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Abstract: Multi-sensor fusion is pivotal in augmenting the robustness and precision of simultaneous
localization and mapping (SLAM) systems. The LiDAR–visual–inertial approach has been empiri-
cally shown to adeptly amalgamate the benefits of these sensors for SLAM across various scenarios.
Furthermore, methods of panoptic segmentation have been introduced to deliver pixel-level semantic
and instance segmentation data in a single instance. This paper delves deeper into these methodolo-
gies, introducing PSMD-SLAM, a novel panoptic segmentation assisted multi-sensor fusion SLAM
approach tailored for dynamic environments. Our approach employs both probability propagation-
based and PCA-based clustering techniques, supplemented by panoptic segmentation. This is utilized
for dynamic object detection and the removal of visual and LiDAR data, respectively. Furthermore,
we introduce a module designed for the robust real-time estimation of the 6D pose of dynamic objects.
We test our approach on a publicly available dataset and show that PSMD-SLAM outperforms other
SLAM algorithms in terms of accuracy and robustness, especially in dynamic environments.

Keywords: SLAM; dynamic scenarios; panoptic segmentation; multi-sensor fusion

1. Introduction

Simultaneous localization and mapping (SLAM) [1] has long been a pivotal technology
in the field of mobile robotics. This process entails the utilization of data derived from robot
sensors to acquire state information essential for localization, as well as the construction
of maps through sensor data analysis [2]. SLAM systems have been extensively applied
in various domains, such as intelligent service robots [3], autonomous driving [4] and
augmented reality [5]. SLAM can provide these systems with their location and posture
information. SLAM technology can improve the positioning performance of robots, cars,
and augmented reality systems, promote the development of these fields, and thus improve
people’s quality of life.

The advancement of SLAM technology has facilitated significant progress in address-
ing the SLAM problem within simple and static scenes. This is achieved through the
utilization of sensors such as vision-based visual–inertial systems (VINS) [6] or light de-
tection and ranging (LiDAR)-based LiDAR odometry and mapping (LOAM) systems [7].
These methods have demonstrated high robustness and localization accuracy. Conse-
quently, there has been a growing emphasis on the development of SLAM techniques
capable of functioning in dynamic and intricate environments. As illustrated in Figure 1,
such environments present significant challenges due to the interference from dynamic
objects and the degradation of sensors in harsh conditions. The challenges of dynamic
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and intricate environments in SLAM technology encompass interference from dynamic
objects, complicating tracking and localization. Adverse conditions may degrade sensor
performance, impacting data quality. The heightened complexity requires robust algo-
rithms, elevating system complexity. Real-time processing is crucial, demanding timely
feedback for successful SLAM task execution. Addressing these challenges necessitates
advancements in algorithmic sophistication and sensor adaptability to enhance SLAM
resilience in dynamic settings.

Figure 1. Schematic diagram of the dynamic scene. The triangle in the figure is the camera, the cars
represent dynamic objects, the red dots represent dynamic feature points, and the black dots are static
feature points. The illustration emphasises significant disparities in the motion of dynamic and static
entities as they change positions between two frames, ultimately reflecting the characteristic features
of a dynamic scenes.

One approach has attracted considerable interest in tackling these challenges: multi-
sensor fusion SLAM. This method integrates data from various sensors, including vision,
LiDAR, IMU (inertial measurement unit), and even WIFI signals [8], to improve system
performance. LiDAR is an effective tool for navigation and tracking due to its high precision.
However, it is constrained by weather conditions, a restricted detection range, and the
requirement for color information. These factors can result in subpar loop closure detection
in environments such as long corridors and tunnels. Conversely, vision sensors excel in
textured environments but are hindered by their lackluster performance in low-texture
scenes or rapidly changing illumination conditions. Monocular cameras also face challenges
with scale degradation. Despite these limitations, IMU sensors offer high frequency and
reliability, albeit with accuracy over short periods being somewhat limited. The potential of
multi-sensor fusion SLAM lies in its ability to mitigate these constraints by amalgamating
data from various sensors, thereby enhancing both accuracy and robustness.

The second method integrates deep learning-driven semantic data with SLAM to
enhance environmental comprehension. Dynamic SLAM systems that incorporate seman-
tic segmentation, as exemplified by [9–11], leverage semantic information to augment
the efficacy of SLAM in dynamic environments. Recent advancements in the realm of
deep learning and computer hardware have propelled computers to achieve remarkable
proficiency in classical image processing tasks. These tasks encompass image classifica-
tion, object detection, and semantic segmentation. Panoptic segmentation represents an
innovative approach that amalgamates these tasks, thereby facilitating pixel-level segmen-
tation and object identification concurrently with object detection. This integration yields
additional information for SLAM.

This paper introduces PSMD-SLAM, an innovative SLAM method that incorporates
panoptic segmentation-assisted multi-sensor fusion for dynamic environments. This ap-
proach builds upon the LVI-SAM framework and significantly improves system perfor-
mance by utilizing panoptic segmentation to enhance the effectiveness of multi-sensor
fusion SLAM.

The primary contributions of this paper encompass the following:
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1. Introducing a novel SLAM approach, PSMD-SLAM, which leverages the benefits of
multi-sensor fusion and panoptic segmentation for dynamic environments.

2. Implementing dynamic object detection and removal based on panoptic segmentation,
utilizing probability propagation-based and principal component analysis-based
(PCA-based) clustering methods in visual and LiDAR data, respectively.

3. Proposing a fast and robust dynamic object six-degrees-of-freedom (6D) pose estima-
tion module that fuses panoptic segmentation information with multi-sensor fusion
data for accurate estimation.

The remainder of this manuscript is structured as follows: Section 2 delineates the
pertinent literature, Section 3 elucidates the proposed framework, Section 4 showcases the
experimental outcomes, and the Section 5 offers a synthesis.

2. Related Work
2.1. Multi-Sensor Fusion

Multi-sensor fusion is an essential technique for improving the accuracy and robust-
ness of SLAM systems. Combining data from different sensors, such as cameras, LiDAR,
and IMU, can help overcome the limitations of individual sensors and enable a more
accurate estimation of the robot’s pose.

One approach to multi-sensor fusion involves optimizing and enhancing the original
SLAM framework, such as visual SLAM or LiDAR SLAM, by integrating new sensors while
keeping the original framework unchanged. For instance, the LiDAR–inertial odometry
(LIMO) proposed by Johannes Graeter et al. [12] enhances the visual odometry based on
monocular VO by using depth information from LiDAR.

Another promising research direction is to reconstruct the SLAM framework to accom-
modate multiple sensors, which enables fuller exploitation of the advantages of different
sensor types. For instance, Elena López et al. proposed a laser 2D LiDAR–vision–inertial
SLAM approach [13], which is a loosely coupled EKF-based algorithm that requires an
upper computer to assist in the computation. Similarly, Yuran Liang et al. utilized the
error state extended Kalman filter (ESEKF) to fuse multiple sensors of IMU, vision sensors,
LiDAR, radar, and GPS in a loosely coupled fusion with some scalability [14]. Additionally,
LICFUSION [15] and LICFUSION 2.0 [16] integrate IMU measurements, sparse visual
features, and LiDAR features and perform joint state optimization using a multistate con-
strained Kalman filter (MSCKF) framework. These multi-sensor fusion approaches have
shown exciting potential in improving the accuracy and robustness of SLAM systems.

The factor graph model has been introduced and developed in the field of multi-
sensor fusion SLAM. Liu et al. [17] proposed a SLAM framework that integrates the
information of multiple sensors including a camera, LiDAR, IMU, and global positioning
system (GPS) based on vision–LiDAR calibration. Different sensors are fused in a tightly
coupled manner and finally optimized by a factor graph. NF-iSAM [18] leverages the
expressive power of neural networks and trains normalizing flows to draw samples from
the joint posterior of a non-Gaussian factor graph. By utilizing a Bayes tree, NF-iSAM
is able to exploit the sparsity structure of SLAM, enabling efficient incremental updates
for SLAM problems. Shan et al. proposed an LVI-SAM [19] method, which is a factor
graph-based LiDAR–vision–inertial SLAM method that possesses global optimization
based on scene re-identification and can keep working when LiDAR or vision sensors fail.
Additionally, Wisth et al. proposed a tightly coupled SLAM system [20] that extracts feature
from LiDAR and vision to jointly optimize information in a single integrated factor graph,
and Lin and Zhang et al. proposed R3LIVE [21], which constructs geometric structures
and renders textures using LiDAR–inertial odometry (LIO) and visual–inertial odometry
(VIO), respectively, and can reconstruct dense 3D RGB point clouds of the environment in
real time.

The drawback of the aforementioned multi-sensor fusion methods is their increased
computational complexity and potential challenges in real-time processing, particularly
when dealing with large-scale scenes. Integrating data from multiple sensors and op-
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timizing across different modalities can lead to higher computational demands, poten-
tially limiting the real-time performance of the SLAM system, especially in resource-
constrained environments.

2.2. Panoptic Segmentation

With the development of deep learning techniques, researchers have been trying to
build all-in-one deep learning frameworks that can perform multiple tasks simultaneously.
For instance, in the monocular visual sensing task, researchers aim to estimate scene depth,
optical flow, and camera pose [22–24]. Similarly, the panoptic segmentation task combines
semantic segmentation and instance segmentation [25–27].

Panoptic segmentation is a relatively new computer vision task that aims to segment
all objects in an image or video, assigning each pixel to a specific class and instance. It
provides a more comprehensive understanding of the visual world by combining instance
segmentation and semantic segmentation. The instance segmentation component identi-
fies and segments each individual object in the scene, while the semantic segmentation
component labels each pixel with a category, such as “person”, “car”, or “building”.

Initially, panoptic segmentation networks were often not able to operate online and
were hardly accurate [25]. However, recent advancements have been made to address these
issues. For instance, the panoptic segmentation network proposed by Hou et al. [28] can
run at a rate of 10 frames per second but still suffers from accuracy deficiencies. While
UPSNet [26] is dedicated to improving the accuracy of segmentation, it has poor real-time
performance. On the other hand, panopticFCN [27] strikes a better balance between real-
time performance and accuracy, achieving an operation rate of 20 frames per second and
an accuracy of more than 40% PQ. This makes it suitable for integration into our panoptic
SLAM systems.

2.3. SLAM with Semantic Prior

The ability of deep learning-based image segmentation methods (e.g., Yolov3 [29] and
Mask R-CNN [30]) to provide semantic priors has inspired the development of SLAM. In the
context of SLAM, “semantic prior” refers to the use of semantic information, such as object
categories, to aid in the localization and mapping process. This can be especially useful in
dynamic environments where objects are moving and can disrupt the SLAM process.

DynaSLAM [9] uses semantic prior information for dynamic scene verification. When
objects in the image are identified as potentially moving, such as people, animals, and cars,
features located on these objects are considered dynamic features and removed. While
using semantic information to detect dynamic feature points is straightforward, it has
limitations. The semantic dynamic feature points do not always match the actual dynamic
feature points. To overcome this limitation, some approaches combine semantic information
and multi-view geometry.

DS-SLAM [11] is one such method that uses SegNet to obtain semantic labels of fea-
ture points in a separate thread and further uses polar geometric constraints to check shift
consistency after the feature points are classified as potential dynamic feature points to dis-
criminate whether they are dynamic feature points or not. Dinh-Cuong Hoang [27] applies
semantic segmentation and MASK R-CNN networks to implement acquisition and filtering
methods for panoptic information to provide pose estimation of objects, respectively.

In addition, there are also object SLAM methods based on semantic prior, such as
MaskFusion [31] and SO-SLAM [32]. These methods use semantic prior information to
extract and model static objects as landmarks, including rectangular or quadratic curves.
Then, they use these landmarks to complete the SLAM process. Of course, some works
also incorporate dynamic objects that can be added to the back end of SLAM for joint
optimization, such as [33,34]. However, the SLAM approaches mentioned above are
typically limited to visual SLAM and are not common in multi-sensor fusion SLAM.

Compared to the aforementioned methods, this paper proposes a novel approach
that begins with multi-sensor fusion SLAM and integrates the panoptic segmentation
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method. The proposed method achieves greater robustness and accuracy in removing the
impact of dynamic objects on pose estimation and enables the estimation of the 6D pose of
dynamic objects.

3. Method
3.1. PSMS-SLAM Framework

Our approach designs a multi-sensor fusion SLAM framework, PSMS-SLAM, com-
bined with panoptic segmentation, which mainly contains five modules, and its main
structure is shown in Figure 2.

Panoptic segment Panoptic  Info. out / Pose & Features in                                                     

Point Cloud

Image

Multi-sensor graph 
optimizaition

Maping

Feature Matchinig

Feature Extraction

  Lidar-inertial system

IMU Pre-integraion

Feature Tracker

Depth Registration

Others

  Visual-inertial system

Multi-object 
Tracking

Multi Sensor Fusion                           

  IMU

Camera   Panoptic part

LiDAR

Dynamic object 
detect & removal

Others

Figure 2. PSMS-SLAM system framework. The panoptic component is denoted in red, the vision
component in green, the LiDAR component in blue, the IMU component in orange, and the back end
in gray.

The IMU module uses the preintegration [35] method to perform IMU data pre-
processing and provide the data to other pipelines. The LiDAR–inertial system module
extracts feature points from the LiDAR point cloud, performs feature extraction and match-
ing, and combines the IMU preintegration data to estimate the pose. The panoptic seg-
mentation module is responsible for the panoptic segmentation of the image to obtain
the panoptic information and to track the dynamic target pose in real time with this and
global pose information. The visual–inertial system module accepts the image data using
the Lucas–Kanade (LK) optical flow method to track the feature points of the previous
frame, then uses RANSAC for the pairwise polar constraint to remove the exclusion points,
and finally extracts the features from accelerated segment test (FAST) feature points in the
image. In this module, the visual-based loop-closure, which utilizes the improved version
of distributed bags of words library (DBOW2) method known for its high accuracy and
robustness, is also implemented. Specifically, the IMU measurement constraint, visual
odometry constraint, and LiDAR odometry constraint are jointly optimized using the factor
graph method to obtain the final system poses, and the data from each module are accepted
to complete the construction of the map.

The modules are also coupled to enhance the performance of each other: the visual–
inertial system module receives data from the LiDAR to register the depth information
into the feature points, completes the initialization using the estimated poses from the
LiDAR–inertial system module, and receives information from the panoptic segmentation
to reject the interference of dynamic objects on the accuracy.

3.2. Dynamic Objects Removal

PSMS-SLAM is a multi-sensor framework SLAM method, so below, we describe the
algorithm in dynamic scenes in two parts, vision, and LiDAR.

(1) Visual–inertial system:
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This part considers the frames that receive the panoptic segmentation information as a
panoptic keyframe. Algorithm 1 shows the entire process for eliminating dynamic object
feature points in the visual–inertial system.

Algorithm 1 Dynamic object feature points removal in the visual–inertial system

Require: Image frame F
Ensure: Processed feature points

1: Track feature points with LK method as point set S1
2: if F is not key frame then
3: Obtain new feature points as point set S2
4: if Size of S2 is bigger than a threshold then
5: Perform an LK optical flow match between the current frame and the nearest

panoptic keyframe
6: Obtain the dynamic probability of successfully matching feature points in S2

and add them to S1
7: end if
8: else
9: Fusion of panoptic segmentation information and image into a probability image

10: Calculate the dynamic probability p′t of each feature point by local convolution
11: Calculate the dynamic probability pt of all feature points by probability propagation
12: end if

When the panoptic segmentation information is obtained from the panoptic keyframes,
we first map to a probability image according to the object categories. As described in [33],
we define the dynamic probability of categories such as people and cars as 1.0 and the
dynamic probability of buildings as 0. However, the feature point extraction window may
capture some dynamic feature points outside the dynamic region of the image, which will
move with the dynamic object.

To calculate the dynamic probability of feature points, we use a convolution ker-
nel of size k that is aligned with the coordinates of the feature points to perform a
local convolution.

Mij = 1 − (
1
2
)k−dij (1)

where k is the window size for feature point extraction. dij is the Manhattan distance from
Mij to the centre.

We then take the maximum value of the local convolution’s result matrix as the feature
points’ dynamic probability.

To address the occasional false and missed detections in panoptic segmentation, we
use a probabilistic propagation method to propagate the probability between adjacent
panoptic keyframes, as shown in the following equation:

pt = (1 − α)pt−1 + αp′t (2)

Here, pt is the final result of probability at panoptic key frame t. p′t is the calculation
result of panoptic key frame t. α is a probabilistic propagation parameter with values
ranging from 0.2 to 0.5 and decreases as the camera frame rate increases.

We use the Lucas–Kanade optical flow method to track the obtained matches and
obtain their dynamic probabilities for feature points that are not on panoptic keyframes.
However, there may be cases where feature points are not detected in new image frames
when tracked using the LK method. To address this, we extract new feature points for
most frames in the visual–inertial process to reach a certain number. These new feature
points are ignored until a new keyframe arrives, or when their number reaches a threshold,
we use the LK optical flow method to perform matching and obtain the feature point
matching information between that frame and the nearest panoptic keyframe. We then use
the previous method to determine the dynamic probability. If a few feature points for which
the match fails, these points will be ignored until the next panoptic key frame arrives.
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(2) LiDAR–inertial system:
For the LiDAR–inertial system, we employ the feature extraction method from [19] to

obtain two types of feature points: edge feature points and plane feature points.
For the edge feature points on the LiDAR frame i, we use the nearest-neighbor al-

gorithm to find the five nearest feature points and then determined whether they were
collinear. If they formed a straight line, we use a point-independent representation to
represent the line using its normalized direction vector (a, b, c).

For the n edge feature points on frame i, we obtain n vectors l1,i to ln,i. Next, we match
the edge feature points of frame i with those of frame i + 1 using the scan-to-scan method
from [7] to obtain the corresponding straight lines l1,i+1 to ln,i+1. We combine the data from
m frames into a matrix Ml of the form

l1,i l1,i · · · l1,i+m
l2,i+1 l2,i+1 · · · l2,i+m

...
...

. . .
...

ln,i+m ln,i+1 · · · ln,i+m

 (3)

The method for the plane feature points is similar. For the plane feature points on
frame i of the LiDAR frame, we use the nearest-neighbor algorithm to find the five nearest
feature points and then determine whether they belong to the same plane. If so, we use
(a, b, c, d) to represent the plane, where ax + by + cz + d = 0 is the standard form of the
plane equation. We obtain a matrix Mp about the planes

p1,i p1,i · · · p1,i+m
p2,i+1 p2,i+1 · · · p2,i+m

...
...

. . .
...

pn,i+m pn,i+1 · · · pn,i+m

 (4)

We then use PCA to process the two matrices Ml and Mp. We perform SVD decom-
position to obtain dim × m eigenvalues and eigenvectors for the two matrices, where m is
the number of frames used, and dim is the dimension described (3 for Ml and 4 for Mp).
The eigenvectors are then sorted in descending order of their corresponding eigenvalues
to construct an orthogonal basis. We project the original data onto this basis to obtain the
new data matrices Xl and Xp. Next, we compute the sample covariance matrices Sp and Sl
using the following equation:

S =
1

n − 1

n

∑
i=1

(X∗,i − X̄)(X∗,i − x̄)T (5)

where X∗,i is the i-th column of X and n is the number of samples. Then, we use the
following equations to calculate Hotelling’s T-squared statistic value.

T2 = n(x̄ − µ)TS−1(X̄ − µ) (6)

where x̄ is the sample mean of X, µ is the overall mean, and S is the sample covariance
matrix. Then the clustering of T2

l and T2
p is performed using thedensity-based spatial

clustering of applications with noise (DBSCAN) method. For the clustering results, we use
the following equations to map these feature points extracted by LiDAR to the panoptic
segmentation keyframes and find the corresponding class cases of the feature points.

p(u, v, 1) = FWorld
LiDARPLiDAR(X, Y, Z) (7)

When the ratio of static to dynamic feature points of a cluster is above 5, we identify
it as a static cluster and the others as dynamic clusters. Figure 3 shows the results of the
clustering algorithm, where it can be seen that the static principal component clustering
works very well.
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In the subsequent module of the LIDAR inertial system, we use only the feature points
in the static cluster for pose estimation and map building.

Figure 3. Cluster analysis outcome. On the left, the clustering results are presented, juxtaposed with
the initial feature distribution on the right. The color-coded legend distinguishes static features in
blue, features linked to one dynamic object in red, those associated with another dynamic object in
green, and noise in yellow.

3.3. Dynamic Object Pose Estimation Assisted by Multi-Sensor Fusion

The dynamic object pose estimation, and the SLAM process are mutually reinforcing.
Furthermore, we construct a dynamic object 6D pose estimation module in the proposed
SLAM framework, whose main framework structure is shown in Figure 4.

Semantic 
information

Feature 
point 

information

      Car 1

             Bicycle 2

Dynamic  object n

......

Pose 1

Pose 2

Pose n

Optimizer solver 1

Optimizer solver 2

Optimizer solver n

Opitmizer solver 

without 
depth

with 
depth

SLAM 
pose

...... ......

Figure 4. Framework of dynamic object pose estimation. The framework integrates various compo-
nents, leveraging multi-sensor fusion, panoptic segmentation, and optimizer solvers for accurate and
real-time estimation of the 6D pose of dynamic objects within the environment.

This module uses panoptic information to identify individual dynamic objects within
the sensor’s field of view and associate feature points with them. By exploiting the existing
odometer’s matches information of points, the module naturally acquires the matching
relationship of dynamic objects between consecutive multiple frames of motion. To estimate
the 6D positional information of dynamic objects, we input the SLAM system’s body pose
and the coordinates of continuously tracked feature points into a nonlinear optimization
solver. Details of the solver’s design are provided below. The dynamic object poses
estimation, and SLAM processes mutually reinforce each other, improving the overall
system’s accuracy.
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Benefiting from the advantages of multi-sensor fusion, when the dynamic object is in
the LiDAR field-of-view range, we can obtain the depth information of the corresponding
point by the following equation.

punit(θ, ϕ) = f (PLiDAR)

ϕ = α +
c × sv

C
θ = i × δθ,

(8)

where c the channel of point, C the total number of channels of LiDAR, sv the scale of
vertical FOV, α the angle of first LiDAR ring, punit the coordinate of unit sphere, i the
sequence of point, δθ the angle increment.

After acquiring a certain number of points with depth information, we can construct
the following least squares method to find the pose of the corresponding dynamic target.

min
m

∑
i=1

1
2
∥ f ( p̂{i,k})− TdTc f ( p̂{i,k+1})∥2

2 (9)

However, the dynamic object may only sometimes be within the sensing range of
the LiDAR, resulting in a lack of point depth information. To address this, the paper also
proposes a method for estimating the pose of dynamic objects without depth information.

The pose estimation becomes particularly difficult for monocular cameras that lack
depth information. The traditional para-polar geometry method does not apply to dynamic
object pose estimation because the reverse-projected rays are disjoint. The second is
the problem of scale information. The monocular camera needs scale information, and
the relative scale of dynamic objects in the camera range is also a challenge that must
be addressed.

Generally, SLAM systems use cameras with frame rates of 10 to 20 frames or even
higher, so we assume that the 6D positional transformation Td of the dynamic object is
the same in three consecutive frames, as shown in Figure 5. In such a short time interval,
even if the acceleration reaches 1G, the change in its velocity is still less than 2 m/s. For a
slower car, the change in its velocity is even more minor. Therefore, we can express it by
the following equation.

P{i,k} = TdP{i,k+1} = T2
d P{i,k+2} (10)

where P{i,k} = [x, y, z]T is the coordinate of the point Pi on the k th frame.

��
�

��
�+1

��

� �,� � �,�+1 

��
��+1

��
�+2

��

��+2

� �,�+2 

Figure 5. Schematic diagram illustrating the 6D pose consistency in dynamic object pose estimation.
The dynamic object depicted in the figure maintains the same 6D pose across three consecutive frames.

Then, for the complete set of points P(Pi, 0 < i ≤ n) of dynamic objects, a least squares
problem is similarly constructed, and the problem is solved using nonlinear optimization
as follows:
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min
n

∑
i=1

2

∑
t=0

∥p{i,k+t} − h
[
(Td)

tPw
i,k
]
∥2

2 (11)

The variable to be solved is Td, where p{i,k+t} is the pixel coordinate (u, v) of the point
Pi at the k + t th frame image; h represents the camera model function, where the camera
internal reference, correction factor, and camera pose are preset values.

3.4. Panoptic Segmentation

Our method employs panopticFCN as a panoptic segmentation network, which can
obtain both pixel-level instance information and semantic information. By training on
the COCO dataset, we can identify 80 thing classes and 53 stuff classes and can add a
unique identity to each of them. Based on these segmentation results, we can know the
priori properties of each pixel in the image. For example, pavement and wall classes hardly
produce motion and changes, while humans and vehicles tend to produce motion and
appearance changes.

Panoptic segmentation eventually returns a pixel-level image segmentation result, as
shown in Figure 6, as well as a set of data information recording the category of things
and object numbers corresponding to each region. This information is fed into the other
modules as a data stream, which also presents a potential pipeline synchronisation problem.
On the other hand, there is the possibility that the image segmentation rate is lower than
the image frame input rate when the device’s graphics performance is inferior.

In addressing this problem, we skip some of the input image frames according to the
rate of image segmentation. On the other hand, the other modules receive the discrete
image segmentation data and carry out some processing to avoid the system going into a
blocking state, as described in Section 3.2.

Figure 6. Panoptic segmentation image result.

4. Experiment
4.1. Experimental Description

PSMS-SLAM is evaluated using a series of experiments comparing the performance
evaluation of classical SLAM methods on the same computer equipped with an AMD 5950X
CPU, which is manufactured by Advanced Micro Devices, Inc. (AMD, Santa Clara, CA,
USA), with the silicon die of the chip fabricated at the foundry of Taiwan Semiconductor
Manufacturing Company (TSMC) in Hsinchu, Taiwan, China. The computer also includes
a GeForce 3090 GPU, manufactured by NVIDIA Corporation (Santa Clara, CA, USA),
with the silicon die of the GPU fabricated at the foundry of Samsung in Hwaseong and
Pyeongtaek, South Korea. All programs in the experiments were executed using the Robot
Operating System (ROS).

The M2DGR dataset [23] is a multi-modal and multi-scene SLAM dataset proposed by
Shanghai Jiao Tong University. It comprises a diverse sensor suite, including six fisheye
cameras, an upward-facing RGB fisheye camera, an infrared camera, an event camera, a
visual–inertial sensor, an IMU, a 32-line LiDAR, a consumer-grade GNSS receiver, and
a GNSS-IMU navigation system with real-time kinematic (RTK) signals. Ground truth
trajectories are provided by laser total station, motion capture system, RTK signals, and
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high-precision IMUs. The dataset includes data sequences from indoor and outdoor
environments, alternating indoor–outdoor environments, and various complex scenarios,
such as night scenes, twilight scenes, and completely dark indoor scenes, which make it
highly challenging. The M2DGR dataset provides a flexible experimental environment
that can accommodate a variety of SLAM approaches with different sensor configuration
requirements. Table 1 shows the details of the different sequences in the M2DGR dataset.

Table 1. M2DGR dataset details.

Dataset Distance (km) Time (s) Scene Classification

walk 01 3.724 454 static
Street 02 2.453 110 dynamic, long straight
Street 06 5.067 485 dynamic
Street 10 0.561 80 static
Gate 03 0.393 27 long straight

In addition, the panoptic segmentation network PanopticFCN is trained only on the
COCO dataset to weed out problems such as overfitting caused by deep learning.

4.2. Comparative Evaluation

Table 2 shows the performance evaluation results on the M2DGR dataset. We compare
four different methods: LeGO-LOAM, VINS-Mono, LVI-SAM, and our proposed method,
PSMS-SLAM. The evaluation is performed on five sequences: Walk 01, Street 02, Street 06,
Street 10, and Gate 03.

Table 2. Comparison of accuracy based on the absolute trajectory error (ATE) in meters on the
M2DGR dataset.

M2DGR Walk 01 Street 02 Street 06 Street 10 Gate 03

LeGO-LOAM [36] 3.29 20.02 1.25 17.93 0.12
VINS-Mono [6] 57.90 24.16 124.36 23.57 6.25
LVI-SAM [19] 3.28 3.53 0.43 3.95 0.11
PSMS-SLAM 3.30 3.14 0.45 2.87 0.11

As illustrated in Table 2, our method yields competitive or superior trajectory accuracy
compared with the other three methods. In particular, our method obtains comparable
results to LeGO-LOAM and LVI-SAM on Walk 01 and Gate 03, respectively. Further-
more, our method achieves state-of-the-art performance on Street 10 with an ATE of
merely 2.87 m, demonstrating that our method significantly outperforms LVI-SAM in a
dynamic environment.

The experimental results also demonstrate the importance of multi-sensor fusion
SLAM, especially VINS-Mono, which has the highest error in all scenes except Street 06.
This is mainly due to the degradation of the single sensor in long straight lines and light-
shadow scenes.

Overall, the experimental results show that our proposed method can effectively
handle the challenges of more realistic and complex realistic environments represented by
the M2DGR dataset and achieve competitive performance.

4.3. Visualization

The visualization results play a pivotal role in gauging the efficacy and robustness
of our proposed PSMS-SLAM method. Figure 7 provides an in-depth illustration of the
trajectory obtained through our system’s operation on the M2DGR dataset, offering a direct
visual comparison against the ground truth. This trajectory visualization is a key metric
for evaluating the accuracy and dependability of our SLAM system, providing a tangible
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representation of how well it reconstructs the environment and estimates the camera pose
over time.

In Figure 7, the trajectory traces the path followed by the camera throughout the
dynamic scenes, offering a side-by-side comparison with the ground truth. Discrepancies
between the estimated trajectory and the ground truth trajectory can be visually iden-
tified, providing insights into the system’s performance under varying conditions and
highlighting any potential challenges faced during the mapping and localization processes.

Figure 7. The trajectory generated by our PSMS-SLAM method on the M2DGR dataset, providing a
side-by-side comparison with the ground truth trajectory.

Moving forward, Figure 8 delves into the visualization results with a specific emphasis
on our dynamic object pose estimation method. This figure serves as a comprehensive
showcase of the system’s capabilities by presenting both velocity and depth information
associated with the dynamic objects detected by our PSMS-SLAM system.

The inclusion of velocity information allows for the observation of the speed and direc-
tional movement of each identified dynamic object. This aspect is crucial for applications
requiring precise understanding and prediction of object movements, such as in robotics
and autonomous navigation. By visually inspecting the velocity information in Figure 8,
we gain valuable insights into how well our system can handle the dynamic nature of
objects within the environment.

Moreover, the visualization of depth information in Figure 8 provides a spatial context,
depicting the relative distances and positions of the dynamic objects within the scene. This
depth information is fundamental for creating accurate 3D maps and understanding the lay-
out of the environment. Our method leverages multi-sensor fusion to enhance the accuracy
of depth estimation, ensuring a more faithful representation of the scene’s geometry.

By offering a visual representation of the 6D pose estimation in real time, Figure 8
allows for a qualitative assessment of our system’s performance in handling the challenges
presented by dynamic entities in the environment. The dynamic object pose estimation
module proves to be robust, capturing not only the positional information but also the
dynamic behaviors of objects, which is crucial for applications in SLAM.
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Figure 8. Visualization results of the dynamic target tracking. The visualization results of dynamic
target tracking encapsulate the outcomes of our PSMS-SLAM method’s performance in tracking
dynamic objects within the environment.

5. Conclusions

This paper introduced PSMD-SLAM, a pioneering SLAM method that combines
panoptic segmentation and multi-sensor fusion for dynamic environments. Leveraging
the LVI-SAM framework, our approach significantly boosts system performance. Key
contributions include the introduction of PSMD-SLAM, dynamic object detection and
removal through panoptic segmentation, and a robust 6D pose estimation module. The
PSMS-SLAM framework integrates IMU, LiDAR–inertial, panoptic segmentation, visual–
inertial, and back-end modules, enhancing each other’s performance. The visual–inertial
system, treating frames with panoptic segmentation as keyframes, reinforces dynamic
object pose estimation and the SLAM process. Overall, PSMD-SLAM offers a promising
solution for robust SLAM in dynamic environments by effectively incorporating panoptic
segmentation and multi-sensor fusion. During the research process of PSMD-SLAM, the key
challenge encountered is the accuracy and real-time issues of scene semantic recognition.
In response to this challenge, future research will focus on improving the accuracy and
real-time performance of panoptic segmentation. This research direction will contribute to
enhancing the robustness and practicality of SLAM systems in dynamic environments.
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