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Abstract: Nervous system diseases present significant challenges to the neuroscience community due
to ethical and practical constraints that limit access to appropriate research materials. Somatic cell
reprogramming has been proposed as a novel way to obtain neurons. Various emerging techniques
have been used to reprogram mature and differentiated cells into neurons. This review provides
an overview of somatic cell reprogramming for neurological research and therapy, focusing on neural
reprogramming and generating different neural cell types. We examine the mechanisms involved in
reprogramming and the challenges that arise. We herein summarize cell reprogramming strategies
to generate neurons, including transcription factors, small molecules, and microRNAs, with a focus
on different types of cells.. While reprogramming somatic cells into neurons holds the potential
for understanding neurological diseases and developing therapeutic applications, its limitations
and risks must be carefully considered. Here, we highlight the potential benefits of somatic cell
reprogramming for neurological disease research and therapy. This review contributes to the field by
providing a comprehensive overview of the various techniques used to generate neurons by cellular
reprogramming and discussing their potential applications.

Keywords: nervous system diseases; neuroscience; somatic cell; reprogramming; neurons; mechanisms;
transcription factors; therapeutic; microRNA; molecules

1. Introduction

The world’s population is aging quickly, and this is linked to several systemic diseases
such as neurological disorders [1]. Notably, the number of people with neurological diseases
increases as the population ages [2]. As of 2019, in the elderly, stroke and Alzheimer’s dis-
ease are among the top 10 causes of death [3]. This growing patient population significantly
burdens healthcare systems, society, and the economy [2]. Unfortunately, effective treat-
ments for degenerating or damaged neurons have yet to be developed in neuroscience [4].

Obtaining neural tissue or neurons for research is often challenging due to limitations
such as ethics or hardships in obtaining the tissue. The human brain and spinal cord
are protected by the skull and spinal canal, and obtaining tissue often implies traumatic
surgery. The lack of human in vitro models to investigate pathological alterations in neural
cell function that affect the entire neurological disease process is a severe limitation in
studying mechanisms and potential therapies to protect brain health and target age-related
neurodegenerative diseases.

Finding new ways to study diseases and treat neurological disorders is crucial in this
urgent situation. Somatic cell reprogramming, a new way to obtain neurons, is one way
that scientists are trying to do this. Through somatic cell reprogramming, somatic cells can
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be transformed into neurons, thereby accelerating research progress and advancing the
development of effective neural repair and replacement solutions [5]. Somatic reprogram-
ming involves transforming one somatic cell type into induced pluripotent cells, which
are then matured into the desired cell type. In contrast, transdifferentiation refers to the
direct transformation of one somatic cell type into another without first reprogramming
into pluripotent cells and then differentiating into functional somatic cells [6].

In general, mature neurons that are lost in adulthood are not replaced. The brain does
contain some pockets of neural stem cells, including the subventricular zone across the
lateral ventricles and the subgranular zone of the dentate gyrus in the hippocampus [7,8].
However, these neural stem cells are relatively sparse and cannot restore the large numbers
of neurons lost during stroke, major trauma, or neurodegenerative disease [8]. Thus,
scientists have focused on utilizing somatic cells to acquire neurons to address the scarcity
of resources for studying human neurological diseases [9].

Early research on somatic cell reprogramming can be traced back to the middle of
the last century, when scientists attempted to perform nucleus transplantation, and the
transplanted cells were able to develop into intact individuals. For example, Gurdon et al.
transferred a nucleus from an embryonic cell into an enucleated and unfertilized egg of
the same species; this cell eventually developed into an entire sexually mature individual
of Xenopus laevis [10]. Another example is Wilmut et al.’s method of cloning sheep by
transplanting adult nuclei into unfertilized egg cells, a study known worldwide as the
“birth of Dolly, the sheep” [11]. These two experiments showed that the nuclei of adult cells
could be reprogrammed so that they exhibited cellular characteristics like those of fertilized
eggs. In a later study, Japanese scientist Tomo Nakayama transplanted the nuclei of adult
rat skin cells into embryonic stem cells. This study showed that the nuclei of adult cells
could be reprogrammed into embryonic stem cells. These stem cells could differentiate into
different types of cells [12].

Subsequent progress was that different reprogramming methods, such as transcription
factors, were developed. In 2004, researchers dove into the mechanisms of nuclear repro-
gramming of adult cells. They found that specific transcription factors could reprogram
somatic cells into pluripotent stem cells (capable of differentiating into many different
types of cells). In 2006, scientist Shinya Yamanaka successfully transformed adult mouse
skin cells into pluripotent stem cells capable of differentiating into multiple cell types by
subjecting them to genetic transformations and cultures [13], which led to his winning the
Nobel Prize. This achievement was considered a revolutionary advancement in cell biology
and medicine and laid the foundation for subsequent research. In subsequent studies,
scientists discovered that it was possible to obtain mature neurons by converting somatic
cells into stem cells and then differentiating them into neural precursor cells with a dozen
transcription factors [14–17].

Indeed, ectopic overexpression of specific neuronal determinants can reprogram non-
neuronal cells directly into fully functional neurons in vivo and in vitro [18–20]. Since
this pioneering work, researchers have explored how to exploit transcription factors,
microRNAs (miRNAs), and gene silencing to reprogram highly differentiated, mature
cells into neurons for therapeutic purposes. Generally, the rationale is to suppress the
expression of genes subserving the current cell phenotype while activating genes that give
rise to the target cell phenotype [21,22].

The complete reprogramming of somatic cells has evolved step by step, from early
studies of nuclear transplantation of adult cells, to the discovery that pluripotency was
induced in somatic cells overexpressing certain transcription factors, to the ability of somatic
cells to transdifferentiate directly into neurons without going through the pluripotency
stage. Sophisticated techniques and tools are now available to reprogram somatic cells
into neurons. The next phase of research should be to dig deeper into the mechanisms
of reprogramming, promote the efficiency gain of cell reprogramming, limit the risks of
reprogramming, improve the safety of reprogramming in vivo, and, most importantly,
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develop therapeutic modalities that can be applied to clinical patients to truly bring the
benefits of somatic cell reprogramming technology to patients with neurological diseases.

This review analyzes the history of efforts to reprogram adult somatic cells into
neurons. First, we focus on somatic cell reprogramming and adult cell types that can be
reprogrammed into neurons. We explore transdifferentiation strategies and factors and
the molecular pathways involved. Subsequently, we explore the therapeutic potential of
such somatic cell reprogramming as a treatment against neurological injury and illness and
highlight the challenges that must be overcome. Researchers interested in reprogramming
can use this review to obtain a quick overview of the technical means of reprogramming
somatic cells into neurons and the related application studies. This review can also reveal
future trends in somatic cell reprogramming into neurons.

2. Cell Types That Have Been Researched for Transdifferentiation into Neurons

Multiple types of somatic cells have been investigated in neural reprogramming.
Reprogramming is easier and more effective when the somatic cell phenotype is similar
to the target neuron lineage. Astrocytes are currently thought to be ideal candidates for
neural repair. Human fibrocytes are also other ideal sources of reprogramming in this field
because they are relatively easy to obtain.

Researchers have investigated the reprogramming of non-neuronal somatic cells into
neurons using different cell types from other organs and embryonic cortices, with most stud-
ies focusing on ectodermal cell types. These ectodermal cells include fibroblasts [13,23–25],
keratinocytes, oligodendrocytes [24], astrocytes [26], pericytes [27], and neuronal cells with
the same neuronal identity [28]. T cells [29] and monocytes [30] from peripheral blood and
hepatocytes [31] from visceral organs can also be reprogrammed into neurons. The success
of these attempts has provided multiple cellular resources for neural reprogramming.

The more similar the initial adult cell phenotype is to the target neuronal phenotype,
the more straightforward and effective the transdifferentiation procedure is. This is because
embryonic stem and progenitor cells can more easily differentiate into cells with similar
genealogical origins. The neuronal ectoderm produces fibroblasts, astrocytes, and peri-
cytes [32]. Most early studies tried to generate neurons from fibroblasts, but astrocytes may
be the ideal candidates for neuroregenerative reprogramming [33]. The main cell types
used for brain regeneration and reprogramming are shown in Table 1.

Table 1. Cell types that can be reprogrammed into neurons, and the neuronal subtypes after
reprogramming.

Original Cell Type Type of Reprogrammed Neuron References

Fibroblasts Neurons [24]
Infrapatellar fat pad stem cells Neurons [34]

Astrocytes Neurons [26,35]
Dental stem cell Neurons [36]

Hematopoietic cells Induced neuronal cells [37]
Urine-derived cells Induced neuronal cells [38]

Olfactory ensheathing cells Neuronal cells [39]
Spermatogonial stem cells Dopaminergic neurons [40]

Glioma cells Neurons [41]
Microglia Neurons [42]

Striatal neurons/post-mitotic callosal neurons Neurons [43]
Peripheral blood T cells Neurons [29]

Peripheral blood mononuclear cells Neurons [30]
Spiral ganglion non-neuronal cells Cochlear hair cells and cochlear nucleus neurons [44]

Pericytes Cholinergic neurons [27]
Pluripotent stem cell-derived cardiomyocytes Neurons [45]

Oligodendrocytes Functional neurons [46]
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Table 1. Cont.

Original Cell Type Type of Reprogrammed Neuron References

NG2 cells Neurons [47]
Mesenchymal stem cells Neural precursors [48]

Hair follicle keratinocytes Dopaminergic neurons [32]
Müller glia Neurogenic retinal progenitors [49]

Adipose-derived stem cells Neural stem cells and functional GABAergic neurons [50]
Hepatocytes Functional induced neuronal cells [31]

Oligodendrocyte precursor cells Neurons [51]
Interfollicular keratinocytes Neurons [52]

Bone marrow-derived mesenchymal stem cells GABAergic neurons [53]

The somatic cell types presented in the table above are the somatic cells that are
currently used for reprogramming into neurons. Some of these cells, such as fibroblasts
and astrocytes, are used more frequently. Despite their abundance, most types of cells are
not formed into sustainable cell lines, and the need to continuously isolate cultures from
the body’s limited tissues is a significant limitation.

3. Mature Somatic Cells Reprogram into Neurons through Different Pathways

Somatic cell reprogramming into neurons can occur by inducing pluripotency, stimu-
lating neural stem cells, or directly reprogramming cells into specific neuronal subtypes.
Induced pluripotent stem cells (iPSCs) can differentiate into different types of neurons,
whereas neural stem cells only differentiate in specific environments. Adult neurons can be
generated using direct reprogramming without the use of pluripotent or neural stem cells.

First, somatic cells can be forced to become pluripotent. Then, these stem cells differ-
entiate into different kinds of neurons. For example, induced pluripotent stem cells (iPSCs)
such as peripheral blood mononuclear cells display pluripotency after transdifferentia-
tion; they can be converted into motor neurons using differentiation medium containing
brain-derived neurotrophic factor (BDNF) or glial cell line-derived neurotrophic factor
(GDNF) [30,54]. The resulting neurons express mature neuronal markers such as Tuj1,
Map2, and synaptophysin, and they show spontaneous action potentials in patch clamp
assays [14–17].

Second, somatic cells are stimulated to produce neural stem cells, which then differ-
entiate into neurons in a particular environment, such as in differentiation medium. For
example, treating oligodendrocyte precursors with bone morphogenetic protein generates
neural stem cells that express stem cell markers and that can be incubated with exogenous
factors to differentiate into oligodendrocytes, astrocytes, and neurons [51,55–57].

Third, somatic cells do not undergo the intermediate step of pluripotent stem cells
or neural stem cells but direct reprogramming to specific neuronal subtypes. Overex-
pressing proneural transcription factors in astrocytes or applying exogenous factors can
generate adult neurons without the need to induce pluripotent or neural stem cells [58–63].
During direct reprogramming, cells enter a transient pluripotent stage in which several
neurogenesis-related genes are upregulated to complete the conversion into neurons [64].
Figure 1 depicts how induction can change non-neurons or neurons into target neurons.

Above all, somatic cells can be reprogrammed into neurons in three different ways.
The reprogramming pathway differs for different types of cells, based primarily on the
cells’ characteristics and the method of induction used. The more general approach of
direct reprogramming without going through the induced pluripotent stem cell phase may
reduce the risk of tumorigenesis.
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Figure 1. Pathways of neural reprogramming. First, some cells can be treated with induction factors
to become pluripotent stem cells or neural stem cells, which then mature into neurons. Some somatic
cells can differentiate directly into neurons.

4. Transcription Factors, Small Molecules, and miRNAs That Induce
Transdifferentiation of Somatic Cells into Neurons

Scientists have used different methods to convert somatic cells into neurons, such
as transcription factors, small chemical molecules, and microRNAs. Both transcription
factors and microRNAs are essential in early neural development. The small molecules are
generally involved in critical cellular pathways, and in turn, all three can be reshaped into
somatic cell phenotypes, toward a neuronal phenotype.

The observation that bone morphogenetic factors can stimulate oligodendrocyte pro-
genitors to differentiate into oligodendrocytes, astrocytes, and neurons [57] prompted
researchers to examine new techniques for transforming somatic cells into neurons by
using transcription factors, small molecules, and miRNAs (Tables 2 and 3).

Embryonic nervous system development involves numerous proneural transcription
factors, including Ascl1, Mash1, Neurog1–3, Math1, KLF4, MYC, POU5F1, NeuroD1, Pax6,
and Sox2. Ascl1 and Neurog2 induce growing stem cells to become an intermediate neu-
ronal subtype [65]. Ascl1 regulates progenitor maintenance, neuronal differentiation, and
neurite development in the central and peripheral nervous systems [66]. Based on their
critical role in neurodevelopment, Ascl1 and Neurog2 cause somatic reprogramming by
ectopic overexpression in somatic cells [48,49,67]. Pax6 is a member of the paired-box
transcription factor family widely expressed in the developing central nervous system [68],
where it regulates cortical progenitor cell proliferation, neurogenesis, migration, and fore-
brain axonal connections [69]. It also guides the differentiation of glial cells into neurons
during embryonic mouse brain formation. Table 2 illustrates transcription factor families
and their reprogramming roles.
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Table 2. Transcription factors commonly used for reprogramming somatic cells into neurons.

Transcription Factor Family Affiliation Role in Neurogenesis, Differentiation,
or Reprogramming References

ASCL1 bHLH family Determination of neuronal subtypes during
neural development. [70]

ATOH1 bHLH family Unknown. [71]

BCL11B

COUP TF1-interacting protein
2 (also known as Ctip2) and

zinc finger-containing
transcriptional repressors

Central to differentiation of medium spiny
neurons and development of the striatum. [72]

BCL2 Anti-apoptotic factor Promotes DNA damage, genetic instability, and
cell proliferation. [33,73,74]

BRCA1 Tumor suppressor protein Involved in BMP-2-mediated reactivation
of Sox2. [51]

BRN2a
Brain-specific

homeobox/POU domain
protein 2

Associated with neuroendocrine function. [6,75,76]

CEND1 Neurogenic protein
Pathways involved in neuronal differentiation by

CEND1 through activation by
NEUROGENIN 1 and 2.

[77]

EBF1 Zinc finger Acting downstream of Ngn, EBF-1 can promote
ectopic neurogenesis. [78,79]

FEZF2 Zinc finger
transcriptional repressor

Fezf2 manipulates the origin, specific
differentiation, and synaptic connectivity of

corticospinal motor neurons by regulating neural
progenitor cell lineage-directed

differentiation signals.

[80]

FOXA2 Forkhead
Expressed in the ventral hindbrain’s serotonergic

progenitor regions and in midbrain
dopaminergic neurons.

[28,81]

FOXG1 Forkhead
Involved in the primitive (anterior)

neuroectoderm during development of
embryonic stem cells.

[82,83]

GATA3 Zinc finger Associated with noradrenergic phenotype and
development of the sympathetic nervous system. [84,85]

GATA4 GATA GATA4 can drive embryonic Sertoli-like
cell differentiation. [86]

HAND2 bHLH family Required for the acquisition of
noradrenergic phenotype. [84,85,87]

ISL2 LIM
homeodomain-containing

Vital to the development and differentiation of
visceral motor neurons in the spinal cord. [78,88]

KLF4 Zinc finger Directly represses p53. [13]

LIN28 RNA binding protein
Lin-28 can shuttle between the nucleus and

cytoplasm and regulate other genes that control
the cell cycle.

[89]

LMO2 Key hematopoietic
transcriptional regulator

Creates a regulatory complex that mediates
transcription of multiple genes in hematopoietic

progenitor cells; it is associated with the
transcriptional control of stem/progenitor cells.

[90,91]

c-Myc Myc Alters expression of many proteins to enhance
proliferation and transformation. [13]

MYT1L Neural zinc finger

Exemplifies a class of neural sequence-specific
transcription factors that actively recruit histone

deacetylases to selected genes during central
nervous system development.

[92,93]

NANOG Divergent homeodomain
protein

NANOG sustains the identity of embryonic stem
cells (ESCs). [94]



Brain Sci. 2023, 13, 524 7 of 25

Table 2. Cont.

Transcription Factor Family Affiliation Role in Neurogenesis, Differentiation,
or Reprogramming References

NEUROD1 bHLH family

Neural differentiation factor essential for
late-stage neurogenesis and important in the

development of the central nervous system, as
well as in the auditory and vestibular systems.

[35,95,96]

NEUROD2 bHLH family Essential for the maturation and survival of
neurons in the central nervous system. [97–99]

NEUROG2 bHLH family NEUROG2 is a key contributor to
early neurogenesis. [67]

NURR1 Nr4a2 (ligand-independent
nuclear receptors)

Essential for the differentiation, maturation, and
maintenance of midbrain dopaminergic neurons. [100,101]

OCT/4
POU5F1, a member of the

POU class of
homeodomain proteins

Central to the transcriptional regulatory
hierarchy that specifies embryonic stem cell

identity during early development.
[102]

OLIG2 Basic helix–loop–helix

Mediates self-renewal in the expansion of
neurosphere cultures and promotes the

generation of neurons and oligodendrocytes
under differentiation conditions.

[103]

PAX6 Paired-box family Critically important in multiple cell types and at
several stages of forebrain development. [104]

PHOX2A Paired homeodomain

Selectively expressed and required for the
specification of ventral motor neurons in the

hindbrain and in the oculomotor nucleus,
located laterally to dopaminergic neurons in the

ventral midbrain.

[105]

Phox2B Paired homeodomain Same as Phox2a. [105]

PTF1A Basic helix–loop–helix
Mostly expressed in

post-mitotic cells, and it specifies terminal cell
fate in neural tissues.

[106]

SOX2 HMG-box
Central to the transcriptional regulatory

hierarchy that specifies embryonic stem cell
identity during early development.

[102]

SOX4 SoxC
Controls the survival of neural precursors and

their differentiated progeny, in redundancy
with SOX11.

[107]

SOX11 SoxC Same as SOX4. [107]
SV40LT SV40 large T gene Unknown. [108]

TLX3 Tlx-class homeobox genes
Tlx3 functions as a post-mitotic selection gene in
the embryonic spinal cord, determining the fate

of dorsal glutamatergic neuronal cells.
[78,109]

ZEB1 Zinc finger E-box-binding
transcription factor

During individual development, Zeb1 plays
a crucial role in the nervous system. It is

upregulated in growing neurons throughout the
central nervous system and is required for the

survival of spinal cord neural stem cells.

[110]

The basic helix–loop–helix protein family of transcription factors includes “proneu-
ronal factors” [111], which play an indispensable role in neuronal commitment and in
identifying neural progenitors. One such proneuronal factor is neurogenin2 (Ngn2), which
controls neuronal development and identity [112]. Ngn2 regulates differentiation into the
glutamatergic neuron phenotype, preventing the formation of γ-aminobutyric acid (GABA)-
ergic neurons [70]. Ngn2 reprograms reactive astrocytes into deep cortical vertebral neurons
that extend to the striatum, thalamus, and spinal cord [33,113,114].

Some of these transcription factors, alone or in combination, can induce non-neuronal
somatic cells to reprogram into neurons. In a mouse model of cerebral infarction, over-
expressed Olig2 and Pax6 reprogrammed glial cells into neurons in situ, as confirmed
by the expression of the neuron-specific marker doublecortin and electrophysiological
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assays [115]. In another study, exogenous Brn2a, Myt1l, and ASCL1 induced mouse em-
bryonic fibroblasts to differentiate into neurons that expressed microtubulin III (TUJ1)
and microtubule-associated protein 2 (MAP2) [75]. POU5F1, SOX2, KLF4, and MYC can
stimulate the development of non-neuronal somatic cells into neurons. One study over-
expressed the transcription factors Oct4, Sox2, Klf4, and c-Myc in murine fibroblasts to
obtain functional neural progenitor cells, which could differentiate into neurons and glial
cells [116].

Hair follicle keratinocytes have been reprogrammed into iPSCs, which differentiate
into neural precursors and, subsequently, into dopaminergic or glutamatergic neurons [32].
Overexpression of OCT3/4, Sox2, Klf4, and Myc in astrocytes led to iPSCs that expressed
stem cell markers and showed potential to differentiate into neurons [117]. These various
transcription factors can work as a complex or alone to reprogram non-neuronal mature
somatic cells into neurons [49,62,118].

MicroRNAs also play an important role in the reprogramming of somatic cells into
neurons. MicroRNAs (miRNAs) are key regulators of gene expression that control numer-
ous cellular and developmental processes in eukaryotes [119]. Within the central nervous
system (CNS), miRNAs play a critical role in the regulation of gene expression patterns
during development [120], and are actively involved in the regulation of neurogenesis
at each stage [121]. Moreover, miRNAs play a fundamental role in the establishment of
specific neuronal phenotypes [122], such as miR-124, which is capable of inducing a neu-
ronal phenotype when overexpressed in embryonic stem cells [123]. Embryonic stem cells
are enriched in miRNA-124, miR-9/9*, and microRNAs 302-367, which can suppress the
neural-gene-specific repressor REST complex, which is essential for the expression of genes
related to neuronal function [26,98].

Researchers have successfully induced the reprogramming of fibroblasts into neurons
using miR-9/9* and miR-124 [72,124], and active astrocytes into neurons in normal and
Alzheimer’s disease models using microRNA-302/367 [26]. However, microRNA-302/367
acts as a mediator and enhances the induction effect of miR-9/9* and miR-124 on fibroblasts,
and may not be sufficient by itself for fibroblast reprogramming [25]. Furthermore, miRNAs
can be used in combination with other methods, such as the combination of miR-9/9* and
miR-124 with transcription factors to induce the reprogramming of fibroblasts from bipolar
disorder patients into neurons [97]. Additionally, miR-124-9-9* has been shown to increase
the efficiency of Ascl1-induced reprogramming of Müller glia into neurons [125]. Taken
together, miRNAs are important players in the reprogramming of somatic cells into neurons,
providing exciting prospects for regenerative medicine research.

Dozens of small compounds have been used as activators or inhibitors of critical
signaling pathways to regulate reprogramming, preserve cellular stability during transdif-
ferentiation, and avoid cell death (Table 3). In 2013, a study revealed that exogenous small
molecules were sufficient to convert mouse somatic cells into pluripotent stem cells [126].
Since then, various research teams have explored hundreds of small molecules for somatic
cell reprogramming, including valproic acid, CHIR99021, repsox, forskolin, SP600125,
GO6983, and Y-27632 [54]. Combinations of small molecules such as these can induce the
transdifferentiation of fibroblasts, astrocytes, and glioblastomas into neurons [54,127,128].

Table 3. List of small molecules commonly used for reprogramming somatic cells into neurons and
differentiating them during their maturation.

Small Molecule Description References

616452 Repsox, an ALK5 inhibitor. [129]
17-allylaminogeldanamycin GSK3 inhibitor. [129]

A83-01 ALK4/5/7 inhibitor. [38,130,131]
All-trans retinoic acid Physiologically active metabolite of vitamin A. [53,132,133]

AM580 Retinoic acid agonist, stable benzoic derivative of
retinoic acid. [129,134]
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Table 3. Cont.

Small Molecule Description References

Apicidin HDAC inhibitor. [51]
Azacytidine Nucleic acid synthesis inhibitor. [135]
Blebbistatin NMII inhibitor. [136]

Bradykinin Bradykinin plays a role in neural fate determination and
facilitates neurogenesis and migration. [137]

CH55 Synthetic stable analog of retinoic acid. [138]
CHIR99021 GSK3 inhibitor. [129]

CpdE Notch signaling pathway inhibitor. [139]
DAPT Inhibits γ-secretase and Notch signaling. [53,140]
DMH1 BMP type I receptor inhibitor. [139]

Dorsomorphin Inhibitor of AMP-activated protein kinase and bone
morphogenetic protein type 1 receptor. [67]

DZNep Histone methylation inhibitor. [141]
EPZ004777 Dot1l inhibitor. [138,142]
Forskolin cAMP agonist. [129]

GSK3β inhibitor
Glycogen synthase kinase-3β boosts the production of
neuroprotective and neurotrophic factors in the context

of spinal cord injury.
[143]

GO6983 PKC inhibitor. [54,144]
Hh-Ag1.5 Unknown. [131]
I-BET 151 BET family bromodomain inhibitor. [145]

Insulin–transferrin–selenium Insulin, transferring, and sodium selenium compound. [135]

Isoxazole Isoxazole is able to upregulate proneural marker genes
and exhibit regulation of stem cells. [41]

ISX9
Induces neuronal differentiation through myocyte

enhancer factor 2 (Mef2), which is a vital pathway for
neural differentiation and maturation.

[128]

Kenpaullone GSK-3β inhibitor. [146]

LDN193189
Inhibitor of bone morphogenetic protein type I receptors

ALK2 and ALK3, used to suppress specification of
mesoderm and endoderm.

[147]

LIF Leukemia inhibitory factor. [148,149]
LM-22A4 Growth factor. [150]

Mercaptoethanol Unknown. [148]
MS-275 Benzamide. [51]

Niclosamide Wnt signaling inhibitor. [34]
Noggin SMAD inhibitor. [151]

NT3 Unknown. [150]

P7C3-A20 May stimulate NAMPT-relevant pathways to
exert neurogenesis. [24]

Parnate Lysine-specific demethylase 1 inhibitor. [24]
PD0325901 Mitogen-activated protein kinase inhibitor. [24]

PS48 PDK1 activator. [152]
Purmorphamine Activator of the Shh signaling pathway. [153]

Quercetin PI3K signaling inhibitor. [34]
QVD-OPH Caspase inhibitor. [144]

Repsox Transforming growth factor-β inhibitor. [154]

Retinoic acid Induces neurogenesis and neuronal differentiation by
activating retinoic acid receptors. [38]

RG108 DNA methyltransferase inhibitor that is less toxic to
cells than parnate. [24]

Ruxolitinib Selective JAK1/2 inhibitor. [155]
SB203580 P38 MARK inhibitor. [145,155]
SB43152 Unknown. [153]

SB431542 Inhibits TGF-β type I receptors ALK4, ALK5, and ALK7. [30,147]
SB4352 Transforming growth factor-beta inhibitor [36]
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Table 3. Cont.

Small Molecule Description References

SMER28
SMER28 shows neurotrophic and neuroprotective
effects by inducing neurite growth and protecting
against excitotoxin-induced axonal degeneration.

[156,157]

Smoothened agonist
Alone or in concert with other molecules, smoothened
agonist stimulates proliferation of primary neuronal

precursor cells.
[158,159]

Sodium butyrate HDAC inhibitor, causes hyperacetylation of histones. [38]

Sonic hedgehog (SHH) Required for the development of dopaminergic neurons
in multiple locations along the anterior neural tube. [160,161]

SP600125 1,9-pyrazoloanthrone, JNK inhibitor. [162]
SP600625 JNK inhibitor. [144]
TD114-2 GSK3-beta inhibitor, preferred over CHIR99021. [138]

Transforming growth factor beta 3 Required for the induction, differentiation, and survival
of midbrain dopaminergic neurons. [163]

Thiazovivin Unknown. [164]
Tranylcypromine Lysine-specific histone demethylase LSD1 inhibitor. [141]

Trichostatin A Histone deacetylase inhibitor. [165]

TTNPB Agonist of retinoic acid receptors, which play
an important role in neural differentiation. [164]

Valproic acid Inhibits histone deacetylase activity. [166]
Vitamin C Prevents cell death. [144]

Y-27632 Rho-associated protein kinase inhibitor. [162]

Abbreviations: ALK: Anaplastic lymphoma kinase; GSK: glycogen synthase kinase; NMII: Nonmuscle myosin
II; BMP: Bone morphogenetic protein; AMP: Adenosine monophosphate; Dot1l: Known as KMT4L; cAMP:
Cyclic adenosine monophosphate; PKC: Protein Kinase C; BET family: Bromodomain and extra-terminal domain
family; SMAD: small mother against decapentaplegic; NAMPT: Nicotinamide phosphoribosyltransferase; PDK1:
3-phosphoinositide-dependent kinase 1; PI3K: Phosphoinositide 3-kinase; JAK1/2: Janus kinases 1/2; MARK:
Microtubule-affinity regulating kinases; TGF: Transforming growth factor; HDAC: Histone deacetylase; JNK:
c-Jun N-terminal kinase; LSD1: Lysine-specific histone demethylase 1.

Transcription factors, microRNAs, and small molecules can be used individually or in
combination to induce cellular reprogramming. When used together, they complement each
other and increase efficiency of the reprogramming process. This is partly due to the ability
of transcription factors to bind microRNAs [72] and small molecules [67]. For example,
cells can undergo early stages of reprogramming by overexpressing transcription factors or
adding microRNAs. The reprogrammed cells can then be induced to mature through the
addition of valproic acid, forskolin, vitamin C, and BDNF [16,30]. Small molecules can also
enhance reprogramming by modifying DNA or histone structure [164].

We have listed the technical approaches to reprogram somatic cells into neurons above,
but these induction factors still need to be ideal. What we require is a method that is
simpler, more efficient, safe, and clinically applicable. The current approach may still be in
its infancy.

5. Molecular Mechanisms of Somatic Cell Transdifferentiation into Neurons

Cells are significantly transformed in all aspects of the reprogramming process, in-
cluding changes in DNA plasticity, transcriptome, and energy usage. DNA plasticity
refers to how inducing factors cause chromatin and gene expression to change over time.
During reprogramming, there is also a dramatic change in the transcriptome. Genes re-
lated to the original somatic cell phenotype are downregulated, while genes related to the
neural type are upregulated. Moreover, the energy process changes from glycolysis to
aerobic oxidation, in which an induced neuron can exercise normal neurological function.
A deeper understanding of these mechanisms can help us improve the efficiency of somatic
reprogramming and prevent potential harm to the cells. A growing body of literature has
explored the roles of changes in chromatin, transcription, translation, and metabolism in
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somatic reprogramming. Analysis of cell-specific markers and phenotypes has revealed
three levels of change that may explain cellular transdifferentiation [67].

The first level is DNA plasticity. When cells are adequately triggered, such as in
microglia overexpressing the transcription factor NeuroD1, DNA is dynamic [167], with
changes in the accessibility of chromatin [42]. The expression of genes linked to neurons is
upregulated, while motifs linked to the initial somatic cell phenotype are downregulated,
as revealed by extensive RNA sequencing [147,168].

Even in mature, highly differentiated somatic cells, chromatin is not immutable, as
demonstrated by the cloning of Dolly the sheep, macaques, and salamanders [10,169,170].
Mature somatic cell chromatin can be activated and altered to express specific genes.
When somatic cells are reprogrammed, chromatin undergoes DNA methylation [171]
and demethylation [172], which upregulates neurogenesis-related gene expression. One
study found that demethylation of H3K9me3 in chromatin improved somatic cell nu-
clear transfer and promoted cellular reprogramming in mice and humans [173]. Direct
fibroblast-to-neuron reprogramming involves DNA methylation remodeling; changes in
DNA methylation inhibit fibroblasts’ myogenic program and promote activation of neu-
ronal genes [171]. Genetic epistasis studies with H3K9 methyltransferase suggest that this
chromatin change restricts plasticity by acting downstream of the end selector. Terminal se-
lectors activate identity-specific genes and reduce the accessibility of non-identity-defining
genes, balancing identity specification with cellular plasticity [174].

Secondly, emerging technologies such as RNA and single-cell sequencing support
the idea that somatic cell reprogramming alters the transcriptome, such as in the case of
glial cells [147] and fibroblasts [175]. Overall, genes related to maintaining the original
somatic phenotype are downregulated during cell reprogramming, while genes associated
with pluripotent stem cells, neuronal progenitors, or neuronal phenotypes are upregulated.
For example, ASCL1 expression alters Müller cell chromatin and temporarily activates
progenitor gene expression while suppressing glial cell gene expression, inducing Müller
glia-derived progenitor cells to become neurons [49]. Ectopic expression of the neuronal
transcription factor NeuroD1 causes rapid transcriptome changes during the astrocyte-to-
neuron transition [176]. The shift toward a neuronal identity has been linked to changes in
signaling pathways involving Notch and p21/p53 pathways [147,177]; indeed, inhibition
of p53 or p21 increases production of induced adult neuroblasts from glial cells [177].

Third, during transdifferentiation, energy metabolism switches from glycolysis to
aerobic oxidation. Other somatic cells, such as astrocytes, fibroblasts, brain stem cells, or
progenitor cells, depend more on β-oxidation and anaerobic glycolysis for energy than
neurons, which depend primarily on oxidative metabolism [178,179]. Furthermore, neuri-
togenesis can be enhanced by increasing the mitochondrial membrane potential, polarizing
the mitochondria, and decreasing the reliance on glycolysis [180]. Because ATP generation
is required for synaptic activity, neuronal activity strongly depends on normal functioning
of neuronal mitochondria and energy metabolism [181,182]. As a result, one of the most
visible aspects of the transdifferentiation process is the abrupt change in metabolism [33].
Cells surviving the severe energy change during reprogramming are candidates for becom-
ing neurons [33]. At the same time, a dramatic energy shift and a significant accumulation
of reactive oxygen species can harm cells and cause ferroptosis [33]. Therefore, a more
in-depth study of metabolic shifts in successfully reprogramed somatic cells and explo-
ration of ways to promote successful energy conversion and inhibit ferroptosis can improve
reprogramming efficiency [33].

The central mechanism for reprogramming somatic cells into neurons is a phenotypic
shift involving intracellular changes that should, in theory, be extensive. In addition to
what we have shown above, other unknown mechanisms require more profound and
advanced exploration methods.
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6. Somatic Cell Transdifferentiation Provides New Possibilities for Research and
Treatment of Neurological Disease

By reprogramming the somatic cells involved in neurological diseases, scientists can
learn more about diseases and develop new treatment methods. This entails transforming
somatic cells from patients with various genetic or age-related neurological diseases into
neurons that retain the patient’s chromosomal mutations and display disease symptoms.
In vitro disease modeling with induced neurons assists researchers in determining disease
causes. In addition, researchers are investigating the possibility of reprogramming to
reconstruct damaged neural networks and enhance the neural function of animals. Trans-
forming induced neural stem cells into the mouse brain improved axonal regeneration,
motor function, and electrophysiological activity. It has significant implications for the
treatment of numerous diseases.

Somatic cell reprogramming for neurological disease research allows access to elu-
sive tissues, facilitating investigations into disease mechanisms and novel interventions.
For instance, somatic cells procured from patients afflicted with a range of genetic and age-
related neurological disorders can be induced to differentiate into neurons. These induced
neurons, which retain the patient’s chromosomal mutations [183] or display characteristics
such as epilepsy-like hyperactivity [184] and defective neural networks in patients with
autism [185,186], enable investigations into the underlying mechanisms of the diseases.
Furthermore, motor neurons induced directly from fibroblasts taken from elderly patients
exhibit age-related characteristics [187], making them an exceptional model for investigat-
ing late-stage motor neuron diseases. In vitro modeling is valuable for examining disease
mechanisms, drug screening, and toxicity testing in patients with neurological disorders.

The induction of neurons holds potential for the treatment of neurological diseases.
Research teams are using methods such as cell transplantation or in vivo reprogramming
to reconstruct damaged neural networks and improve animal neural function. Corti et al.
transplanted neural stem cells obtained from in vitro reprogramming of somatic cells into
the mouse brain, which successfully integrated into the local brain cortex [94]. The trans-
planted induced neural stem cells could differentiate into all neural lineages and restore
axonal regeneration in a spinal cord injury (SCI) model [188]. It was discovered that iNSC
transplantation could promote motor function and electrophysiological activity recovery,
as confirmed by functional evaluation. The use of somatic cell reprogramming has signifi-
cant implications for treating a range of diseases, including neurodegenerative diseases,
neurological disorders, and psychiatric conditions [18,20,35,95]. We have summarized the
research on somatic cell reprogramming to become neurons for neurodegenerative diseases,
neurological diseases, and psychiatric diseases in Table 4.

Table 4. List of neurodegenerative, neurological and psychiatric diseases where models based on
reprogramming somatic cells into neurons have been used.

Disease Applications/Results of Neuronal Reprogramming Reference

Dravet syndrome

Fibroblasts derived from controls and patients were
differentiated into neurons. Epilepsy-specific

iPSC-derived neurons are helpful for modeling
epilepsy-like hyperactivity.

[184]

MT-ATP6 Skin fibroblast reprogramming and iPSCs can model
disease caused by the MT-ATP6 mutation. [189]

Alzheimer’s disease
Small molecules induce the reprogramming of patient
fibroblasts into neurons for personalized modeling of

neurological disease.
[54]

Fragile X syndrome Fibroblasts from patients can be induced into iPSC lines to
enable in vitro modeling of the human disease. [190]
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Table 4. Cont.

Disease Applications/Results of Neuronal Reprogramming Reference

Multiple sclerosis iPSCs from peripheral blood mononuclear cells can be
used to model multiple sclerosis. [191]

Glioblastoma multiforme

Isoxazole acts as a stem cell modulator to trigger neuronal
gene expression and block tumor cell proliferation, which

may guide research into reprogramming as
an antitumor strategy.

[41]

Frontotemporal dementia, amyotrophic
lateral sclerosis

Fibroblasts were isolated from patients’ skin to generate
induced pluripotent stem cells to investigate the

pathological mechanisms underlying frontotemporal
dementia or amyotrophic lateral sclerosis.

[192]

Huntington’s disease Stable HD-iPS cell lines have been established to
investigate disease mechanisms. [193]

Schizophrenia

The authors directly reprogrammed fibroblasts/hair
follicle-derived cells from schizophrenia patients into
iPSCs, which they differentiated into neurons. These

neurons were then studied for disease pathology.

[32,194]

Spinal cord injury
NOTCH1 signaling regulates the latent neurogenic

program in adult reactive astrocytes after spinal
cord injury.

[195]

Amyotrophic lateral sclerosis
Peripheral blood cells from an ALS patient carrying the

TARDBP p.A382T mutation were reprogrammed
into iPSCs.

[30]

Stroke Overexpression of Ascl1 can convert astrocytes from the
subventricular zone into neurons in vivo after stroke. [8]

Parkinson’s disease

Fibroblasts were taken from the pathology biopsies of
Parkinson’s disease patients and encouraged to develop
into dopaminergic neurons, which can be used for future
studies into the mechanistic underpinnings of the disease.

[151]

Rett syndrome

Overexpressing reprogramming factors in Rett syndrome
fibroblasts generated iPSCs, which differentiated into

neurons with a neuronal maturation phenotype similar to
that of the clinical syndrome.

[196]

Neurodevelopmental disorders

Human hair follicle-derived iPSCs can be differentiated
into various neural lineages. This experimental system

provides an in vitro model to study normal and
pathological neural development without the need for

skin biopsies.

[197]

Ageing
Directly converted astrocytes retain the ageing features of

the donor fibroblasts and clarify the astrocytic
contribution to human CNS health and disease.

[198]

Bipolar disorder
Human fibroblasts can be reprogrammed into induced
neurons or iPSCs, then differentiated into neurons for

mechanistic studies of the disease.
[97]

Pain

Transcription factors can transform mouse and human
fibroblasts into noxious-stimulus-detecting (injury

receptor) neurons, which displayed TrpV1-mediated
sensitization to inflammation.

[78]

Demyelinating diseases

Exposing mouse embryonic fibroblasts to chemical
conditions could induce their differentiation into OPC-like

cells, which may serve as a therapeutic strategy for
treating demyelinating diseases.

[131]

Mitochondrial DNA mutations
This work generated stem cells from patients carrying the
most common human disease mutation in mitochondrial

DNA, m.3243A>G (MELAS).
[183]
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Table 4. Cont.

Disease Applications/Results of Neuronal Reprogramming Reference

Autism spectrum disorders

Fibroblasts from patients can be reprogrammed into
neurons with fewer excitatory synapses, a faulty neural

network phenotype, or a synaptic phenotype comparable
to that induced by autism-associated neuroligand

protein-3 mutations, confirming the use of induced
neuronal cells for disease modeling.

[185,186]

Abbreviations: iPSC: induced pluripotent stem cell; MT-ATP6: mitochondrial ATP synthase subunit 6 gene; HD:
Huntington’s disease; ALS: amyotrophic lateral sclerosis; TARDBP: Transactive response DNA binding protein;
CNS: Central Nervous System; TrpV1: transient receptor potential vanilloid-1 channel; OPC: oligodendrocyte
progenitor cells; MELAS: mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS)
syndrome; iN: induced neuronal cells.

The reprogramming of somatic cells into neurons holds significant potential for the
treatment of neurological diseases, with focus on disease processes and therapeutic appli-
cations. This approach can advance our understanding of disease development and and
facilitate relevant drug screening and testing. There will still be gaps in treatment due to
unresolved risks and safety issues. As a result, treatment is still in the animal model stage.

7. Limitations of Neural Reprogramming

Reprogramming somatic cells into neurons has the potential to be beneficial. However,
limitations and risks cannot be overlooked, such as low efficiency, immune rejection, genetic
mutations, tumorigenicity, and potentially unknown risks. The reprogramming process
varies in efficiency, with reported rates ranging from as low as 0.01% [193] to as high as
90% [199]. The attainment of sufficient neuron numbers requires careful consideration of
multiple factors, including cell type and reprogramming technique. Another limitation
and danger of somatic cell reprogramming is the potential for immunological rejection,
as reprogrammed cells may be viewed as foreign by the immune system. Even induced
pluripotent stem cells (iPSCs) derived from host mice can elicit immunological rejection
and cause teratomas when transplanted into animals [200]. The immunogenicity of iPSCs
is attributed to genetic and epigenetic defects, which warrants caution.

The long-term stability of generated neurons is also a concern, as cells must main-
tain normal physiological function after reprogramming. However, concerns remain
about the quality and durability of generated neurons, limiting the potential of somatic
cell reprogramming.

Safety is the most critical issue in somatic cell reprogramming due to the potential risks.
During reprogramming, genetic mutations may occur as a result of random integration
of viral gene segments carried by retroviruses or lentiviruses into host cells, leading to
alterations of essential host cell genes that may cause deleterious consequences or even
cell death [201–203]. Uncontrolled proliferation and differentiation during reprogramming
may result in tumor growth, while unanticipated genomic changes during gene editing can
lead to the formation of malignant tumors [204]. The retroviruses used by Yamanaka carry
a potential cancer risk, as they can fuse with the DNA of host cells. Furthermore, the Myc
gene, one of Yamanaka’s four reprogramming factors, is an oncogene [205,206].

The safety risks associated with therapeutic somatic cell reprogramming persist, requir-
ing further research to bridge the gap between laboratory research and clinical application.
Improving the safety and reliability of the technology should be a primary focus of future
research to protect human health while facilitating practical use. Given the significant
obstacles, it is clear that there are substantial hurdles to overcome before this approach can
be employed at the bedside.

8. Discussion

Reprogramming somatic cells into neurons has emerged as a prominent field of re-
search over the past 20 years. This breakthrough has not only highlighted the plasticity of
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somatic cells but also opened up new possibilities for research and therapy in regenerative
medicine. A wide range of somatic cells, including fibroblasts [24], astrocytes [26], peri-
cytes [27], peripheral blood mononuclear cells [30], T lymphocytes [29], hepatocytes [31],
and other cells, can now be transformed into neurons. With the refinement and stan-
dardization of techniques, the means to achieve this transformation are becoming more
sophisticated and standardized. Several factors, such as transcription factors [13], mi-
croRNA [72,124], and a combination of different small chemical molecules [54], have been
shown to induce the reprogramming of somatic cells into neurons. These methods, when
combined, can further enhance reprogramming efficiency and stabilize induced neuronal
cell stability.

During the reprogramming process, some somatic cells reprogrammed into neurons
may undergo cellular pluripotency, reversing their differentiation from somatic cells to
induced pluripotent stem cells or neural stem cells, followed by induced differentiation
and maturation. This process gradually allows induced pluripotent stem cells or neural
stem cells to differentiate and mature, acquiring neuron-associated phenotypes, neuron-
like morphology, electrophysiological functions, and neuron-associated markers [51,57].
On the other hand, some somatic cells do not undergo pluripotency in response to inducing
factors, instead undergoing direct reprogramming into another phenotypically distinct
neuronal cell [64]. This process is also known as transdifferentiation. The reprogramming
of somatic cells into neurons is a promising area of research that has demonstrated the
potential of somatic cells in regenerative medicine. With the refinement and standardization
of reprogramming techniques, this field holds great promise for future advances in the field
of neuroscience research and regenerative medicine.

Many studies have primarily focused on the reprogramming of adult cells into neurons,
yet the physiological and biochemical mechanisms involved in this process remain largely
unknown. In this review, we aimed to integrate several studies in the literature and to
provide a comprehensive summary of the mechanisms involved in reprogramming at
three levels of physiological and biochemical processes. Firstly, at the chromatin level,
the reprogramming process involves changes to the epigenetic landscape of somatic cells.
These alterations affect the accessibility of reprogramming techniques [67], leading to
changes in gene expression patterns. Secondly, the overall transcriptome level of somatic
cells shifts towards a neuronal identity [204], characterized by the upregulation of genes
associated with the neuronal phenotype and the downregulation of genes related to the
original cell phenotype. Finally, at the metabolic level, the reprogramming process requires
significant changes to cellular metabolism to meet the high energy demands of neuronal
cells [33]. The reprogramming of somatic cells into neurons is a complex process that
involves physiological and biochemical processes at multiple levels. Our review sheds
light on the fundamental mechanisms underlying this process and may pave the way for
future advancements in regenerative medicine and neuroscience.

The technique of reprogramming somatic cells into neurons is now a well-established
and feasible method. This process allows us to have a more sustainable source of research
material for studying neurological diseases. Moreover, several studies have been conducted
on the in vitro reprogramming of neurons to establish disease models for various neurolog-
ical disorders, such as ALS [181]. In animal models, cell transplantation therapy has been
shown to effectively restore damaged neurological function [207].

While the field of somatic cell reprogramming for neurons is rapidly advancing, it is
essential to acknowledge that this process also poses risks and challenges. Issues such as
tumor formation, immunological rejection, cellular stability, the highly variable efficiency
of reprogramming, and the ability of reprogrammed neuronal cells to integrate into local
networks and function correctly are all critical factors that require our attention [5].

As previously mentioned, reprogramming adult cells into neurons involves the over-
expression of a neural transcription factor in adult cells using a viral vector carrying the
target gene, which is then expressed after viral infection of the host cell. The target gene
is integrated into the chromatin of the host cell, and random mutations in the chromatin
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of the somatic cell can occur [201–203]. Sometimes, the cell may even die outright if the
mutation occurs at a binding site. The induction of chemical molecules in a manner that
does not involve gene insertion can also have toxic effects [37].

Reducing the risks and concerns associated with somatic cell reprogramming is neces-
sary. To achieve this, it is essential to continue to improve and standardize the reprogram-
ming process to make it as safe and efficient as possible. Additionally, further research is
needed to better understand the underlying mechanisms of reprogramming and the factors
that influence its effectiveness.

While reprogramming somatic cells into neurons holds great promise for advancing
our understanding and treatment of neurological diseases, we must remain vigilant of the
potential risks and challenges associated with this technique. By continuing to refine our
methods and understanding the underlying mechanisms involved, we can ensure this tech-
nology’s safe and practical application in the clinic. Therefore, non-integrating approaches
for somatic cell reprogramming have been proposed to address these issues. Various meth-
ods have been suggested, such as using a plasmid to construct the overexpressed gene and
introducing it into the somatic cell via electroporation to achieve overexpression. Gotz’s
research team has made significant progress in somatic cell reprogramming by using the
CRISPR-Cas9 system to facilitate gene overexpression while avoiding the introduction of
random mutations during cell reprogramming [208].

Furthermore, inducing pluripotency in somatic cells before differentiation into neurons
may lead to the overexpression of genes associated with tumor formation and uncontrolled
cellular proliferation. Additionally, the transcription factor c-MYC, commonly used in
pluripotency induction, is inherently tumorigenic and closely linked to tumor formation
and invasion [205,206]. Hence, it is essential to carefully select reprogramming factors
to ensure successful and efficient induction and develop more advanced monitoring and
control tools to establish the basis for future clinical applications of somatic reprogramming.
In addition, further animal models and mechanistic studies are necessary to apply this
tool in the clinical setting. Several research teams are currently using non-human primates
to establish studies related to somatic reprogramming [209]. Non-human primates are
the animals closest to humans regarding physiology, biochemistry, and metabolism, and
strengthening animal studies is necessary to translate research into the clinic.

Reprogramming somatic cells into neurons has opened up an innovative and promis-
ing avenue for developing cell-based therapies for neurological diseases. This method
could overcome the limitations of conventional treatments and provide a more effective
and targeted approach to treating neurological disorders. Furthermore, the ability to gener-
ate patient-specific neurons through reprogramming could improve our understanding
of the underlying mechanisms of neurological diseases and facilitate the development
of personalized treatments. Reprogramming somatic cells into neurons is valuable for
investigating and treating neurological diseases. With continued advancements in cellular
reprogramming, we hope for significant progress in developing novel treatments and
therapies for various neurological disorders.

Therefore, current research confirms that applying this technology to clinical treatment
still has a long way to go. We need to develop safer, more stable, more effective, and more
precise reprogramming tools and more sensitive detection and control of reprogramming
techniques. The ultimate goal of reprogramming somatic cells into neurons is to obtain
enough neurons to replace the neurons lost in the nervous system for various reasons.
Obtaining sufficient neurons and ensuring newborn neurons correctly integrate into the
local neural network after reprogramming to function appropriately for an extended period
through precise and controlled reprogramming are the critical factors in applying neural
reprogramming techniques in the clinical treatment of patients.

9. Conclusions

Somatic reprogramming has demonstrated promise in neuroregeneration and the
study of neurological disorders. Small molecules and transcription factors have the ability
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to transform cells into neurons, which can then be used to model diseases, test drugs,
and rebuild neural networks. Nonetheless, the complex environment in vivo can result in
a variety of outcomes, and there is insufficient information about the safety of gene vectors
in animals or humans. These are issues that must be addressed. More research is needed to
improve how reprogramming for neuronal regeneration works and what it can be used
for. Millions of patients around the world could benefit from more intelligent and better
therapies if the many paradoxes in somatic cell reprogramming can be resolved.
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