the other networks in terms of pixel-level
segmentation accuracy.

• Defect accuracy and defect dice coefficient: In terms of defect segmentation, Rail-
STrans has a defect accuracy of 80.78% and a defect dice coefficient of 79.46%, which is
also relatively good and sometimes second only to SegFormer.

• Background accuracy and background dice coefficient: Rail-STrans performs very well
in background classification and segmentation, with a background accuracy of 99.42%
and a background dice coefficient of 99.54%, both of which are the highest among
all networks.

• FPS (Frames Per Second): Although Rail-STrans does not have the highest FPS, it is
still able to provide processing speeds in excess of 37 FPS, which is acceptable for
many real-time applications.

Figure 13 shows the combined data of deeplabv3+, segnext_mscan, U-Net, Swin
Transformer, SegFormer, and Mask R-CNN+ in terms of mAcc, mDice coefficient, FPS,
and so on. It can be seen that Rail-STrans shows significant advantages in several key
performance metrics, especially in average accuracy and average dice coefficient, as well
as in the accuracy of background classification and segmentation. These features make
Rail-STrans a powerful and effective semantic segmentation network. Finally, our Rail-
STrans model achieves an mAcc of 90.1% and an mDice coefficient of 89.5% with a medium
number of parameters (357 M), which is the highest among all compared networks. This
shows its superior performance in image segmentation tasks. Although Rail-STrans does
not have the highest FPS, it is still able to provide processing speeds in excess of 30 FPS,
which is acceptable for many real-time applications.
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In summary, we can conclude that the model proposed in this paper (Rail-STrans)
achieves the highest mAcc and mDice coefficient while maintaining a moderate number
of parameters, and it is also fast and performs well. Therefore, in summary, compared
with the current mainstream segmentation detection algorithms, the Rail-STrans algorithm
proposed in this paper is effective in the task of rail surface defect segmentation detection.

To visually verify the effectiveness of the proposed model, we show a comparison of
the visualized detection results of different models, as shown in Figure 14.
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4. Conclusions

This study presents Rail-STrans, an encoder–decoder model based on an improved
Swin Transformer network, to address the challenges of intelligent segmentation of surface
defects on high-speed rail in complex scenarios. The proposed method is effective for the
problem posed by non-equilibrium small datasets characterized by diversity and scale
variability. The effectiveness of Rail-STrans is verified through a series of experiments
and comparisons with other classical semantic segmentation methods. To begin with, we
addressed the challenge of a limited black-and-white rail dataset by creating a larger and
more diverse dataset of rail surface defects through field photography, data labeling, and
data expansion. This approach not only provides ample data resources for future research
but also ensures the adequacy and accuracy of model training. Secondly, we incorporated
two Local Perception Modules (LPMs) into the Swin Transformer coding network. This
enhancement allows for the acquisition of local contextual information, thereby improving
segmentation accuracy. Our experimental results clearly demonstrate this improvement.
Additionally, we integrated the Multiscale Feature Fusion Module (MFFM) into the decod-
ing network. This module combines the feature information of defects at different scales
during the decoding process, resulting in a significant improvement in the accuracy of
multiscale defect segmentation. Additionally, we incorporated the Spatial Detail Extraction
Module (SDEM) into the decoding network to preserve spatial detail information, further
enhancing the segmentation accuracy of small-scale defects. Finally, we conducted ablation
experiments to verify the function and role of each module. Our method outperforms
other classical state-of-the-art networks in terms of mAcc, mDice coefficients, and FPS. It
is a comprehensive improvement over other networks. Our research addresses the chal-
lenges of small datasets and variable defect scales in intelligent surface defect detection
on high-speed rail. Additionally, we propose a new and effective semantic segmentation
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method. These findings have significant implications for high-speed rail maintenance and
related research.
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