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Abstract: Recent studies have proposed valid precision models and valid Research and Diagnostic
Algorithmic Rules (RADAR) for recurrent major depressive disorder (MDD). The aim of the current
study was to construct precision models and RADAR scores in patients experiencing first-episode
MDD and to examine whether adverse childhood experiences (ACE) and negative life events (NLE)
are associated with suicidal behaviors (SB), cognitive impairment, and phenome RADAR scores.
This study recruited 90 patients with major depressive disorder (MDD) in an acute phase, of whom
71 showed a first-episode MDD (FEM), and 40 controls. We constructed RADAR scores for ACE;
NLE encountered in the last year; SB; and severity of depression, anxiety, chronic fatigue, and physio-
somatic symptoms using the Hamilton Depression and Anxiety Rating Scales and the FibroFatigue
scale. The partial least squares analysis showed that in FEM, one latent vector (labeled the phenome
of FEM) could be extracted from depressive, anxiety, fatigue, physiosomatic, melancholia, and in-
somnia symptoms, SB, and cognitive impairments. The latter were conceptualized as a latent vector
extracted from the Verbal Fluency Test, the Mini-Mental State Examination, and ratings of memory
and judgement, indicating a generalized cognitive decline (G-CoDe). We found that 60.8% of the
variance in the FEM phenome was explained by the cumulative effects of NLE and ACE, in particular
emotional neglect and, to a lesser extent, physical abuse. In conclusion, the RADAR scores and plots
constructed here should be used in research and clinical settings, rather than the binary diagnosis of
MDD based on the DSM-5 or ICD.

Keywords: psychiatry; mood disorders; major depression; neuroimmune; oxidative stress; precision
medicine models

1. Introduction

Recent research has shown that there are no valid models of major depressive disorder
(MDD) and that there is no replicable and cross-validated model that can be used as an out-
come variable in biomarker research [1,2]. When discussing depression, it seems as though
psychiatrists cannot understand one another and speak different languages. Different con-
cepts of models (from folk psychology to molecular psychiatry) and subtypes or subclasses
(MDD, melancholia, recurrent depressive disorder, dysthymia, double depression, reactive
depression, vital depression, and treatment-resistant depression) rule in chaos [1,3]. As a
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result, research on MDD is plagued by severe noise, resulting in a cacophony of models,
labels, and subtypes without a solid consensus among psychiatrists.

In addition, folk psychologists and sociologists ascertain that depression is a “bound-
ary experience” and that “psychiatry transformed normal sorrow into depressive disor-
der and contributed to the medicalization of feeling blue, grieving, demoralization, and
sadness” [4–7]. Consequently, in psychiatric research, severe medical phenotypes and
common emotional distress responses are grouped together, resulting in an entirely het-
erogeneous MDD study population [1,3]. The Western gold standard to diagnose MDD
using either the DSM [8] or ICD [9] criteria exacerbates this chaos [1,3]. Indeed, the DSM
and ICD definitions of mood disorders lack psychiatrists’ consensus, are unreliable, and
are invalid, leading to misdiagnoses and misclassifications [1,2]. In addition, the top-down
dogmatism of the DSM/ICD definitions precludes inductive (because it is top-down) and
deductive (because the criteria are indisputable unless the dispute is made by the same
group of professionals) reworking of the criteria [1]. As a result, their use as an explanatory
variable in statistical analyses is not only conceptually flawed but also results in a multitude
of errors and inaccurate conclusions [1,3].

Recently, we have created a new supervised and unsupervised machine learning
clinimetric approach called “precision nomothetic psychiatry”, which allows us to build
new pathway phenotypes and endophenotype classes [1–3,10–12]. With the help of those
methods, we are able to develop (i) bottom-up, data-driven nomothetic psychiatry models
of MDD, and (ii) new pathway phenotypes of MDD in the form of phenome (the symp-
tomatome of MDD) scores and a recurrence of illness (ROI) index, based on the recurrence of
lifetime suicidal ideation (SI) and attempts (SA) and depressive episodes [1–3,10–12]. Pre-
vious studies by our team have established that adverse childhood experiences (ACE)
are causal factors in ROI, the phenome, and lifetime and current suicidal behaviors
(SB) [1,2,13,14]. While genetics and adverse outcome pathways play a key role in the
development of MDD, ACE and negative life events (NLE) in the year before the onset of
depression also contribute to MDD [13–16].

Recently, we also provided algorithms for computing Research and Diagnostic Algo-
rithmic Rule (RADAR) scores for ACE, ROI, lifetime and current SB, phenome scores, and
lifetime trajectory (which is a composite of ACE, ROI, SB, and phenome scores) of mood
disorder patients [3,17]. We showed how to plot all of these different features of depression
as RADAR scores in a two-dimensional RADAR or spider graph, whereby a patient’s
data can be visualized, much like a fingerprint, which aids in quickly evaluating the pa-
tient’s features [3,17]. By consolidating multiple RADAR scores into one simple graph, our
method demonstrates how simplistic and minimal the DSM-5 and ICD diagnoses really are
by reducing all features into an unreliable, binary MDD diagnosis. Specifically, we argued
that clinicians and psychiatric researchers should always use the derived RADAR scores
reflecting ACE, ROI, SB, neurocognitive, phenome scores, and lifetime trajectory scores,
rather than relying on invalid binary diagnoses [3,17]. ROI is the most important factor
in this precision model because it determines the severity of current SB and the phenome
in both the acute and partially remitted phases of depression [1,11,18]. Our model was
developed using Brazilian and Thai patients in the acute and remission phases of recurrent
depression and patients who showed a wide range of ROI scores. Open questions include
whether NLE and ACE increase the risk of developing new-onset MDD and whether our
nomothetic model and RADAR scores can be computed for first-episode MDD in other
countries and cultures.

Hence, this study was carried out to ascertain (a) whether a valid nomothetic model
and valid RADAR scores (excluding ROI scores) can be computed in Iraqi patients experi-
encing their first depressive episode; (b) whether the combined effects of ACE and NLE
increase vulnerability to new-onset depression; and (c) whether there are any differences in
RADAR scores between first- and second-episode MDD.
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2. Methods
2.1. Participants

In the present case–control study, 98 consecutively admitted patients with a major
depressive disorder (MDD) were recruited between February 2021 and March 2022 at the
psychiatric unit of Al-Hakeem Hospital in the Al-Najaf region, Iraq. Due to the exclusion
criteria, eight of these patients were excluded (six patients due to comorbidities, including
type 1 diabetes mellitus and chronic kidney disease, and 2 patients withdrew). A senior
psychiatrist diagnosed MDD based on the DSM-5 [8] criteria and selected 71 patients
with MDD, more specifically first-episode MDD that was moderate or severe without
psychotic symptoms, and 19 individuals with recurrent (two episodes) MDD that was
moderate or severe without psychotic features. The primary focus of the current study
was to build a nomothetic model and construct RADAR scores and graphs in first-episode
patients. A secondary aim was to compare the RADAR scores among first-episode and
second-episode patients. All patients with MDD were in the acute phase of the disease,
and none exhibited complete or partial remission. The mean (SD) duration of illness for
patients with first episode of MDD was 2.5 (±0.3) months. A total of 27 of the 71 first-
episode patients were drug naive, whereas the other patients received medication for at
least 3 weeks: 42 patients were given fluoxetine, 10 were given amitriptyline, 8 were given
escitalopram, 12 were given mirtazapine, and 9 were given olanzapine. The same senior
psychiatrist also recruited forty apparently healthy controls from the same catchment area
among medical staff or their friends and the patients’ friends. The patients and controls
were excluded if they had any other DSM-5 axis-1 disorders, such as autism spectrum
disorders; dysthymia; schizophrenia; bipolar disorder; substance use disorders, except
for tobacco use disorder (TUD); major anxiety disorders, including generalized anxiety
disorder and panic disorder; post-traumatic stress disorder; and obsessive–compulsive
disorder. In addition, the controls with a lifetime diagnosis of MDD or a family history
of depression, bipolar disorder, substance use disorders, or psychosis were excluded. We
also excluded pregnant and lactating women and subjects with (a) neurodegenerative or
neuroinflammatory disorders, including stroke, multiple sclerosis, Parkinson’s disease,
and Alzheimer’s disease; (b) chronic liver and kidney disorders; and (c) (auto)immune
diseases, including psoriasis, rheumatoid arthritis, inflammatory bowel disease, cancer,
type 1 diabetes, scleroderma, moderate and critical COVID-19, and rheumatoid arthritis.
In addition, subjects treated with immunosuppressive or immunomodulatory drugs or
therapeutic doses of antioxidants or omega-3 supplements were ineligible for participation.

2.2. Measurements

The senior psychiatrist conducting the study collected demographic (marital, occu-
pational, and educational) and clinical data (duration of the index episode, age of onset,
and prior COVID infection and severity of infection) using a semi-structured interview. He
utilized the DSM-5 diagnostic criteria [8] to identify MDD patients and exclude those with
other axis-1 diseases. We assessed ACE using the Adverse Childhood Experience (ACE)
Questionnaire [19], which assesses 10 major abuse, neglect, and household dysfunction
domains as present or not present, including ACEQ1: emotional abuse; ACEQ2: physical
abuse; ACEQ3: sexual abuse; ACEQ4: emotional neglect; ACEQ5: physical neglect; ACEQ6:
divorce; ACEQ7: violent behavior; ACEQ8: substance abuse; ACEQ9: mental illness; and
ACEQ10: incarcerated relative. Negative life events (NLE) in the year prior to the onset of
depression were assessed using the Negative Life Events scale [20], and we considered the
following items to be relevant: serious accidents, death of a family member or close relative,
divorce or separation, seeing fights, abuse or violent crime, trouble with the police, and
a member of the family sent to jail. Suicidal behaviors were assessed using two items of
the Columbia Suicide Severity Rating Scale: frequency of suicidal ideation and frequency
of suicidal attempts (C-SSRS) [21]. Cognitive functioning was assessed using the Verbal
Fluency Test (VFT) [22] to assess word fluency and semantic memory; the Mini-Mental
State Examination (MMSE) [23]; and the Clinical Dementia Rating (CDR) scale [24], which
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assesses six domains on a 0–3 point scale, including memory, orientation, judgement and
problem solving, community affairs, home and hobbies, and personal care. Nevertheless,
we did not use the CDR as proposed by Morris [24]; instead, we used it to sum up memory,
orientation, and judgement, coupled with the VFT and the MMSE, to examine whether
we could extract one meaningful and validated principal component (PC) (see below). We
also intended to examine the other 3 items (community affairs, grooming, and hobbies)
as possibly contributing to the phenome scores of MDD. However, we could not find any
relevance of these measurements. The severity of depression and anxiety was assessed
using the Hamilton Depression (HAMD) and Anxiety (HAMA) Rating Scales [25,26]. We
used the FibroFatigue scale [27] to assess the severity of fibromyalgia, chronic fatigue
syndrome-like symptoms, and physiosomatic symptoms. The diagnosis of TUD was made
according to the DSM-5 criteria.

2.3. Statistics

We utilized analysis of variance (ANOVA) or the Mann–Whitney U test to compare
continuous variables and analysis of contingency tables (χ2 test) to compare nominal
variables between groups. Multiple comparisons among group means were examined
using Fisher’s protected least significant difference. Using Pearson’s product-moment
correlation coefficients, we examined the associations between scale variables. Using
multiple regression analysis, the effects of the explanatory variables (ACE, NLE, age, sex,
and education) on the dependent variables (e.g., symptomatome and phenome scores)
were examined. In addition, we used a forward stepwise automatic regression method
using p-values of 0.05 to enter and 0.06 to remove. We generated the standardized β

coefficients with t-statistics and exact p-values for each of the explanatory variables in
the final regression model, in addition to the F-statistics (and p-values) and total variance
(R2 or partial eta squared used as effect size) explained by the model. Collinearity and
multicollinearity were investigated using tolerance (cut-off value 0.25), the variance infla-
tion factor (cut-off value > 4), and the condition index and variance proportions from the
collinearity diagnostics. The White and modified Breusch–Pagan tests were used to verify
the presence of heteroskedasticity. All the above tests were two-tailed, and an alpha value
of 0.05 was deemed statistically significant. In order to normalize the distribution of the
data, some variables were first converted via transformations, including logarithmic or
rank-based inversed normal (RINT) transformations.

We used principal component (PC) analysis to check whether a set of MDD features
could be reduced to one meaningful PC. To be acknowledged as a validated PC, the first PC
must account for >50% of the variance in the data; all loadings on this factor must be >0.7;
and the factoriability of the correlation matrix must be satisfactory, as determined by the
Kaiser–Meyer–Olkin (KMO) test (KMO should be >0.6). Moreover, the Bartlett’s test of
sphericity (p should be <0.05) and the anti-image matrix should be sufficient. All statistical
tests were conducted using Windows version 28 of the IMB SPSS application.

Path analysis using partial least squares (PLS) analysis (SmartPLS) [28] was used to
predict the final outcome (output) variable, namely the phenome of mood disorders, using
a set of independent (input) variables, including ACE, NLE, and neurocognitive impair-
ments. Additionally, the model accounts for mediated effects (e.g., the effects of ACE on the
phenome are mediated by G-CoDe). The variables were either entered as single indicators
or as latent vectors (e.g., a factor extracted from all symptom domains). Complete PLS path
analysis was only performed if the inner and outer models met the following predetermined
quality criteria: (a) the latent vectors of the outer models demonstrate high convergent
and construct validity, as indicated by Cronbach’s alpha > 0.7, composite reliability > 0.8,
rho A > 0.8, and high loadings (>0.7) at p < 0.0001 of the indicators of the latent vectors,
and (b) the overall model fit, namely the standardized root mean square (SRMR), is <0.08.
PLSPredict and the cross-validated predictive ability test (CVPAT) were used to evaluate
the replicability of the final PLS model. The Q2 values were used to estimate whether the
model’s prediction error is significantly smaller than the prediction error of the naive and
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linear regression model benchmarks. In addition, we employed confirmatory tetrad analy-
sis (CTA) to ensure that the latent constructs were not incorrectly specified as a reflective
model. Permutation and multi-group analysis (MGA) were used to investigate whether the
predefined groups (including men versus women, TUD versus non-sTUD, and drug-naive
versus medicated) show significant differences in the parameter estimates [28–31] and to
delineate whether the models originate from a common population. Invariance assessment
of composite models (MICOM) was used to evaluate “configural and compositional in-
variance, and the equality of composite mean values and variances” [28–32]. Using the
heterotrait-monotrait (HTMT) ratio with a cutoff value of >0.85, the discriminant validity
of the constructs was determined. If all the previously mentioned estimates of model fit met
the predetermined criteria, we conducted a complete PLS path analysis with 5000 bootstrap
samples and calculated the path coefficients (with exact p-values) and specific indirect, total
indirect (i.e., mediated), and total effects.

3. Results
3.1. Construction of Different RADAR Scores

1. Based on our previous publications [1–3,17], we computed several symptom subdo-
mains or RADAR scores as sums or z unit-based composite scores summing up the
scores of different items.

2. Because it was impossible to find validated PCs in the ACE data, the total ACE score
was calculated as the sum of the 10 ACE indicators. We also entered all ACE indicators
as single indicators in the analyses (except Q3, Q5, and Q8, which showed virtually
no variance).

3. The NLE score was computed as the presence of any NLE item encountered over the
last year. We examined whether ACE and NLE could best be presented separately,
as an interaction term ACE × NLE, or as the sum of different adverse events (AE).
In the regression analysis, it was most appropriate to enter separate ACE and NLE
scores. Furthermore, the interaction pattern was also significant in the regression
analysis. In the ANOVAs, the sum of ACE + NLE (yes/no) was most appropriate
(labeled as adverse events or AE). Consequently, the AE score was computed as the
RINT of total ACE + NLE. Using a visual binning method, the study sample was
divided into three groups, namely a group with few AE (<−0.60), a group with some
AE (≥−0.60 to 0.58.9), and another group with many AE (≥0.59).

4. The pure depressive domain score was computed as a z-based composite score: the
sum of the z scores of depressed mood + feelings of guilt + loss of interest (HAMD) +
sadness (FF) + depressed mood (HAMA).

5. The pure anxiety domain score was computed as a z-based composite score: the sum
of anxious mood + tension + fears + anxiety behavior at interview (all HAMA items)
+ anxiety, psychological (a HAMD item). Both the pure depression and anxiety scores
were processed as RINT scores.

6. The pure physiosomatic symptom domain score was computed as a z unit-based
composite score based on the sum of the z scores of anxiety somatic + gastrointestinal
+ genitourinary + hypochondriasis somatic sensory + cardiovascular + gastrointestinal
(GIS) + genitourinary + autonomic symptoms + respiratory symptoms (all HAMA
symptoms) + muscle pain + muscle tension + fatigue + autonomic + gastro-intestinal
+ headache + malaise (all FF scale items) + anxiety somatic + somatic gastro-intestinal
+ general somatic + genital symptoms + hypochondriasis (all HAMD items).

7. The melancholia domain score was computed as the sum of insomnia late + psy-
chomotor retardation + psychomotor agitation + loss of weight + diurnal variation.

8. The insomnia domain score was calculated as a z unit-based composite score com-
puted as the sum of the z scores of insomnia early + insomnia middle + insomnia late
(all HAMD items) + sleep disorders (FF item) + insomnia (HAMA item).
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9. The subjective cognitive impairment (SCI) score was computed as a z unit-based
composite calculated as concentration disorders + memory disturbance (FF scale) +
intellectual problems (HAMA item) + cognition (HAMD item).

10. The phenome1 score was computed as a PC extracted from the pure depression, pure anx-
iety, physiosomatic symptom, melancholia, insomnia, and SCI symptom domains. The
first PC showed an adequate model fit, with AVE = 79.21%, Cronbach’s alpha = 0.921,
and factor loadings that were all >0.786 (KMO = 0.885, Bartlett’s χ2 = 708.05, df = 15,
p < 0.001).

11. The suicidal behavior (SB) score was computed as a composite score calculated as
frequency of suicidal ideation + frequency of suicidal attempts + suicidal ideation
(HAMD item).

12. The phenome2 score was computed as the first PC score extracted from the pure
depression, pure anxiety, physiosomatic symptom, melancholia, insomnia, and SCI
symptom domains and the SB score. The first PC showed an adequate model fit, with
AVE = 77.06%, Cronbach’s alpha = 0.930, and factor loadings that were all >0.770
(KMO = 0.904, Bartlett’s χ2 = 826.60, df = 21, p < 0.001).

13. In accordance with recent findings regarding schizophrenia showing that one factor
reflecting a generalized cognitive decline (G-CoDe) could be extracted from sev-
eral cognitive tests results [33], we examined whether one PC could be extracted
from different neurocognitive tests for MDD. Indeed, we were able to extract a
G-Code construct from the MMSE, the VFT, and the sum of 3 CDR item scores
(memory + orientation + judgement). This first PC showed an AVE = 63.65%, Cron-
bach’s alpha = 0.691, and factor scores > 0.763 (KMO = 0.666, Bartlett’s χ2 = 62.98,
df = 3, p < 0.001).

14. The phenome3 score was computed as a PC score extracted from all 6 abovementioned
symptom domains, SB, and G-CoDe. This first PC showed an adequate model fit,
with AVE = 75.84%, Cronbach’s alpha = 0.939, and factor loadings that were all >0.776
(KMO = 0.918, Bartlett’s χ2 = 945.31, df = 28, p < 0.001).

15. The ROI score in the total study group (thus, with second-episode patients included)
was computed as the RINT transformation of a composite score built using frequency
of suicidal ideation, frequency of suicidal attempts, and number of episodes (the ROI
score could only be used when analyzing the total study sample).

16. The lifetime trajectory score was assessed as the first PC score extracted from the AE,
SB, G-CoDe, and phenome1 scores. This first PC showed an adequate model fit, with
AVE = 70.59%, Cronbach’s alpha = 0.860, and factor loadings > 0.794 (KMO = 0.821,
Bartlett’s χ2 = 198.21, df = 6, p < 0.001).

3.2. Features of Study Groups with Low, Some, and Many AE

Table 1 shows the socio-demographic and clinical variables in the subjects divided
into those with few, some, and many AE. There were no significant differences in age, sex
ratio, BMI, education, marital status, TUD, and prior COVID-19 infection between the three
study groups. There was a significant association between this division and the diagnosis
of first-episode major depression. The subjects with some AE and many AE had lower
G-CoDe and SCI scores than the subjects with few AE. There were significant differences in
SB, all symptom domains (except SCI), and phenome1, phenome2, and phenome3 scores
between the three study groups. The scores increased from the group with few AE to the
group with some AE group to the group with many AE. The subjects with NLE reported
a significantly higher mean (SD) number of ACE (1.73 ± 0.98) when compared to those
without NLE (0.98 ± 1.09) (Mann–Whitney U test: p < 0.001).

3.3. Correlations between ACE, AE, and Symptom Domains

Table 2 shows the correlation matrix between ACE and AE and the symptom domains
measured in the controls and first-episode MDD patients. ACE and AE were significantly
and negatively correlated with G-CoDe and positively with all other symptom domains.
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Table 1. Socio-demographic and clinical variables in subjects divided into those with few, some, and
many adverse experiences (AE).

Parameter Few AE A

n = 34
Some AE B

n = 49
Many AE C

n = 28
F/χ2 df p

AE 0.26 ± 0.45 B,C 1.71 ± 0.71 A,C 3.71 ± 0.76 A,B 2213.33 2/108 <0.001
Total ACE 0.24 ± 0.43 B,C 1.22 ± 0.62 A,C 2.68 ± 0.82 A,B 116.22 2/108 <0.001
HC/MDD 27/7 13/36 0/28 45.45 2 <0.001
Age (years) 29.7 ± 7.4 32.4 ± 8.9 32.1 ± 8.9 1.10 2/108 0.335
Female/Male ratio 22/12 27/22 15/13 1.01 2 0.602
BMI (kg/m2) 25.85 ± 3.63 24.50 ± 3.79 24.44 ± 4.00 1.54 2/108 0.220
Education (years) 11/23 10/39 10/18 2.55 2 0.279
Married/Single
(No/Yes) 16/18 31/18 17/11 2.30 2 0.316

TUD (No/Yes) 20/14 35/14 20/8 1.71 2 0.425
Prior COVID-19
infection (No/Yes) 19/15 33/16 15/13 1.82 2 0.402

G-CoDe 0.793 ± 0.737 B,C −0.232 ± 0.965 A −0.558 ± 0.736 A 22.89 2/108 <0.001
Suicidal behaviors −0.664 ± 0.877 B,C 0.139 ± 1.024 A,C 0.563 ± 0.593 A,B 15.72 2/108 <0.001
Pure depression −0.665 ± 0.871 B,C 0.034 ± 0.936 A,C 0.748 ± 0.673 A,B 20.94 2/108 <0.001
Pure anxiety −0.748 ± 0.667 B,C 0.144 ± 0.951 A,C 0.656 ± 0.858 A,B 22.22 2/108 <0.001
Pure physiosomatic
symtoms −0.917 ± 0.825 B,C 0.057 ± 0.970 A,C 0.658 ± 0.567 A,B 28.30 2/108 <0.001

Melancholia −0.747 ± 0.789 B,C 0.053 ± 0.918 A,C 0.814 ± 0.649 A,B 28.08 2/108 <0.001
Insomnia −0.692 ± 0.845 B,C 0.130 ± 1.024 A,C 0.612 ± 0.562 A,B 18.11 2/108 <0.001
SCIs −0.685 ± 0.659 B,C 0.182 ± 1.056 A 0.514 ± 0.788 A 15.87 2/108 <0.001
Phenome1 −0.704 ± 0.752 B,C 0.032 ± 0.909 A,C 0.798 ± 0.791 A,B 24.93 2/108 <0.001
Phenome2 −0.681 ± 0.790 B,C 0.022 ± 0.894 A,C 0.789 ± 0.813 A,B 23.35 2/108 <0.001
Phenome3 −0.732 ± 0.734 B,C 0.080 ± 0.909 A,C 0.749 ± 0.823 A,B 24.40 2/108 <0.001

Data are shown as means (SD) or as ratios. F: results of analysis of variance; χ2: results of analysis of contingency
tables; A,B,C: pairwise comparison among group means (p < 0.05); BMI: body mass index; TUD: tobacco use
disorder; G-CoDe: general cognitive decline; SCIs: subjective cognitive impairments; phenome1: phenome index
including pure depression, anxiety, physiosomatic, melancholia, insomnia, and SCI scores; phenome2: phenome
index including suicidal behaviors; phenome3: phenome index including suicidal behaviors and G-CoDe.

Table 2. Correlation matrix between the number of adverse childhood experiences (ACE) alone and
combined with negative life events (AE) and the symptom domains assessed in this study.

Variables Total ACE * AE * Total ACE ** AE **

G-CoDe −0.495 −0.600 −0.489 −0.586

Suicidal behaviors 0.389 0.484 0.391 0.484

Pure depression 0.515 0.559 0.502 0.548

Pure anxiety 0.455 0.565 0.434 0.528

Pure physiosomatic symptoms 0.483 0.618 0.506 0.616

Melancholia 0.510 0.597 0.534 0.617

Insomnia 0.486 0.563 0.486 0.557

SCIs 0.412 0.473 0.365 0.423

Phenome 2 0.468 0.553 0.494 0.565

Phenome 3 0.479 0.570 0.497 0.576
All significant at p < 0.001; * performed in controls and first-episode depressed patients (n = 111); ** performed
in controls and all depressed patients combined (n = 130); G-CoDe: general cognitive decline; SCIs: subjective
cognitive impairments; phenome2: phenome index including suicidal behaviors; phenome3: phenome index
including suicidal behaviors and the G-CoDe.

3.4. Multiple Regression Analysis with Phenome Features as Dependent Variables

Table 3 shows the results of the multiple regression analyses with the phenome
features as the dependent variables and ACE, NLE, and AE as the explanatory variables,
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while allowing for the effects of socio-demographic characteristics. Model #1 shows that
35.6% of the variance in the G-CoDe scores is explained by AE, and that a combination of
ACEQ2, ACEQ4, ACEQ6, and NLE explains up to 45.8% of the variance in neurocognitive
impairments (model #2). Figure 1 shows the partial regression of G-CoDe on AE. The latter
explains (model #3) 27.4% of the variance in SB, while ACEQ4, ACEQ10, and NLE explain
32.9% of the variance (model #4). Figure 2 shows the partial regression of the SB scores on
AE. We found that 35.2% of the variance in the phenome2 scores (model #5) is explained by
the regression on AE and gender (higher in males), and that ACEQQ4, NLE, and ACEQ2
are the best predictors of the phenome2 scores, explaining 37.3% of the variance (model #6).
Figure 3 shows the partial regression of the phenome1 scores on AE. Table 1 does not list
the regression concerning phenome1 because the results are similar to those of phenome2.
This is because the phenome scores are highly significantly intercorrelated (all r > 0.96,
p < 0.0001). We found that 37.5% of the variance in the phenome3 scores (model #7) is
explained by the regression on AE and male sex (all positively associated) and that male sex,
ACEQ2, ACEQ4, and NLE predict the phenome3 scores and explain 42.9% of the variance
(model #8). In model #9, we added the interaction term Q4 X NLE, which contributes
significantly to the phenome3 scores (inversely associated).

Table 3. Results of multiple regression analyses with the major symptom domains as dependent
variables and adverse childhood experiences (ACE) and negative life events (NLE) as explanatory
variables, while allowing for the effects of socio-demographic characteristics.

Dependent Variables Explanatory Variables B T p F Model df p R2

G-CoDe
Model #1

60.19 1/109 <0.001 0.356
AE −0.596 −7.76 <0.001

G-CoDe

Model #2

22.36 4/106 <0.001 0.458

ACEQ4 −0.402 −5.21 <0.001

NLE −0.307 −3.94 <0.001

ACEQ2 −0.220 −3.01 0.003

ACEQ6 −0.163 −2.22 0.028

Suicidal behaviors
Model #3

41.15 1/109 <0.001 0.274
AE 0.524 6.42 <0.001

Suicidal behaviors

Model #4

17.50 3/107 <0.001 0.329
ACEQ4 0.328 3.79 <0.001

NLE 0.306 3.60 <0.001

ACEQ10 0.182 2.26 0.026

Phenome 2

Model #5

29.31 2/108 <0.001 0.352AE 0.574 7.41 <0.001

Sex 0.165 2.13 0.013

Phenome 2

Model #6

21.19 3/107 <0.001 0.373
ACEQ4 0.399 4.84 <0.001

NLE 0.278 3.38 0.001

ACEQ2 0.168 2.17 0.033

Phenome 3

Model #7

32.43 2/108 <0.001 0.375AE 0.589 7.74 <0.001

Sex 0.185 2.43 0.017



Brain Sci. 2023, 13, 714 9 of 20

Table 3. Cont.

Dependent Variables Explanatory Variables B T p F Model df p R2

Phenome 3

Model #8 19.89 4/106

<0.001 0.429

ACEQ4 0.385 4.84 <0.001

NLE 0.287 3.64 <0.001

ACEQ2 0.227 3.00 0.003

Sex 0.173 2.30 0.023

Phenome 3

Model #9 17.45 5/105

<0.001 0.454

Sex 0.174 2.35 0.021

NLE 0.438 4.23 <0.001

ACEQ2 0.178 2.29 0.024

ACEQ4 0.563 5.01 <0.001

ACEQ4 X NLE −0.311 −2.20 0.030

ROI (n = 130)

Model #10 52.39 3/126

<0.001 0.555
NLE 0.768 9.33 <0.001

ACEQ4 0.728 7.82 <0.001

ACEQ4 × NLE −0.577 −5.77 <0.001

G-CoDe: general cognitive decline; phenome2: phenome index including suicidal behaviors; phenome3: phenome
index including suicidal behaviors and G-CoDe; ROI: recurrence of illness based on 2 episodes only; AE: adverse
events; ACE: adverse childhood experiences; NLE: negative life events; Q4: emotional neglect; Q2: physical abuse;
Q6: divorce of parents; Q10: imprisonment of a family member.
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3.5. RADAR Plots

The RADAR plot in Figure 4 displays the RADAR scores for two patients (MDD1
and MDD2). All scores are expressed as z scores with the mean of the healthy controls
set to zero. The common center point is established as the mean values (set to zero) of
all feature scores of the healthy controls. Therefore, the graphs show the relative position
of the feature scores of the patients versus the mean values of the controls in standard
deviations. The RADAR plot provides 14 RADAR or feature scores displayed on 14 radial
axes, each corresponding to a feature. The latter are ordered along the lifetime trajectory
of the patients, starting with ACE, then AE, G-CoDe, symptomatome domain features,
SB, phenome scores, and finally lifetime trajectory score. The radial axes in the RADAR
plot are joined in the middle of the figure (zero feature scores of the controls) and are
joined by angular axes that divide the plot into grids, which show the variation in feature
ratings of the two patients versus the healthy controls. This figure shows that the RADAR
charts of both patients are quite different, in particular the ACE, AE, depression, anxiety,
physiosomatic, SB, all phenome, and lifetime trajectory scores. Figure 5 shows the RADAR
plot for two other MDD patients, MDD3 and MDD4.
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Figure 4. RADAR plot displaying the Research and Diagnostic Algorithmic Rule (RADAR) scores
of two patients in the acute phase of first-episode depression. ACE: adverse childhood experiences;
AE: adverse events; G-CoDe: general cognitive decline; SCIs: subjective cognitive impairments;
SB: suicidal behaviors; phenome1: first PC extracted from all symptom domains; phenome2: same
as phenome1 but includes SB; phenome3: same as phenome2 but includes G-CoDe; LT traject:
lifetime trajectory.
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Figure 5. RADAR plot displaying the Research and Diagnostic Algorithmic Rule (RADAR) scores of
two patients in the acute phase of first-episode major depression (MDD3 and MDD4). ACE: adverse
childhood experiences; AE: adverse events; G-CoDe: general cognitive decline; SCIs: subjective
cognitive impairments; SB: suicidal behaviors; phenome1: first PC extracted from all symptom
domains; phenome2: same as phenomen1 but includes SB; phenome3: same as phenome2 but
includes G-CoDe; LT traject: lifetime trajectory.

3.6. Results of PLS Analyses

The first PLS model considered the latent vector extracted from the phenome2 fea-
tures as the dependent variable, and G-CoDe, AE, and ACE as the explanatory variables.
Moreover, G-CoDe was entered as a mediating variable that was allowed to mediate the
effects of ACE and AE on the phenome2 scores. With an SRMR of 0.051, the model quality
fit is more than adequate. The convergent reliability is more than adequate for the phe-
nome2 scores (0.733) and the G-CoDe scores (0.609). The composite reliabilities of both
constructs are more than adequate, namely 0.929 for the phenome2 scores and 0.746 for the
G-CoDe scores. PLSPredict shows that all Q2 predicted values for the manifest and latent
variables are positive, indicating that the model outperforms the most naive benchmark.
Application of the CVPAT framework in PLSpredict examined the predictive reliability of
the two endogenous constructs; the result shows that they have significantly lower average
loss (t = 3.04, p = 0.003) and, thus, higher predictive validity than the indicator-average
benchmark. Nevertheless, the model is not valid as no discriminatory validity is obtained:
the HTMT ratio of 0.993 shows that the G-CoDe scores cannot be discriminated from the
phenome2 scores. Consequently, we built a new model, including the G-CoDe scores in the
phenome3 factor, as shown in Figure 6. The model fit is adequate, with an SRMR of 0.042.
The convergent and composite reliabilities of the phenome3 scores are more than adequate,
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with an AVE = 0.701, rho_A = 0.944, and Cronbach’s alpha = 0.939. PLSpredict shows
that all manifest and latent variables’ Q2 values are positive. The CVPAT shows that the
average loss differences of PLS-SEM versus the indicator average (t = 5.07, p < 0.001) and
the linear model (t = 2.50, p = 0.014) are significant, indicating a strong (t = 3.04, p = 0.003)
predictive validity of the construct. The PLS path analysis performed using 5000 bootstraps
shows that 60.8% of the variance in phenome2 is explained by the regression on ACEQ2,
ACEQ4, and NLE and that the interaction (moderation) between Q4 and NLE is significant
and shows an inverse effect. The PLS multigroup analysis and permutation analysis show
no differences in the model parameters between men and women, or between smokers
and non-smokers.

Brain Sci. 2023, 13, x FOR PEER REVIEW 13 of 20 
 

PLSpredict shows that all manifest and latent variables’ Q2values are positive. The CVPAT 
shows that the average loss differences of PLS-SEM versus the indicator average (t = 5.07, 
p < 0.001) and the linear model (t = 2.50, p = 0.014) are significant, indicating a strong (t = 
3.04, p = 0.003) predictive validity of the construct. The PLS path analysis performed using 
5000 bootstraps shows that 60.8% of the variance in phenome2 is explained by the regres-
sion on ACEQ2, ACEQ4, and NLE and that the interaction (moderation) between Q4 and 
NLE is significant and shows an inverse effect. The PLS multigroup analysis and permu-
tation analysis show no differences in the model parameters between men and women, or 
between smokers and non-smokers. 

 
Figure 6. Results of partial least squares (PLS) analysis. ACE: adverse childhood experiences; NLE: 
negative life events; Q4: emotional neglect; and Q2: physical abuse. The indicators of phenome3 are 
shown as yellow rectangles, including G-CoDe: generalized cognitive decline, SCIs: subjective 
cognitive impairments, and SB: suicidal behaviors. The blue circles indicate single indicators and 
the latent vectors entered in the analysis. The pathway coefficients are shown with exact p-values 
and loadings on the phenome factor; 0.701 indicates the explained variance. 

3.7. Effects of Drug State 
Since some of the first-episode patients were drug-naive, we were able to decipher 

possible differences between drug-naive and medicated patients. The latter were treated 
with antidepressants or atypical antipsychotics for at least three weeks. Introducing the 
medication status (drug-naive versus use of psychotropic drugs) showed that there was 
no significant effect of drug state on phenome3 (t = 1.76, p = 0.079). The MICOM showed 
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Figure 6. Results of partial least squares (PLS) analysis. ACE: adverse childhood experiences;
NLE: negative life events; Q4: emotional neglect; and Q2: physical abuse. The indicators of phenome3
are shown as yellow rectangles, including G-CoDe: generalized cognitive decline, SCIs: subjective
cognitive impairments, and SB: suicidal behaviors. The blue circles indicate single indicators and the
latent vectors entered in the analysis. The pathway coefficients are shown with exact p-values and
loadings on the phenome factor; 0.701 indicates the explained variance.

3.7. Effects of Drug State

Since some of the first-episode patients were drug-naive, we were able to decipher
possible differences between drug-naive and medicated patients. The latter were treated
with antidepressants or atypical antipsychotics for at least three weeks. Introducing the
medication status (drug-naive versus use of psychotropic drugs) showed that there was no
significant effect of drug state on phenome3 (t = 1.76, p = 0.079). The MICOM showed that
the permutation p-values for the variables were non-significant, indicating computational
invariance when comparing drug-naive and medicated patients. The mean original differ-
ences fell within the 2.5% and 97.5% limits, suggesting invariance in composite equality.
Consequently, we performed PLS MGA and permutation MGA. These analyses showed
no significant differences in model parameters, including pathway coefficients and outer
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loadings (bootstrap MGA, parametric test, and Welch–Satterthwait test), and quality cri-
teria (explained variance, AVE, etc.) between drug-naive and medicated patients. The
ANOVAs showed increased scores of pure depression (F = 4.10, df = 1/69, p = 0.047), SB
(F = 67.96, df = 1/69, p < 0.001), phenome2 (F = 7.43, df = 1/69, p = 0.008) and phenome3
(F = 6.59, df = 1/69, p = 0.012) among medicated patients compared to drug-naive patients
(see Figure 7). In contrast, sleep disorders were better in the medicated group (F = 5.34,
df = 1/69, p = 0.024).
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Figure 7. Clustered bar graph showing the mean (SE) feature scores of the acute phase of first-episode
depression divided into drug-naive and treated patients. ACE: adverse childhood experiences;
AE: adverse events; G-CoDe: generalized cognitive decline; SCIs: subjective cognitive impairments;
SB: suicidal behaviors; LT traject: lifetime trajectory.

3.8. Features of First Episode versus Second Episode in MDD

Finally, we examined differences between the 71 first-episode MDD patients and the
19 second-episode MDD patients. Table 4 shows the differences between the two groups
and the healthy controls. We found that pure depressive symptoms and lifetime trajectory
scores were significantly higher in the second-episode patients than in the first-episode
patients. Table 2 shows the associations between ACE/AE and different RADAR scores in
this study sample. Table 3 shows that a considerable part of the variance in the ROI scores
(55.5%) is explained by ACEQ4, NLE, and the interaction pattern between ACEQ4 and
NLE (negative effect).

Table 4. Features of healthy controls (HCs) and patients with major depressive disorder (MDD) who
are divided into those with a first depressive episode (MDD #1) and those with a second depressive
episode (MDD #2).

Variables HC A

n = 40
MDD #1 B

n = 71
MDD #2 C

n = 19
F (df = 2/122) p

Age (years) 32.1 ± 8.2 31.2 ± 8.6 32.0 ± 10.39 0.15 2/127 0.859

Female/Male ratio 23/17 41/30 12/7 2.03 2 0.904

BMI (kg/m2) 25.94 ± 4.18 24.30 ± 3.49 24.99 ± 2.68 2.64 2/127 0.076

Education (years) 12/28 19/52 6/13 0.24 2 0.888
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Table 4. Cont.

Variables HC A

n = 40
MDD #1 B

n = 71
MDD #2 C

n = 19
F (df = 2/122) p

Married/Single
(No/Yes) 19/21 45/26 11/8 2.64 2 0.267

TUD (No/Yes) 21/19 54/17 15/4 7.65 2 0.022

Mild COVID-19
infection 23/17 44/27 10/9 0.61 2 0.736

Drug naïve
(No/Yes) 40/0 44/27 19/0 28.32 2 <0.001

Total ACE 0.45 ± 10.55 B,C 1.76 ± 1.06 A 1.95 ± 0.85 A 31.20 2/127 <0.001

AE −1.052 ± 0.309 B,C 0.428 ± 0.873 A 0.613 ± 0.642 A 63.42 2/127 <0.001

G-CoDe 1.170 ± 0.340 B,C −0.543 ± 0.732 A −0.435 ± 0.579 A 22.89 2/108 <0.001

Suicidal behaviors −1.025 ± 0.213 B,C 0.500 ± 0.681 A 0.537 ± 0.601 A 101.38 2/127 <0.001

Pure depression −1.059 ± 0.336 B,C 0.411 ± 0.663 A,C 0.927 ± 0.700 A,B 105.56 2/127 <0.001

Pure anxiety −1.092 ± 0.431 B,C 0.550 ± 0.706 A 0.408 ± 0.693 A 90.41 2/127 <0.001

Pure physiosomatic
symptoms −1.270 ± 0.335 B,C 0.575 ± 0.594 A 0.525 ± 0.606 A 165.78 2/127 <0.001

Melancholia −1.206 ± 0.360 B,C 0.487 ± 0.649 A 0.719 ± 0.729 A 122.17 2/127 <0.001

Insomnia −1.209 ± 0.297 B,C 0.528 ± 0.666 A 0.573 ± 0.746 A 120.61 2/127 <0.001

SCIs −1.052 ± 0.258 B,C 0.468 ± 0.840 A 0.467 ± 0.851 A 62.44 2/127 <0.001

Phenome 2 −1.109 ± 0.475 B,C 0.471 ± 0.666 A 0.614 ± 0.718 A 92.87 2/127 <0.001

Phenome 3 −1.111 ± 0.482 B,C 0.478 ± 0.668 A 0.583 ± 0.715 A 92.18 2/127 <0.001

Lifetime trajectory −1.252 ± 0.341 B,C 0.494 ± 0.611 A,B 0.787 ± 0.601 A,B 156.61 2/127 <0.001

Data are shown as means (SD) or as ratios. F: results of analysis of variance; A,B,C: pairwise comparison
among group means; BMI: body mass index; TUD: tobacco use disorder; ACE: adverse childhood experi-
ences; AE: adverse events; G-CoDe: general cognitive decline; SCIs: subjective neurocognitive impairments;
phenome2: phenome index including suicidal behaviors; phenome3: phenome index including suicidal behaviors
and G-CoDe.

4. Discussion
4.1. RADAR Scores and RADAR Plots

The first major finding of this study is that we were able to create RADAR scores and
a RADAR plot for first-episode depression, representing the phenome, SB, G-CoDe, and
lifetime trajectory scores. This agrees with our prior studies, indicating that such scores
may be calculated for patients with recurrent mood disorders and that the scores can be
displayed in a RADAR plot [3,17]. The latter enables us to display the mean differences
in all features as standard deviations between the patients and the controls, as well as a
patient-specific profile or fingerprint.

Firstly, the current study found that one factor could be extracted from different
symptom domains (including pure depression, anxiety, and physiosomatic symptom,
melancholia, insomnia, and SCI domains), indicating that these distinct symptom profiles
are the manifestations of a shared or common core, i.e., the phenome of first-episode depres-
sion. This suggests that these symptom domains should be seen as highly intercorrelated
domains driven by a shared pathophysiology underlying these phenome presentations. As
we have previously demonstrated [1,3,12,13], sensitization in immunological and growth
factor networks, activated oxidative stress pathways, decreased antioxidant defenses, en-
hanced bacterial translocation, and autoimmune responses are linked with phenome scores
in recurrent unipolar and bipolar depression.

Secondly, our results showing that SB are part of the phenome of first-episode depres-
sion confirm our previous research that SB can be expressed as RADAR scores and are part
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of the phenome of recurrent depression and mood disorders [1,3]. This again demonstrates
that the same pathophysiology underlies both the phenome and SB. Combinations of
immune-inflammatory and nitro-oxidative pathways are associated with suicidal ideation
and suicidal attempts in people with mood disorders, according to two recent systematic
reviews and meta-analyses [34,35]. In contrast to recurring MDD and mood disorders, our
study on first-episode depression could not incorporate the ROI index into the analysis.
In this regard, it is intriguing to notice that the second-episode patients had higher pure
depressive and lifetime trajectory ratings than the first-episode patients. Thus, it is possible
to conclude that the deteriorating influence of ROI on the phenome [17] is already present
in the second episode.

Thirdly, we discovered that a general impairment in cognitive abilities during the acute
phase of first-episode depression constitutes an additional component of the phenome
and, as such, should be considered a manifestation of the phenome of depression. We
were able to extract one latent vector from the VFT, MMSE, and memory, judgment, and
orientation test scores. This showed that people with severe first-episode depression had a
more generalized cognitive decline. In a previous study, executive functioning, semantic
and episodic memory, recall, strategy utilization, rule acquisition, emotional recognition,
visual sustained attention, and attentional set-shifting were used to develop a G-CoDe
score for schizophrenia [33]. In contrast to these findings in stable-phase schizophrenia, the
current investigation indicated that G-CoDe is a feature of the severity of the acute phase of
depression. As a consequence, these impairments will probably normalize throughout the
remitted and euthymic phases, given that inter-episode cognitive deterioration increases
with ROI [17].

Overall, our method of using different RADAR scores to indicate the acute state of
MDD contrasts with the current gold standard of employing a binary diagnosis (“major
depressive episode, single episode”). It is clear that different numerical RADAR values
convey far more information about the actual state of depression than a binary diagnosis,
which is also unreliable. It follows that our quantitative RADAR scores should be employed
as dependent factors in regression analyses or neural network studies, with neuro-immune
and neuro-oxidative biomarkers as explanatory variables. Using a post hoc, erroneous,
and unreliable higher-order binary construct (the DSM/ICD diagnosis) as an explanatory
variable in t-tests or ANOVAs with biomarkers as dependent variables is grossly inaccurate
and should be replaced by our nomothetic method [1–3,17].

4.2. ACE, NLE, and First-Episode Depression

The second major finding of this study is that the number of ACE and NLE significantly
predicts G-CoDe, SB, and phenome scores. In earlier research, we discovered that ACE
has a significant effect on G-CoDe, ROI, SB, and the acute- and residual-phase phenome of
depression [13,14]. There is now compelling evidence that the cumulative effects of ACE
are causally connected with the onset and severity of depression later in adulthood, as well
as with cognitive impairments and suicidal tendencies [36–44]. In a recent study involving
patients from Brazil, we discovered that emotional abuse and neglect, physical neglect, and
physical and sexual abuse (combined into one latent vector) were significantly linked with
adverse outcome pathways, ROI, cognitive deficits, and the phenome of depression [13,18].
In Thai patients, we discovered that a latent vector derived from mental neglect and trauma,
physical trauma, and domestic violence predicted the phenome and ROI of depression [14].
In the latter study, sexual abuse; a factor from parental loss due to separation, death, or
divorce; and a family history of mental illness were independently related to depression.
This contradicts the current study’s conclusions that no latent vector could be identified
from the 10 ACE scores included for Iraqi patients and that emotional neglect and physical
abuse were the most important predictors.

In this work, we determined that NLE have a significant influence on G-CoDe, SB, and
the phenome of first-episode depression, above and beyond the effects of ACE. It is known
that NLE are associated with the onset of depression, including depressive symptoms



Brain Sci. 2023, 13, 714 17 of 20

in students and late-life depression, according to a large body of research [15,16,45–47].
Furthermore, there is evidence that stressful life events may lead to depression, rather
than the other way around [48]. In addition, major life events play a greater role in the
development of first-onset depression than in subsequent episodes [15].

Moreover, in the present investigation, we discovered that ACE and, in particular
emotional neglect, might negatively affect the influence of NLE. This suggests that, although
ACE and NLE have cumulative effects on the phenome, there is also a substantial interaction
(moderation) effect, indicating that increased emotional neglect may reduce the influence
of NLE. There are currently indications that the effects of ACE on the phenome, including
SB, are mediated by sensitization of the cytokine and growth factor networks, which are
reactivated in response to new immunological stimuli [14]. There is also evidence that
psychological stressors can activate T helper-1 and M1 macrophage cytokine networks in
humans [49–53].

Based on the present study’s findings that ACE and NLE have cumulative effects
on the phenome of first-episode depression, we hypothesize that NLE may operate as a
second hit to reactivate sensitized cytokine network. However, our results suggest that this
effect depends on the number of ACE, so a higher number of ACE may be linked to NLE
having a diminished effect. Since there is a strong association between ACE and NLE, it
may also be that people with ACE select environments with more stressful events, distress,
and violence, suggesting that part of the links between NLE and the phenome may be
non-causal [16].

4.3. Limitations

If we had assessed the sensitization of the immune system using LPS + PHA-stimulated
production of various cytokines and growth factors, this study would have been more
interesting [11]. As we have now produced RADAR scores and plots for the acute period
of first-episode depression, recurrent depression, and the remitted phase of depression in
Iraqi, Thai, and Brazilian patients, future research should establish these scores in Western
and Caucasian study groups. Another potentially complicating aspect is the medication
state of some patients. Nevertheless, after including the impact of ACE and NLE in the PLS
analysis, the drug state of the patients had no effect on the phenome, as determined by
the regression analysis. Importantly, when comparing drug-naive individuals with treated
first-episode patients, the latter demonstrated greater (albeit with small effect sizes) SB,
pure depression, and phenome ratings, whereas the former demonstrated more insomnia.
These results suggest that people with suicidal behaviors are more actively treated with
psychotropic medications or, alternatively, that the treatments worsen these conditions.
Another possible limitation is the putative inference with regard to the effects of acute
COVID-19 infection, which may cause Long COVID with depression, anxiety, chronic
fatigue, and physiosomatic symptoms [54]. Nevertheless, a Long COVID phenome is
predicted by critical disease during the acute phase with high fever and low oxygen satura-
tion, whereas this study excluded COVID-19 patients who had suffered from moderate or
critical COVID disease. Future research should further examine the differences between
first-episode and multiple-episode MDD using a larger sample of multiple-episode patients.

5. Conclusions

In this study, we demonstrated how to develop a validated precision model, RADAR
scores, and RADAR plots for first-episode depression patients. We found that ACE and
NLE are related to SB, cognitive impairments, and first-episode depression symptoms. We
found that depression, anxiety, fatigue, physiosomatic symptoms, melancholia, insomnia,
SB, and cognitive impairments are all caused by the same phenome factor. Importantly, the
cumulative effects of ACE and NLE, as well as the pattern of interaction between emotional
neglect and NLE, explained 60.8% of the variance in this phenome. The results suggest
that ACE may attenuate the effects of NLE on the phenome. It is more appropriate to use
RADAR graphs in clinical practice rather than an unreliable DSM or ICD diagnosis because
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the former provides more accurate information and additionally provides a personalized
fingerprint of a patient’s status.

We have constructed RADAR graphs that contain not only clinical scores (as explained
in the current study) but also diverse biomarker scores, which are altered in depression [55].
With the help of this new method, adequate clinical monitoring as well as biomarker
monitoring of the disease may be performed. Secondly, our methodology makes it possible
for researchers to compute new risk or susceptibility biomarkers, screening and detecting
biomarkers, diagnostic biomarker panels, and prognostic biomarkers of ROI, suicidal be-
haviors, cognitive impairments, and the phenome of MDD [55]. In addition, using our
novel methodology, we are able to calculate new predictive biomarker tools that can direct
personalized therapies for MDD, ROI, or suicidal tendencies [55]. Axis-2 personality disor-
ders were not measured in the current study. Some personality traits, such as neuroticism,
are comorbid with depression and are affected by ACE [55]. Therefore, it is recommended
to add personality trait RADAR scores to our RADAR plots.
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