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Abstract: Tunable diode laser absorption spectroscopy (TDLAS) technology, combined with chromato-
graphic imaging algorithms, is commonly used for two-dimensional temperature and concentration
measurements in combustion fields. However, obtaining critical temperature information from
limited detection data is a challenging task in practical engineering applications due to the difficulty
of deploying sufficient detection equipment and the lack of sufficient data to invert temperature and
other distributions in the combustion field. Therefore, we propose a sparse projection multi-view
synthesis model based on U-Net that incorporates the sequence learning properties of gated recurrent
unit (GRU) and the generalization ability of residual networks, called GMResUNet. The datasets
used for training all contain projection data with different degrees of sparsity. This study shows that
the synthesized full projection data had an average relative error of 0.35%, a PSNR of 40.726, and a
SSIM of 0.997 at a projection angle of 4. At projection angles of 2, 8, and 16, the average relative errors
of the synthesized full projection data were 0.96%, 0.19%, and 0.18%, respectively. The temperature
field reconstruction was performed separately for sparse and synthetic projections, showing that the
application of the model can significantly improve the reconstruction accuracy of the temperature
field of high-energy combustion.

Keywords: tunable diode laser absorption spectroscopy (TDLAS); sparse projection multi-view
synthesis; temperature field chromatographic reconstruction; deep learning neural networks

1. Introduction

In order to optimize combustion processes, improve combustion efficiency and re-
duce pollutant emissions, accurate and reliable measurements of temperature and gas
component concentrations in combustion fields are of paramount importance. Taking the
temperature measurement as an example, although the development of contact temper-
ature measurement methods represented by thermocouples is relatively mature, most of
them are single-point or wall temperature distribution measurements. Usually, multiple
measurement points need to be deployed to reflect the temperature distribution within
the combustion field, which cannot meet the demand for high-quality field distribution
measurements, and the contact measurements will destroy the combustion flow field, af-
fecting the measurement results [1,2]. In contrast, infrared thermography and radiation
thermometry, as two types of non-contact measurement methods, do not interfere with the
measurement area and more easily achieve the field distribution measurement [3,4], but
these methods usually measure the temperature of the surface of the combustion field, and
it is difficult to meet the needs of temperature measurement inside the combustion field.

Tunable diode laser absorption spectroscopy (TDLAS), known for its sensitivity, ac-
curacy, reliability, and non-invasiveness, has become one of the most accurate in situ tem-
perature and gas concentration measurement techniques for combustion diagnostics [5,6].
In particular, the method can optimize the combustion process, improve the efficiency of
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energy utilization, and reduce the generation of emissions by accurately monitoring the
temperature, concentration, and other parameters of gasifiers, internal combustion engines,
and aircraft engines, thereby achieving more environmentally friendly and efficient energy
utilization. The application of this technology enables researchers to gain a deeper under-
standing of the details of the combustion process, providing strong support for the design,
control, and optimization of combustion systems [7–11].

TDLAS measurement results represent the average values along the optical path and
do not directly reflect the spatial distribution of information in the combustion field. To
address this limitation, scholars have combined TDLAS technology with computed tomog-
raphy (CT) imaging technology, proposing tunable diode laser absorption tomography
(TDLAT). The two-dimensional distribution of parameters within the combustion field
can be obtained by utilizing multiple intersecting laser beams. The bilinear ratio method
is used, which involves selecting two laser beams of specific wavelengths and using the
integral absorbance ratio obtained from the projection data to reconstruct the temperature
and concentration values within each pixel grid. This method offers a dependable way
to extract spatial data on temperature and concentration distributions in the combustion
field [12].

In the field of combustion, many scholars have contributed to investigating and
reconstructing temperature fields. Kristin et al., from the University of Virginia, measured
the two-dimensional temperature distribution at the exit of a supersonic combustion
wind tunnel using multi-angle and direct absorption spectral data from two water vapor
lines combined with a classical filtered inverse projection algorithm [13,14]. Although
the method produced satisfactory reconstruction results, it requires a large number of
beams, which may be impractical for real-world applications. Xu, Liu et al. developed
a pentagonal TDLAS detection system and used a modified Landweber algorithm to
reconstruct two-dimensional temperature and water vapor concentration distribution in
vortex combustion [15,16].

However, when dealing with a large amount of TDLAS projection data, challenges
such as low reconstruction accuracy and slow processing speed arise. The rapid develop-
ment of artificial intelligence has led to the widespread use of deep learning in combustion
diagnostics. Compared to traditional reconstruction methods, deep learning offers excel-
lent advantages in terms of reconstruction efficiency and accuracy [17–19]. To reconstruct
nonlinear tomographic absorption spectra with limited data, Huang, Liu et al. used a
convolutional neural network. The reconstruction process was accelerated, but satisfactory
results required at least six projection views [20]. Chen, Hao et al. used a U-shaped residual
network for super-resolution reconstruction of the temperature field [21]. Obtaining suffi-
cient probe data can be challenging due to harsh test conditions in practical engineering
applications. Although deep learning-based methods can produce laminar temperature
field images with a limited number of angles, the quality of the reconstruction is relatively
low. In addition, these methods do not fully exploit the sequential properties among the
probe projection data to enhance the projection data and improve the temperature field
reconstruction. It is a pressing issue in combustion diagnostics to ensure the quality of
temperature field reconstruction with fewer projection views [22].

This paper proposes a neural network-based projection data enhancement algorithm
named GMResUNet to address the problem of low accuracy in TDLAS detection recon-
struction with limited detection projection angles. The network model utilizes the gate
recurrent unit (GRU) and multilevel residual learning based on U-Net to achieve the
multi-view synthesis of sparse projection data. The U-shaped deep learning network’s
cross-connection structure ensures shallow correlation structuring while preserving the
deep feature information of the integral absorbance data [23]. The multilevel residuals can
learn the residual part more efficiently, reducing the number of parameters that need to be
learned and improving the network’s efficiency and generalization ability [24]. The GRU
can learn the sequence properties among the projection angles [25]. Compared to tradi-
tional interpolation methods and UNet, the GMResUNet proposed in this study exploits



Appl. Sci. 2024, 14, 3726 3 of 23

the sequence characteristics of the projection data from adjacent viewpoints to achieve
multi-view synthesis of sparse projection data. The synthesized projection data significantly
improve the reconstruction accuracy of the combustion temperature field, especially when
there are only a small number of probe viewpoints.

2. Mathematical Background
2.1. Tunable Diode Laser Absorption Tomography

The TDLAS technique is a line-of-sight (LOS)-based path-integrated measurement
technique characterized by fast response and high sensitivity. The technique is usually
combined with computed tomography (CT) for the distribution measurements of gas
temperatures, concentrations, and other parameters [26]. The basic theory of the TDLAS
technique, the mathematical expression of Beer–Lambert’s law, can be described as:

A =
∫ +∞

−∞
− ln

(
It(ν)

I0(ν)

)
dν = PXS(T)φ(ν)L = α(ν)L (1)

In this equation, It(ν) and I0(ν) represent the intensities of the outgoing and incoming
laser beams, respectively. P is the pressure in the region of interest, while X is the concen-
tration of absorbing molecules in the region. The linear strength of the absorbing molecules,
denoted by S(T), depends on the temperature T. L is the length of the optical path through
which the beam is absorbed. φ(ν) is a linear function satisfying the normalization condition
for

∫ +∞
−∞ φ(ν)dν ≡ 1. A is the path-integrated absorbance.
Figure 1 illustrates the importance of the individual physics of the TDLAT measure-

ment system as the laser passes through the combustion field to be measured. For the
non-uniform characteristics of the two-dimensional temperature distribution of the high-
energy combustion field, the area to be measured can be divided into M × M grids, and
assuming that the distribution within each grid is uniform, i.e., the combustion field area is
discretized, Equation (1) can be transformed into Equation (2):

Aνn ,i =
J

∑
j=1

[
PS(νn, Tj)Xj

]
iLi,j =

J

∑
j=1

αiLi,j(i = 1, 2, 3, 4 · · · I) (2)
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The discretization formula of Equation (2) can be written in the form of a matrix:
Avi ,1 = αvi ,1L1,1 + αvi ,2L1,2 + · · ·+ αvi ,K L1,K
Avi ,1 = αvi ,1L1,1 + αvi ,2L1,2 + · · ·+ αvi ,K L1,K
Avi ,2 = αvi ,1L2,1 + αvi ,2L2,2 + · · ·+ αvi ,K L2,K
Avi ,I = αvi ,2LI,1 + αvi ,2LI,2 + · · ·+ αvi ,K LI,K

(3)

Avn ,i = L·ανn (4)

where Aνn ,i denotes the integral absorption value of the detection path of the ith laser beam
at frequency νn; j denotes the jth grid number, and K is the total number of grids in the
discretized field; Li,j denotes the path length of the ith laser beam through the jth grid and
the weight of the grid.

Under this discretized model, the problem of reconstructing the temperature distribu-
tion in the TDLAT system can be described as follows: solve the information asymmetry
between the temperature distribution Tj and the concentration distribution Xj coupled
according to the path integral absorption value Aνn,i and the lattice weights Li,j. In this
paper, the two-dimensional reconstruction of the temperature field is realized by using the
absorbance ratio of two absorption spectral lines according to the two-line ratio thermometry.

2.2. GRU Module for Absorbance Data

The gate recurrent unit (GRU) network is a kind of recurrent neural network (RNN).
It deals with time series data. It can solve some complexity and computational overhead
problems existing in the long short-term memory (LSTM) network [27,28]. It can also
simplify the model structure to some extent and improve the training efficiency. For
example, in the case of the stationary TDLAS temperature measurement system, the
measurement of the combustion temperature field involves the measurement of the region
of interest from multiple angles. The obtained projections represent the two-dimensional
datasets obtained by the laminar scanning process. Each row of these data represents the
projection of the laser absorption spectrum obtained by the detector at increasing angles.
The features are sinusoidal throughout the image. Along a particular sinusoidal curve, the
gray values of each detector element show a strong correlation. Therefore, we can treat
each row of projected data as a sequence over the projected angle.

The GRU network shows excellent performance in processing sequential data, so the
inherent sequential nature and sinusoidal correlation of projection data make it ideal for
synthesizing sparse projection data. The structure of the GRU network cell is shown in
Figure 2; it controls the flow of information through the network by introducing two gating
mechanisms, namely the reset gate and the update gate, and updating then. These gating
mechanisms help the GRU network to better capture the intrinsic relationships in the
sequence of lines and rows of the projected data, with a smaller number of parameters
compared to the LSTM network.

The flow of the projected data within the module is as follows:
At the tth projection angle, Equation (5) defines the variable Rt as the gate of the

control reset of the projection data:

Rt = σ(XtWxr + Ht−1Whr + br) (5)

where Xt is the absorbance data at the tth projection angle; Ht−1 is the hidden state at the
(t − 1)st projection angle, and this hidden state contains the relevant information about the
previous projection angle; Wxr and Whr denote the weight matrices corresponding to Xt
and Ht−1, respectively, at the input of the reset gate; br is the bias matrix of the reset gate;
and σ is the activation function of the reset gate, which is essentially a nonlinear mapping
sigmoid function that transforms the data into the range of 0–1 and acts as a gating signal.
The variable Zt is the gate for the control update of the absorbance data at the tth projection
angle, which is defined by Equation (6):
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Zt = σ(XtWxz + Ht−1Whz + bz) (6)
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Similarly, σ is the activation function of the update gate; Xt and Ht−1 are used as the
inputs of the update gate; Wxz and Whz denote the weight matrices corresponding to Xt and
Ht−1 at the input of the update gate, respectively; and bz is the bias matrix of the update
gate. In Equation (7), the variable H′

t is the candidate hidden state at the projection angle t
and is defined as follows:

H′
t = tanh(XtWxh + (Rt ⊙ Ht−1)Whh + bh) (7)

where the data after the reset are obtained by resetting the Hadamard product Rt ⊙ Ht−1
of the gate Rt and the hidden state Ht−1 of the projection angle. Wxh and Whh denote
the weights of the current input Xt and the reset data, respectively, and bh is the bias for
calculating the candidate hidden state at the projection angle t. The data are deflated to the
range of −1∼1 by the tanh activation function to obtain the candidate under the current
projection angle t of the hidden state H′

t . It can be seen that H′
t mainly contains part of the

information of the current input Xt and the control Ht−1 by the reset gate Rt as a way to
memorize the information state of the current projection angle.

The variable Ht is the hidden state under the current input Xt, defined as in Equation (8):

Ht = Zt ⊙ Ht−1 + (1 − Zt)⊙ H′
t (8)

where Zt is the update gate, which controls how the hidden state of the previous moment
is passed to the current moment and how the inputs of the current moment are integrated
into the hidden state. Also, Ht is the output Yt of the GRU module in state t.

2.3. Residual Networks

Residual networks, with a very effective deep neural network architecture, are widely
used, especially in image processing tasks. Traditional deep neural networks suffer from
gradient vanishing and model degradation during training. The performance tends to
deteriorate as the depth of the network increases. To address this problem, the concept of
residual networks was proposed. The network is characterized by the inclusion of hopping
connections that allow for information to bypass several layers and flow directly through
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the network. This structural innovation ensures smoother information propagation and
avoids the problems of vanishing gradients and model degradation [29]. Residual networks
can learn constant mappings more easily, avoiding information loss and loss of information.
This allows the model to fit the training data better, improving the expressiveness and
accuracy of the model. At the same time, residual networks also reduce the number of
parameters and improve the computational efficiency of the network. Deeper training of
the network is realized to extract more complex and abstract features. The structure of a
single residual module is shown in Figure 3.
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In this context, x represents the input, ReLU is the activation function, and F(x) and
H(x) denote the mapping before and after the summation, respectively. The difference
between residual network and traditional network structures is the inclusion of an extra hop
connections that directly connect the input to the output layer, called shortcut connections,
denoted as h(x). Typically, h(x) represents the input x. If the mapping of inputs to
the outputs of the F(x) channel is inconsistent, the number of channels in the residual
connection is adjusted by convolving with a kernel of 1.

2.4. GMResUnet Structure

In this section, a sparse projection synthesis network is proposed, which incorporates
the GRU network with multilevel residual connectivity on the basis of U-Net, and is
named GMResUnet, as shown in Figure 4. The combination of the U-Net, the multilevel
residual connectivity, and the GRU module with the learnable sequence feature has not
been applied in the synthesis of laser absorption spectral projection data from sparse
projections. Therefore, this study paid special attention to the sequence characteristics of
the TDLAT projection data with respect to the projection angle, where the data from each
detector are sinusoidally regular along the detection angle and where U-Net embodies
a classical network architecture with encoding and decoding structures. Downsampling
is accomplished through a series of successive convolutional and pooling layers, while
upsampling involves successive convolutional and deconvolutional layers, with cascade
connections between the corresponding layers.



Appl. Sci. 2024, 14, 3726 7 of 23Appl. Sci. 2024, 14, 3726 8 of 25 
 

 
Figure 4. GMResUnet framework. 

The GMResUnet architecture consists of seven convolutional modules, four GRU 
modules, and multilevel residual connections. 

During the encoding phase, the encoder’s coding module comprises a GRU module, 
two 3 × 3 convolutional layers, and a ReLU activation function. The GRU module extracts 
sequential features based on the projected view from the projected data, while the convo-
lutional layers capture spatial features. The nonlinear activation function enhances the 
network’s expressive power. Increasing the number of channels enables the capture of 
rich semantic information. Additionally, a maximum pooling layer is utilized between 
each coding module to decrease the size of the feature mapping. This gradual downsam-
pling process aids in broadening the sensory field and extracting global features. 

During the decoding stage, the feature map’s spatial resolution is gradually restored 
through upsampling while simultaneously reducing the number of channels. The de-
coder’s decoding module comprises an inverse convolutional layer and an activation func-
tion that gradually recovers the feature map’s spatial dimensions. The inverse convolu-
tional layer’s gradual upsampling operation recovers detailed image information and en-
ables fine modeling of the local features. Additionally, each decoding module in the de-
coder is fused twice with the corresponding feature map of the encoder to introduce low-
level fine-grained information. Two methods are used to connect the feature maps of the 
encoder and decoder levels in image restoration. The first method involves splicing the 
feature maps element-by-element, while the second method involves the summation of 
the initial feature maps with the feature maps in the decoder via residual connection. The 
use of jump connections helps to convey low-level details and boundary information, re-
sulting in better restoration of the original image. Additionally, the introduced multilevel 
residual connections provide noise immunity. 

By adding the inputs and outputs directly and using jump connections to introduce 
low-level features into the high-level computation, the network can focus more on the 
difference between the inputs and outputs. This approach is relatively insensitive to noise 
because it fits the difference between the inputs and outputs by learning the residual func-
tion. Residual learning can improve the network’s robustness to noise, accelerate its con-
vergence, and better synthesize sparse projection data. The network uses zero-padding to 
maintain input and output image size during training. The last convolutional module in 
the decoding stage has a kernel size of 1, ensuring that each pixel corresponds to a cate-
gory label. 

In the GMResUNet framework, the encoder’s convolution operation is preceded by 
the GRU module. The data from the projected viewpoints are treated as time-series data, 
with each row representing a sequence. This sequence is then recursively processed in 
behavioral units by the GRU module. 

Figure 5 shows the data flow of this module assuming n  projection angles. tX  rep-
resents the projection data at the t th projection angle, which serve as the input to the 
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The GMResUnet architecture consists of seven convolutional modules, four GRU
modules, and multilevel residual connections.

During the encoding phase, the encoder’s coding module comprises a GRU module,
two 3 × 3 convolutional layers, and a ReLU activation function. The GRU module extracts
sequential features based on the projected view from the projected data, while the convo-
lutional layers capture spatial features. The nonlinear activation function enhances the
network’s expressive power. Increasing the number of channels enables the capture of rich
semantic information. Additionally, a maximum pooling layer is utilized between each
coding module to decrease the size of the feature mapping. This gradual downsampling
process aids in broadening the sensory field and extracting global features.

During the decoding stage, the feature map’s spatial resolution is gradually restored
through upsampling while simultaneously reducing the number of channels. The decoder’s
decoding module comprises an inverse convolutional layer and an activation function
that gradually recovers the feature map’s spatial dimensions. The inverse convolutional
layer’s gradual upsampling operation recovers detailed image information and enables
fine modeling of the local features. Additionally, each decoding module in the decoder
is fused twice with the corresponding feature map of the encoder to introduce low-level
fine-grained information. Two methods are used to connect the feature maps of the encoder
and decoder levels in image restoration. The first method involves splicing the feature
maps element-by-element, while the second method involves the summation of the initial
feature maps with the feature maps in the decoder via residual connection. The use of
jump connections helps to convey low-level details and boundary information, resulting in
better restoration of the original image. Additionally, the introduced multilevel residual
connections provide noise immunity.

By adding the inputs and outputs directly and using jump connections to introduce
low-level features into the high-level computation, the network can focus more on the
difference between the inputs and outputs. This approach is relatively insensitive to noise
because it fits the difference between the inputs and outputs by learning the residual
function. Residual learning can improve the network’s robustness to noise, accelerate its
convergence, and better synthesize sparse projection data. The network uses zero-padding
to maintain input and output image size during training. The last convolutional module
in the decoding stage has a kernel size of 1, ensuring that each pixel corresponds to a
category label.

In the GMResUNet framework, the encoder’s convolution operation is preceded by
the GRU module. The data from the projected viewpoints are treated as time-series data,
with each row representing a sequence. This sequence is then recursively processed in
behavioral units by the GRU module.

Figure 5 shows the data flow of this module assuming n projection angles. Xt repre-
sents the projection data at the tth projection angle, which serve as the input to the GRU
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unit. Yt is the output corresponding to the last hidden layer. The n outputs are spliced as
input features to the convolutional layer. The convolutional layer can include the sequence
features of the projection data at adjacent viewpoints, achieving deep fusion of spatial and
sequence information [30].
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3. Settings for Simulative Studies

This section presents a simulation study that validates the feasibility of the GMRe-
sUNet for synthesizing multi-view absorbance data. This study included dataset prepara-
tion, network training, and quality assessment.

3.1. Dataset Preparation

Gaussian flames were utilized to simulate real flames, and a stochastic mixed Gaussian
flame model was constructed to generate Gaussian flames with varying numbers of peaks
and peaks with stochasticity [31,32]. This approach enables the simulation of complex
temperature distributions in actual combustion fields. A total of 20,000 temperature dis-
tribution samples were manually created. These simulated samples described a typical
combustion temperature range from 800 K to 2600 K and included one to three randomly
distributed Gaussian peaks. A visual representation of these temperature distributions is
depicted in Figure 6.
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Numerical simulations were conducted to model the process of temperature field
probing using the TDLAS technique. The network training used 16,000 samples, while
2000 samples were used for network validation, and another 2000 samples for network
testing. Each sample consisted of five types of projection data captured using a 64-way
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detector in the formats of 2 × 64, 4 × 64, 8 × 64, 16 × 64, and 32 × 64. The projection data
with the size specification of 32 × 64 were designated as the labeling data, while the other
sparse projection data were used as the network input for the synthesis of the multi-angle
projection data. Figure 7 shows the label projection data corresponding to the three typical
temperature fields simulated in Figure 6.
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Taking the projection data corresponding to the complex multi-peak temperature field
as an example, each projection data sample contained projections with different sparsity
levels, as shown in Figure 8. The white area is the projection angle to be synthesized, and
the data preprocessing fills it with zeros, which ensures the same resolution of the network
inputs and outputs.
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3.2. Network Training and Implementation

The GMResUNet proposed in this study was trained using the PyTorch framework
with an L2 loss function, defined as follows [33]:

L2 =
1
N

N

∑
n=1

K

∑
k=1

(y∗k − yk)
2 (9)

where N is the total number of samples in each batch of projected data, and K is the total
number of pixels in each distribution. The variables y∗k and yk refer to the ground truth and
predicted values of the k-th pixel, respectively. The training process consisted of repeating
the batch until the loss function converged.

The optimizer used was the adaptive moment estimation (Adam) [34] optimization
method, which combines the concepts of the RMSprop algorithm and the momentum-
based approach to not only implement momentum-driven parameter updates but also to
adaptively adjust the learning rate to improve the gradient descent. Compared to other
adaptive learning rate algorithms, Adam converges faster and learns better. The network
was trained on an NVIDIA GeForce RTX 3090 GPU with a learning rate of 2.6 × 10−4 and a
training time of nearly 10 h.

The validation set was used during training to assess the model convergence to avoid
network overfitting. In the validation set, the network parameters were not updated. In
Figure 9, two plots show the evolution of the loss function for the training and validation
sets under four sparse projection data. It can be observed that the model converged quickly
in the first 300 periods on the training set and gradually stabilized after 300 periods; the
validation set shows a similar pattern, so the network was not overfitted. In particular,
the model converged slowly when N = 2 and quickly for N > 2 (N = 4, 8, 16). The results
show that the model converged faster as the richness of the projected data increased; the
difference in the convergence of the loss function was smaller for projection angles N
above 4.
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3.3. Indexes of the Quality Assessment

To evaluate the performance of the GMResUnet, we defined three metrics to evaluate
the effect of sparse projection data synthesized into multi-angle projection data, i.e., the
difference between the predicted values and the real labeled dataset, as the peak signal-to-
noise ratio (PSNR), structural similarity (SSIM), and the projection data synthesis error [35].
These performance metrics are defined as follows:

The peak signal-to-noise ratio (PSNR) is the ratio of the maximum power of the signal
to the noise power of the signal in decibels (dB). It is defined based on the mean square
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error (MSE) for the given original image I of size m × n and a noisy image K to which noise
has been added. Its MSE and PSNR are defined as:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (10)

PSNR = 10· log10(
MAX2

I
MSE

) (11)

where m and n are the length and width dimensions of the image respectively; MSE is the
mean square error; I is the true value; K is the predicted value; and MAXI is the maximum
possible pixel value in the image.

The structural similarity (SSIM) is a measure of the similarity of two images. The
closer the SSIM value is to 1 means that the two images are more similar. The specific
mathematical representation is:

SSIM(x, y) =
(2µxµy + c1)·(2σxy + c2)

(µ2
x + µ2

y + c1)·(σ2
x + σ2

y + c2)
(12)

where x and y are the original and reconstructed images, respectively; µx and µy are the
mean values corresponding to the images x and y, respectively; σ2

x and σ2
y are the variance of

the images, respectively; σxy is the covariance of x and y; and c1 = (k1L)2 and c2 = (k2L)2

are the constants used to maintain stability, where L is the range of pixels of the images x
and y, usually taken as k1 = 0.01, k2 = 0.03.

The relative error represents the error between the generated values of the projection
data and the labeled data:

err =
∆
L
× 100% =

∑N
k=1 |y∗k − yk|

∑N
k=1 y∗k

× 100% (13)

where ∆ is the absolute error; L is the true value; y∗k and yk are the true and generated
values of the kth pixel of the projection data matrix, respectively, and N is the total number
of pixels of the absorbance data.

4. Results and Discussion
4.1. Image Reconstruction Results

The projection data with different specifications in the test set were fed into the
trained GMResUNet model to generate the multi-angle projection data matrix (N = 32).
As shown in Figures 10–12, the synthesized typical single-peak, double-peak, and multi-
peak temperature field multi-angle projection data and error map distributions under the
conditions of N = 2, 4, 8, and 16 are shown, respectively, with the generated multi-angle
projection data on the left and the corresponding relative error distributions on the right.
Table 1 shows the average relative errors of the four sparse projection data for the three
temperature field modes.

It can be seen that as the complexity of the temperature field increased, the normalized
error of the synthetic multi-angle projection data of this network remained below 0.5%
under the number of projections of N = 4 and above. Under the extremely sparse projection
probing of N = 2, the normalized error of its synthetic multi-angle data was less than
0.8% for the single-peak and double-peak temperature fields, and greater than 1% for the
multi-peak temperature field due to its complexity.

In order to evaluate the quality of the complete projection data generated by the GMRe-
sUnet, the temperature distributions of the synthesized projection data were reconstructed
using typical CNN [20] algorithms available in the literature, as well as a reconstruction
network based on the U-Net framework, as shown in Figure 13. The PSNR, SSIM, and
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relative error were also used as specific metrics to evaluate their quality for temperature
field reconstruction.
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Table 1. Synthesis error of four sparse projection data for three temperature field modes.

Projection Angle N Single-Peak Distribution Bimodal Distribution Multimodal Distribution

N = 2 0.79% 0.77% 1.81%
N = 4 0.24% 0.37% 0.41%
N = 8 0.13% 0.20% 0.23%
N = 16 0.16% 0.18% 0.19%
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Figure 13. U-Net temperature field reconstruction model for test projection data.

The U-Net was used to evaluate the effect of the synthesized temperature field recon-
struction, as shown in Figures 14–16, which represent typical single-peak, double-peak,
and multi-peak temperature fields reconstructed under the N = 2, 4, 8, and 16 conditions,
as well as the relative error plots. The network input projection data correspond to the
multi-angle projection data synthesized in Figures 10–12. Table 2 shows the reconstruction
errors of the three temperature fields.

Table 2. Distribution error of temperature field reconstruction after synthesis of four sparse projections
for three temperature field modes.

Projection Angle N Single-Peak Distribution Bimodal Distribution Multimodal Distribution

N = 2 3.12% 2.43% 6.50%
N = 4 2.77% 2.08% 1.98%
N = 8 1.13% 1.16% 1.54%
N = 16 0.73% 1.12% 1.13%

The results show that the reconstruction error of the temperature field was less than
2% for N = 4 and above, and the reconstruction error of the single-peak and double-peak
temperature fields was less than 3.5% for the extremely sparse projection probe with N = 2.
This means that this sparse projection synthesis method can be widely applied to synthesize
probe data for various distributions. The basic trend of the reconstruction error was to
increase with the increase in the complexity of the temperature field and to decrease with
the increase in the number of projections, N. However, the reconstruction error of the
multi-peak complex temperature field under the condition of N = 2 was still less than 7%,
although the synthesis of its corresponding projection data was less effective. On the other
hand, the error of the highest temperature peaks with drastic changes was slightly larger
than that of the places with gentle changes, which may be determined by the theory of
molecular absorption spectroscopy, where the absorption sensitivity of molecules decreases
with an increasing temperature. Especially in the case of the extremely high temperature
of 2600 K in the present simulation, the neural network may not be able to decouple the
feature mapping of higher-temperature values very well [36,37].
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Appl. Sci. 2024, 14, 3726 17 of 23
Appl. Sci. 2024, 14, 3726 19 of 25 
 

 
Figure 15. Temperature field reconstruction results with error plots after projection synthesis of four 
sparse views of the bimodal temperature field. (a) N = 2; (b) N = 4; (c) N = 8; (d) N = 16. 

Figure 15. Temperature field reconstruction results with error plots after projection synthesis of
four sparse views of the bimodal temperature field. (a) N = 2; (b) N = 4; (c) N = 8; (d) N = 16.
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4.2. Evaluation of Indicators

In order to quantitatively analyze the effects of multi-angle projection data synthesis,
the PSNR, SSIM, and error of the -angle data synthesis metrics for different sparse projec-
tions were calculated on the test set with 2000 samples. As shown in Table 3, we applied
three methods to calculate the PSNR, SSIM, and error of different sparse projections for
N = 2, 4, 8, and 16 data, respectively, and the results are the average values of 2000 data on
the test set. The three synthesized methods are the interpolation method, the UNet, and
the GMResUNet.

Table 3. Effects of multi-angle projection data synthesized by different methods.

Projection
Angle N Methods PSNR SSIM Error

N = 2
Interpolation 20.139 0.446 18.26%

UNet 30.823 0.814 2.16%
GMResUNet 32.996 0.985 0.96%

N = 4
Interpolation 25.694 0.592 13.62%

UNet 34.456 0.835 1.31%
GMResUNet 40.726 0.997 0.35%

N = 8
Interpolation 28.536 0.603 8.03%

UNet 38.144 0.867 0.54%
GMResUNet 44.977 0.998 0.20%

N = 16
Interpolation 32.585 0.780 5.34%

UNet 43.684 0.933 0.32%
GMResUNet 46.572 0.998 0.18%

In Table 3, it can be seen that the results of the interpolation method were the worst
in all three metrics, while the UNet performed better than the interpolation method, and
GMResUNet performed the best among the three. Regarding errors, the GMResUNet
had the lowest results, the interpolation method had significantly higher results, and the
UNet performed well. These results show that the GMResUNet can maintain high-quality
synthesis of sparse to multi-angle projections and achieve further improvement of the
projection data.

In order to evaluate the quality of temperature field reconstruction of the synthesized
multi projection data, the synthesized multi-angle projection data were also subjected
to temperature field reconstruction on the test set with a sample of 2000. As shown in
Table 4, we applied two methods to calculate the evaluation metrics of the temperature
field under N = 2, 4, 8, and 16, and the results are the average values of the test set. Two of
the synthesized methods were based on traditional CNN and U-Net and were specially
trained for temperature field reconstruction in this paper. It can be observed that as the
sparse angle N increased, the results of both the CNN and the U-Net reconstruction became
significantly better, with the PSNR, SSIM, gradually increasing, and the error gradually
decreasing. This proves that our proposed GMResUNet can realize the improvement of
sparse projection, and thus, maintain the high quality of temperature field reconstruction
in the sparse TDLAS technique for tomographic imaging tasks.

Table 4. Quality analysis of reconstructed images with different algorithms.

Projection
Angle N Methods PSNR SSIM Error

N = 2
CNN 28.510 0.921 5.00%
U-Net 30.503 0.942 3.74%

N = 4
CNN 31.543 0.954 3.45%
U-Net 34.969 0.964 2.07%
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Table 4. Cont.

Projection
Angle N Methods PSNR SSIM Error

N = 8
CNN 35.456 0.957 3.00%
U-Net 36.955 0.984 1.32%

N =16
CNN 37.166 0.961 2.37%
U-Net 39.827 0.987 1.05%

The quality analysis of temperature field reconstruction with limited projection data
and synthetic projection data using the same reconstruction U-Net is shown in Table 5. It
can be seen that the algorithm proposed in this section, which synthesizes a small amount
of projection data into multi-angle data, enhanced the input data of the network well, and
the quality of the reconstructed temperature field was obviously improved.

Table 5. Quality analysis of temperature field reconstruction before and after multi-view absorption
synthesis using U-Net reconstruction.

Projection
Angle N Composite State PSNR SSIM Error

N = 2
Incomplete view - - -

Synthetic
multi-view 30.503 0.942 3.74%

N = 4
Incomplete view 33.522 0.953 3.43%

Synthetic
multi-view 34.969 0.964 2.07%

N = 8
Incomplete view 36.423 0.969 1.68%

Synthetic
multi-view 36.955 0.984 1.32%

N = 16
Incomplete view 38.821 0.987 1.23%

Synthetic
multi-view 39.827 0.987 1.05%

4.3. Noise Resistance Analysis of the Algorithm

To evaluate the noise immunity of the GMResUNet, Gaussian noise ranging from
0% to 12% was added to the original sparse projection data. As shown in Figure 17a, the
average relative error after the synthesis of various types of sparse projections increases
with the increase of noise intensity. Overall, the projected views with N = 16 are highly
resistant to interference in the synthesis, and the average relative error of the synthesized
multi projection data is less than 1%. When the noise level reaches 12%, the average relative
error of projection number synthesis for N = 4 and above is less than 1.5%; while when
N = 2, the average error of multi projection data synthesis is relatively large and has the
worst anti-interference ability. In addition, the effect of noise on the quality of temperature
field reconstruction was also investigated. As shown in Figure 17b, a similar trend was
found in the reconstructed temperature field. For N = 4 and above, the reconstruction error
remained below 8%. As the noise level increased, the temperature field reconstruction
using the full projection data synthesized from N = 2 encountered significant errors and
larger fluctuations.
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5. Conclusions

In this paper, a neural network-based projection data enhancement algorithm is
proposed to address the problem of low accuracy in TDLAS detection reconstruction using
limited detection projection angles. The network model incorporates GRU and multi-level
residual learning based on U-Net to realize the multi-view synthesis of sparse projection
data. The cross-connection structure of the U-type deep learning network ensures a shallow
correlation structurality with the premise of guaranteeing deeper feature information of the
projection data. The multilevel residual learning of the higher-level feature representation,
which improves the efficiency and generalization ability of the network, makes it easier
to optimize and converge the network. The GRU is capable of learning the sequence
properties among projection angles.

The feasibility of the network model was evaluated using numerical simulation meth-
ods, and an experimental study was conducted to synthesize 32 multi-angle projection
data from a finite number of 2n projection angles. Realizing the 2n-fold enhancement of
the projection data, the experimental results show that the GMResUNet algorithm has an
excellent projection data synthesis ability. Its 8-fold synthesis ability was especially effec-
tive (sparse projection N = 4); the PSNR was 40.726, the SSIM was 0.997, and the average
relative error was 0.35%. At the same time, the sparse projection and synthetic projection
are used separately for temperature field reconstruction, and the results show that the
synthetic ability of the algorithm can significantly improve the reconstruction accuracy
of the high-energy combustion temperature field, especially in cases of a small number
of detection perspectives. The algorithm can not only realize high-quality temperature
distribution reconstruction with a small number of projections but also has a potential
market economic value for simplifying the hardware composition of detection systems in
the future.
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