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Abstract: B355252 is a small molecular compound known for potentiating neural growth factor and
protecting against neuronal cell death induced by glutamate in vitro and cerebral ischemia in vivo.
However, its other biological functions remain unclear. This study aims to investigate whether
B355252 suppresses neuroinflammatory responses and cell death in the brain. C57BL/6j mice were
intraperitoneally injected with a single dosage of lipopolysaccharide (LPS, 1 mg/kg) to induce inflam-
mation. B355252 (1 mg/kg) intervention was started two days prior to the LPS injection. The animal
behavioral changes were assessed pre- and post-LPS injections. The animal brains were harvested at
4 and 24 h post-LPS injection, and histological, biochemical, and cytokine array outcomes were exam-
ined. Results showed that B355252 improved LPS-induced behavioral deterioration, mitigated brain
tissue damage, and suppressed the activation of microglial and astrocytes. Furthermore, B355252
reduced the protein levels of key pyroptotic markers TLR4, NLRP3, and caspase-1 and inhibited
the LPS-induced increases in IL-1β, IL-18, and cytokines. In conclusion, B355252 demonstrates a
potent anti-neuroinflammatory effect in vivo, suggesting that its potential therapeutic value warrants
further investigation.

Keywords: astrocyte; B355252; brain; cytokine; lipopolysaccharide; microglia; neuroinflammation;
pyroptosis; NLRP3

1. Introduction

B355252[4-chloro-N-(naphthalen-1-ylmethyl)-5-(3-(piperazin-1-yl)phenoxy)thiophene-
2-sulfonamide], a compound synthesized in 2010 by Dr. Williams at North Carolina Central
University, shows promise in promoting neurite growth and differentiating neuron-like NS-1
cells in vitro [1,2]. Later, it was demonstrated that B355252 protects murine hippocampal
neuronal HT-22 cells against glutamate-mediated cytotoxicity, 6-hydroxydopamine-induced
cell death, and cobalt chloride-induced chemical hypoxic damage [3–5]. To date, the known
mechanisms of action include inhibiting calcium influx into the cell, reducing reactive
oxygen species (ROS) formation, stabilizing mitochondrial membrane potential, decreas-
ing apoptosis inducing factor (AIF) nuclear translocation, suppressing BAX and caspase-3
activation, limiting autophagy induction, and activating ERK3 signaling pathway [3–7].
B355252 has been assessed in only one in vivo study using cerebral ischemic model [8]. In
this study, B355252 demonstrated a neuroprotective effect against endothelin-1-cerebral-
injection-induced focal ischemia. Since B355252 is a small phenoxy thiophene sulfonamide
molecule and its analog B355227 has been shown to be capable of passing through the blood–
brain barrier (BBB) [9], additional in vivo studies are needed to explore its therapeutic effects
in various animal disease models prior to its potential clinical translation.

Neuroinflammation, an innate immune response of the central nervous system (CNS),
can lead to neuronal damage in pathological conditions [10]. It is implicated in infectious
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disorders, autoimmune diseases, strokes, and neurodegenerative diseases like Parkinson’s
and Alzheimer’s [11–13]. Pyroptosis, an inflammation-induced form of cell death, involves
the activation of inflammasomes and caspase-1, leading to the release of pro-inflammatory
factors and cell membrane rupture. Lipopolysaccharides (LPS) injection to the rodents has
been established as an in vivo inflammatory animal model [14]. In the brain, it induces
activations of microglia and astrocyte and productions of various inflammatory cytokines,
which could result in pyroptotic type of cell death [15].

Pyroptosis is initiated when inflammatory cytokines bind to receptors on the cell mem-
brane or cytoplasm, triggering the formation of an inflammasome comprising Nod-like recep-
tors protein-3 (NLRP3), apoptosis-related speckle protein (ASC), and procaspase-1 [16,17].
Activation of caspase-1 by the inflammasome leads to the secretion of pro-inflammatory
factors IL-1β and IL-18, as well as the release of the N-terminal fragment of Gasdermin D
(GSDMD). The N-terminal fragment of GSDMD forms pores in the cell membrane, causing
cell swelling, osmosis, and ultimately cell death, known as pyroptosis [18–21]. Pyroptosis is
a programmed cell death type characterized by early plasma membrane rupture, releasing
intracellular components that exacerbate inflammation [22,23]. This study aims to explore
the potential anti-inflammatory effects of B3553252 in mice injected with lipopolysaccharides
(LPS), which is known to induce neuroinflammation.

2. Materials and Methods
2.1. Reagents and Antibodies

LPS from E. coli 0111: B4 was purchased from Invitrogen (Waltham, MA, USA). A
stock solution was made in 5 mg/mL in distilled water and freshly diluted to 1 mg/mL
with 0.9% saline prior to each injection. B355252 (BML1007-10 mg, Sigma-Aldrich, St. Louis,
MO, USA) was dissolved in 2% DMSO in 1 mg/kg for animal intraperitoneal injections.

The following rabbit or mouse antibodies were purchased from Cell Signaling Tech-
nology (Denvers, MA, USA): Iba1 (cat #17198s), GFAP (cat #12389), Cleaved Caspase-1
(Asp296, 2G2I, cat #89332S), NLRP3 (D4D8T, cat #15101S), Toll-like Receptor 4 (D8L5W, cat
#14358S), IL-1β (D3H1Z, cat #12507S), and IL-18 from Invitrogen (cat #PA5-76082).

2.2. Animal Cohorts Assignment and Behavior Assessment

Specific pathogen-free male and female adult C57BL/6J mice aged 3–7 months old
and weighing 20–35 g were obtained from Jackson Laboratories. All in vivo experiments
adhered to the NIH Guide for the Care and Use of Laboratory Animals and were approved
by the Institutional Animal Care and Use Committee (IACUC) at North Carolina Central
University (NCCU). The mice were housed in plastic cages under controlled conditions
(12/12 light–dark cycle, temperature of 22 ± 2 ◦C, and humidity at 50 ± 10%, with free
access to water and standard food).

The animals were randomly allocated to the following seven groups, as presented in
Figure 1: (1) naïve control (n = 10), receiving no drug treatment; (2) vehicle control (n = 7),
administered 2% DMSO; (3) B355252 control (n = 5), treated with B355252 (1 mg/kg) for
3 days only; (4) LPS4h group (n = 6), euthanized 4 h after LPS injection; (5) LPS24h group
(n = 11), euthanized 24 h after LPS injection; (6) LPS4h + B group (n = 4), pretreated with
B355252 for 2 days, followed by simultaneous injections of LPS plus B355252 on the third
day and euthanized after 4 h; and (7) LPS24h + B group (n = 9), pretreated with B355252
for 2 days, followed by simultaneous injections of LPS plus B355252 on the third day and
euthanized after 24 h. All animals were included in the behavioral assessments. Four
animals in each group were used for morphological studies and biochemical analysis. LPS
was dissolved in distilled water and B355252 in 2% DMSO. Daily intraperitoneal (I.P.)
injections of B355252 (1 mg/kg) commenced 2 days before the single-LPS-dose injection
(1 mg/kg).
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Figure 1. Schematic diagram of animal experimental design. V, vehicle; B, B355252.

Animal appearance and behavior were evaluated using a method outlined by
Paster et al. (2009), including assessments of appearance, natural behavior, provoked be-
havior, and body condition, with scores ranging from 1 to 3 recorded daily before and after
B355252 and/or LPS treatments [24].

2.3. Tissue Sampling

At the designated endpoints, the mice were euthanized via CO2 inhalation. Their
brains were then harvested and dissected on ice. One hemisphere was promptly frozen
in liquid nitrogen for future biochemical analysis, while the other hemisphere was fixed
in 4% formaldehyde solutions for histological and immunohistochemical evaluations.
Additionally, a separate set of fresh brain samples were embedded into optimal cutting
temperature (OCT) compound medium, immediately frozen on dry ice, and then stored at
−80 ◦C.

2.4. Histopathology and Hematoxylin/Eosin (H&E) Staining

Following 24 h of fixation in 4% formaldehyde, the brain tissues were processed using
a Leica Tissue Processor according to a standard protocol for mouse tissues. In summary,
the tissues were dehydrated in a gradient of ethanol (70%, 95% and 100%), cleared in xylene,
infiltrated with paraffin wax, and embedded into paraffin blocks. These blocks were then
sliced at a thickness of 5 µm using a microtome (Leica, Wetzlar, Germany). The sections
were stained with H&E and examined using an Axio Observer Inverted Microscopy (Zeiss,
Munich, Germany).

For each section, four microscopic fields at 40× magnification were captured in the
cortex, caudoputamen (Cpu), and hippocampus and subsequently quantified. Cells exhibit-
ing bright red eosinophilic staining with condensed triangular nuclei were identified and
counted as damaged neurons.

2.5. Immunohistochemistry (IHC) and Immunofluorescence (IF)

Tissue samples for IHC were prepared from paraffin-embedded sections at a thickness
of 5 µm on positively charged frosted glass slides. Immunostainings were conducted
using the indirect peroxidase-labeling method provided in the VECTASTAIN ABC-HRP kit
(Vector Laborotaries, Newark, CA, USA). Initially, sections were dewaxed and underwent
heat-induced antigen retrieval in 10 mM sodium citric (pH 6.0) within a pressure cooker
for 15 min. Endogenous peroxidase activity was blocked using 3% H2O2 in methanol for
30 min, followed by incubation with diluted normal blocking serum for 45–60 min, and
subsequently incubation with the respective primary antibodies overnight at 4 ◦C. The
tissue sections were then treated with appropriate biotin-conjugated secondary antibodies
and developed using avidin-conjugated horseradish peroxidase (HRP) with diaminoben-
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zidine (DAB) as a substrate. Mayer’s hematoxylin was used for counterstaining, and the
slides were mounted with Permount mounting medium. Imaging and quantification of the
slides were performed using deconvolution of the IHC image via NIH Image J Fiji software
(version 1.51) following a published protocol [25,26].

For IF labeling, fresh mouse brain tissues in OCT embedded blocks were utilized, and
the cryo-sections were prepared by cutting OCT blocks at 10 µm using a cryostat (Leica).
The frozen sections were fixed in 4% paraformaldehyde for 30 min, permeabilized with 1%
BSA serum in 0.4% Triton X-100 in PBS for 15–20 min, blocked with 5% BSA in 0.1% Triton
x-100 in PBS for 45 min at room temperature, and then incubated with primary antibodies at
appropriate dilutions in 1% BSA in PBS overnight at 4 ◦C. Secondary antibodies conjugated
either with Alexa-488 goat anti-rabbit IgG or Alexa-647 goat anti-rabbit diluted with 1%
BSA in PBS were applied and incubated for 1 h at room temperature. The sections were
mounted with an anti-fade mounting medium containing DAPI or propidium iodide for
nuclei labeling (Vectashield, Newark, CA, USA). Imaging of the labeled tissue slides was
conducted using a Zeiss LSM 800 Laser Confocal Microscope. The captured images were
quantified for mean fluorescence intensity from four fixed microscopic fields per image
using NIH Image J Win32 software.

2.6. Nuclear and Cytosolic Fractionation

Nuclear and cytosolic fractionation procedures were conducted using the BeadBug-6
Microtube Homogenizer (SKUD1036, Benchmark Scientific Inc., Sayreville, NJ, USA) for
processing mouse brain tissue lysates. Frozen brain tissues were dissected on ice, weighted,
and placed in a 2.0 mL tube prefilled with 3.0 mm Zirconium beads. Subsequently, 600 µL
of homemade cytosol fractionation buffer containing 15 mM Tris Base/HCl, pH 7.7, 0.25 M
sucrose, 15 mM NaCl, 1.5 mM MgCl2, 2.5 mM EDTA, 0.25 mM Na3VO4, 25 mM NaF, 1 mM
EGTA, 2 mM NaPPi, 1 mM DTT, 5 ug/mL leupeptin, 1 ug/mL Pepstatin A, 2.5 ug/mL
aprotinin, 0.1% NP-40, and 0.5 mM PMSF with protease inhibitors cocktail was added. The
tissue homogenization process followed a protocol recommended by the manufacturer.
Briefly, the program was set up for 3 cycles at 4300 rpm speed, 30 s processing time, and
5 min rest on ice, periodically vortexing until homogenized thoroughly.

Upon completion of the homogenization processes, the lysates were collected and
centrifuged at 900× g for 10 min at 4 ◦C, resulting in supernatant S1 and pellet P1 fractions.
The S1 was underwent further centrifugation at 20,000× g for 20 min, and the resulting
supernatant was designated as the cytosolic fraction. The pellet P1 fraction was washed
with PBS buffer, resuspended in 300 µL RIPA lysis buffer containing 1% SDS with pro-
tease/phosphatase inhibitors cocktail, sonicated on ice (setting time 10 s, 20% Amplitude,
3 cycles), then centrifuged at 20,800× g for 30 min at 4 ◦C, the resulting supernatants were
identified as the nuclear fraction. Both the cytosolic and nuclear fractions were stored at
−80 ◦C till further analyses. Protein concentrations were determined using the Pierce BCA
protein assay kit (Thermo Fisher Scientific, Waltham, MA, USA. cat# 23235).

2.7. Western Blot Analysis

Western blot analysis was conducted by loading an equal amount (30 µg protein) of
homogenized brain tissue samples from each group loaded into individual lanes of a 4–12%
Bis–Tris gel (Invitrogen). Following electrophoresis, the proteins were transferred to an
immobilon–PVDF membrane (Millipore, Billerica, MA, USA). The membranes were then
incubated with primary antibodies against IL18 (1:1000) and Beta actin (1:5000). After
overnight incubation with primary antibodies at +4 ◦C, the membranes were exposed
to secondary antibodies, including IDye800 donkey anti-rabbit IgG, IDye800 goat anti-
mouse IgG, or IDy680 donkey anti-rabbit IgG (Li-Cor Biotechnology, Lincoln, NE, USA).
Subsequently, the membranes were scanned using Odyssey CLX (Li-Cor) and analyzed
with Image Studio version 5.2 for image acquisition and quantification.
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2.8. Cytokine Array

For mouse brain homogenates from experimental normal control (NC) and LPS24h
groups, LPS24h + B355252 1 mg/kg and B355252 1 mg/kg alone were used. The brain
samples (n = 4 in each group) were pooled, homogenized, and lysed in lysis buffer provided
with a cytokine array kit (ab133993, Abcam, Cambridge, UK) mixed with 1% protease and
phosphatase inhibitor cocktail (Thermo Fisher Scientific™, Waltham, MA, USA. cat# 78440).
Protein concentration was measured with a Pierce BCA protein kit (Thermo Scientific, cat#
23225). The cytokine array experiment was performed using a Proteome Profiler Mouse
XL Cytokine Array (cat# ARY028, R&D Systems, Minneapolis, MN, USA) according to
the manufacturer’s instructions. Briefly, antibody-spotted membranes were treated with
a blocking solution and then incubated with 250 µg of total protein from mouse brain
tissue lysate from each group overnight at 4 ◦C. The following day, the membranes were
washed to remove unbound material followed by incubation with a cocktail of biotinylated
detection antibodies. Streptavidin–HRP and chemiluminescent detection reagents were
then applied, and signals were produced at each capture spot corresponding to the amount
of protein bound were viewed on an iBright FL1500 Imaging System (Thermo Fisher
Scientific). Data analysis was performed using the NIH ImageJ program (Win32) with the
Protein Array Analyzer plug in [27].

2.9. Statistical Analysis

The data were presented as mean ± SD. Parametric data were analyzed using one-way
ANOVA followed by the post Scheffé test. Non-parametric data were assessed using the
Kruskal–Wallis test followed by the Mann–Whitney U-test, which are robust with smaller
sample sizes. Statistical significance was defined as p < 0.05. Symbols denoting significance
levels were used as follows: * p < 0.05, ** p < 0.01, versus control; # p = 0.05, ## p = 0.01,
versus LPS counterparts.

3. Results
3.1. B355252 Improved Animal Behavior Altered by LPS

Fifty-two animals were divided into the following groups: naïve control (n = 10),
DMSO control (n = 7); B355252 control (n = 5); LPS4h (n = 6); LPS4h + B (n = 4); LPS24h
(n = 11); and LPS24h + B (n = 9) groups. Animal behavioral scores, including the assess-
ments of appearance, natural behavior, provoked behavior, and body condition, were
recorded starting from day 3 prior to LPS injection. Prior to LPS injection, animals in all
groups had a total normal score of 11 (Figure 2), and neither DMSO nor B355252 injection
affected the animal behavioral scores at any time.
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After 4 h of LPS injection (LPS4h group), two animals scored 10, and B355252 did not
improve the animal behavioral scores. Following 24 h of LPS injection (LPS24h group),
there was an increase in the number of animals exhibiting behavioral deficit, with 9 out
of 11 animals scoring lower than the expected score of 11 (p < 0.01 vs. naïve, DMSO, and
B355252 control groups). Among these nine animals, four scored 10, two scored 9, two
scored 8, and one scored 7 in the LPS 24 groups.

B355252 treatment significantly improved the behavioral score compared with LPS-
injected animals at 24 h, with six animals scoring 11, two scoring 10, and one
scoring 9 (p < 0.01 LPS24h + B vs. LPS24h). Further analysis revealed that LPS primarily
inhibited the animal natural behavior (reduced active body movement), and to a lesser
extent, it provoked behavior change (slow reaction to stimulus), followed by changes to
appearance and body condition. B355252 treatment improved animal natural behavior and
completely abolished the LPS-induced behavior change.

3.2. B355252 Ameliorated LPS-Induced Brain Tissue Damage

Brain sections at Bregma 0.02 and −1.94 mm levels were subjected to H&E staining.
Dead neurons were identified as eosinophilic cells with shrunken and darkly stained nuclei
surrounded by a void space. In the cortex and the Cpu of control animals, neurons exhibited
a round shape and nuclei were clearly visible.

At 4 h post-LPS injection, noticeable neuronal damage was observed in both the cortex
and Cpu (arrows in Figure 3A). By 24 h post-LPS injection, the number of dead neurons
significantly increased. Treatment with B355252 protected the neurons in both the cortex
and the Cpu from LPS-induced damage at 24 h time point (Figure 3A).

Similarly, in the hippocampal CA1, CA3, and hilus regions (Figure 3B), virtually
no damaged neurons were observed in control animals. However, in the LPS4h group,
damaged neurons began to appear in the CA1, CA3, and hilus subregions. Compared with
other regions, the number of damaged neurons in the hilus region was significantly high.
The number of dead neurons further increased in the LPS24h group (arrows in Figure 3B).
Pretreatment with B355252 significantly reduced the number of dead neurons in the CA1
and CA3 sub-regions and moderately decreased neuronal damage in the hilus area at both
the 4 h and 24 h time points.

Comparison of TUNEL staining between LPS- and B355252-treated animals at 24 h
further confirmed the findings observed from H&E staining. Thus, virtually no TUNEL-
positive cells were observed in the control group, and LPS caused a surge of TUNEL
positively stained cells (labeled in green) in the cortex, Cpu, CA1, CA3, and hilus. B355252
significantly reduced the numbers of TUNEL-positive cells in all five observed regions,
with a more pronounced effect observed in the cortex and CA1 than in the other regions
(Supplemental Figure S1).

3.3. B355252 Suppressed the Activation of Microglial and Astrocyte Cells Elicited by LPS

Microglial activation serves as a critical indication of brain inflammation. Iba-1 im-
munohistochemistry was utilized to detect microglial cells on brain sections from the
cortex, Cpu, and hippocampal hilus areas (Figure 4). In the control animals, microglial cells
appeared as densely stained brown cells with minimal dendrites extensions. Following 4 h
of LPS injection, the number of Iba-1stained cells moderately increased in the cortex and
Cpu, accompanied by enlarged cell bodies and a higher number of dendrites. This increase
was amplified after 24 h of LPS injection in the cortex and Cpu (p < 0.01 vs. NC), indicating
microglial activation.
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Figure 3. Histologic outcomes in LPS and B355252 treated animals: (A) H&E staining in the cortex
and caudate putamen (Cpu); (B) H&E staining in the hippocampal CA1, CA3, and hilus. LPS
administration led to increased cell death at 24 h in the cortex, Cpu, CA1, CA3, and hilus, while
treatment with B355252 ameliorated the damage. The data presented in the bar graphs represent the
mean +/− SD. Significance levels are denoted as *, ** for p < 0.05, 0.01 vs. NC (naïve control); and #,
## for p < 0.05, 0.01 vs. the respective LPS counterpart. The scale bar represents 100 µm.

Although pretreatment of B355252 did not reduce the number of microglial cells and
dendrites morphology after 4 h of LPS injection, it significantly suppressed the microglial
activation in the cortex and Cpu after 24 h of LPS injection (p < 0.01, LPS24h + B vs. LPS24h).

In the hippocampal hilus region, LPS induced a mild-to-moderate increases in Iba-1
positively stained microglial cells after 4 and 24 h; however, these increases did not reach
statistical significance due to variations. Similarly, though B355252 reduced the number of
Iba-1-positive cells to 50% of the LPS24h group in the hilus, this difference did not achieve
statistical significance due to variations within both the LPS24h and LPS24h + B groups
(Figure 4).
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Figure 4. Immunohistochemistry of microglial cells labeled by Iba-1 in the cortex, Cpu, and hilus:
(A) representative photomicrographs; (B–D) summarized mean Iba-1-positive staining intensity. LPS
significantly increased the number of microglial cells after 24 h in the cortex and Cpu, while B355252
successfully decreased the numbers of Iba-1-labeled microglial cells in the cortex and Cpu. Data in
bar graphs are presented as mean +/− SD. Significance levels are denoted as *, ** for p < 0.05, 0.01 vs.
NC (naïve control); ## for p < 0.01 vs. LPS24h. The scale bar represents 100 µm.

Astrocyte activation represents another significant response of brain tissue to inflam-
matory insults. Following LPS injection, there was a notable increase in the number of
GFAP positively labeled astrocytes, the number of dendrites per cell, and the percentage
area of GFAP staining after 24 h, indicating astrocytes activation. However, treatment
with B355252 resulted in a significant reduction in the number of astrocytes, number of
dendrites, and the area of GFAP staining (Figure 5).
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Figure 5. Effect of B355252 on astrocyte activation detected by GFAP immunofluorescent labeling:
(A) representative images of GFAP labeling (GFAP-positive astrocytes are labeled in green and
nuclei in blue by DAPI); (B) number of astrocytes in each experimental group; (C) mean number of
dendrites per cell; (D) mean percentage of GFAP positively labeled area in each group. LPS markedly
increased the number of astrocytes, the number of dendrites per astrocyte, and the percentage of
GFAP positively labeled area. B355252 profoundly reduced these counts in the cortex and Cpu. Data
in the bar graphs are presented as mean +/− SD. Significance levels are denoted as *, ** p < 0.05, 0.01
vs. NC (naïve control); #, ## for p < 0.05, 0.01 vs. LPS24h.

3.4. B355252 Reduced Protein Levels of TLR4

LPS is known to activate TLR4 [28]; however, it is not known as to whether B355252
can suppress LPS-induced TLR4 elevation. The anti-TLR4 antibody was utilized to assess
TLR4 immunoreactivity in brain sections. The results revealed a significant increase in
the mean intensity of brown precipitates, indicating TLR4-positive immunostaining in the
cortex, Cpu, and hippocampal hilus at 24 h post-LPS injection (p < 0.01 vs. NC; Figure 6A).
While LPS slightly enhanced TLR4 reactivity in the hippocampal CA1 and CA3 regions,
this enhancement did not reach statistical significance.
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Figure 6. Immunohistochemistry of TLR4 in LPS- and B355252-treated animals. LPS significantly
increased the TLR4 immunoreactivity in the cortex, Cpu, and hilus, while B355252 prevented these
increases in the cortex and hilus. Data in the bar graphs are mean +/− SD. Significance levels are
denoted as ** p < 0.01 vs. NC (naïve control); #, ## for p < 0.05, 0.01 vs. LPS24h. Bar = 100 µm.

Treatment with B355252 treatment led to a decrease in the mean TLR4 staining intensity
in the cortex, hilus, and CA1 areas (p < 0.01 LPS24h + B vs. LPS24h). Additionally, B355252
reduced TLR4 immunoreactivity in the Cpu and CA3; however, due to large variation,
these reductions did not reach statistical significance.

3.5. B355252 Lowered the Levels of NLRP3 and Caspase-1

TLR4 is known to activate the NLRP3 inflammasome pathway [29,30], which leads to
caspase-1 activation by cleavage. Immunofluorescent labeling of NLRP3 showed that LPS
resulted in a significant increases in the mean NLRP3 fluorescence intensity in the cortex,
Cpu, and hilus (Figure 7). Treatment with B355252 decreased NLRP3 immunoreactivity in
these three regions, as well as in the CA3. However, in the CA1 sub-region, there were no
differences in NLRP3 levels among the three experimental groups (Figure 7).

Immunohistochemistry of cleaved caspase-1 revealed that LPS led to moderate in-
creases in caspase-1 positively stained cells in the cortex, Cpu, and hilus after 4 h compared
to the control group. Following 24 h of LPS injection, there was a marked further increase
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in the numbers of caspase-1-positive cells in these three structures. Treatment with B355252
significantly reduced the number of caspase-1-positive cells both at 4 h and 24 h post-LPS
injection (Figure 8).
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Figure 7. Effect of B355252 on NLRP3 in LPS-injected animals. NLRP3-positive cells are labeled in
green, and nuclei are stained in red with propidium iodide. Following 24 h of LPS injection, there
was an increase in the NLRP3 immunoreactivity in the Cpu and hilus. Conversely, B355252 reduced
the NLRP3 fluorescent intensity in the cortex, Cpu, hilus, and CA3 regions. Data in the bar graphs
are presented as mean +/− SD. * for p < 0.05 vs. NC; # for p < 0.05 vs. LPS24h.

3.6. B355252 Reduced the Levels of IL-1β and IL-18

Activated caspase cleaves IL-1β and IL18, resulting in enhanced inflammatory re-
sponses. As depicted in Figure 9A,B, immunohistochemistry of IL-1β revealed a significant
increase in IL-1β immunoreactivity after 24h of LPS injection in the cortex and Cpu (p < 0.01
vs. control). The IL-1β level was also elevated in the hilus and CA3, but these increases did
not reach statistical significance. However, there was no increase in IL-1β levels in the CA1
area. B355252 markedly reduced the IL-1β immunoreactivity in the cerebral cortex, Cpu,
and hilus (p < 0.01 vs. LPS24h).

Moreover, Western blotting using cortical samples showed that IL-18 moderately
increased after 24 h of LPS injection, and B355252 reduced this increase (Figure 9C,D).
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3.7. B355252 Suppressed the LPS-Elicited Neuroinflammation

To assess the impact of B355252 on inflammation, the Proteome Profiler Mouse XL
Cytokine Array was utilized to analyze mouse brain lysates. The values of each detected
cytokine obtained from control animals were normalized as 1 (blue bars in Figure 10),
and the relative changes were calculated by comparing values from other groups (LPS24h,
orange bars; LPS24h + B355252, purple bars; and B355252, green bars in Figure 10). Using
a cutoff equal to or greater than a 2.0-fold increase and equal to or greater than a 50%
decrease, seventy-five cytokines were identified as having increased and two as having
decreased. Among them, forty-two showed increases of more than 2.5 fold.
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Figure 8. Caspase-1 immunohistochemistry in B355252-treated and LPS-injected animals. (A) Rep-
resentative photomicrographs of caspase-1 staining. Positive cells are labeled in brown, and nuclei
are counterstained with hematoxylin. The scale bar = 100 µm. (B–D) Summarized caspase-1 mean
intensity in the cortex, Cpu, and hilus. LPS increased the caspase-1imuunoreactivity after 4 h and 24 h
in the cortex, Cpu, and hilus. However, B355252 prevented these elevations in all three areas at both
time points. Data are presented as mean +/− SD. Significance levels are denoted as *, ** for p < 0.05
and p < 0.01 vs. NC; #, ## for p < 0.05, 0.01 vs. LPS24h.
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Figure 9. Effects of B355252 on IL-1β (A,B) and IL-18 (C,D). LPS increased the immunoreactivity of
IL-1β in the cortex and Cpu, while B355252 suppressed the increases. LPS also increased the protein
level of IL-18 in the cortex at 24 h post-LPS injection, and B355252 reduced this elevation. Data are
presented as mean +/− SD. *, ** p < 0.05 and p < 0.01 vs. NC; #, ## p < 0.05, 0.01 vs. LPS24h.

Treatment with B355252 suppressed the majority of LPS-induced cytokine increases,
except for four cytokines which further increased (CXCL1/KC, CXCL10/IP-10C, ICAM-
1/CD54, and myeloperoxidase), and one remained unchanged (Lipocalin-2/NGAL). Two
cytokines, CCL21/6ckine and EGF, were significantly suppressed by LPS at 24 h, and
B355252 failed to restore their levels (Figure 10). B355252 alone also increased the levels of
two cytokines (IL-2 and MMP-9). The names of these 44 elevated and depressed cytokines
are given in Figure 10, while all values of the 111 detected cytokines are provided in
Supplemental Table S1.
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4. Discussion

Our results demonstrate that the small molecular compound B355252 suppresses
LPS-elicited neuroinflammatory responses in brain tissues. A single-dose injection of
LPS lowered the animal behavioral score and led to cell death in the cortex, Cpu, and
hippocampal subregions, as well as increases in Iba-1-positive microglial cells and GFAP-
positive astrocytes at 4 h and 24 h of post-LPS injection. Furthermore, LPS increased
the immunoreactivities and/or protein levels of inflammatory markers such as TLR4,
NLRP3, caspase-1, IL-1β, and IL-18, and induced a 2.5-fold increase in forty-two cytokines.
B355252 successfully improved animal behavioral scores, reduced the number of cell deaths,
microglial cells, and astrocytes, decreased TLR4, NLRP3, caspase-1, IL-1β, and IL-18, and
suppressed the majority cytokines elevated by LPS.

Our results confirm that systemic LPS injection induces neuroinflammatory responses,
as represented by activations of microglia and astrocytes and increases in inflammatory cy-
tokines in the brain. Previous studies have demonstrated that LPS disrupts the blood–brain
barrier (BBB) [31,32]. Therefore, LPS systemic injection into animals has been broadly used
by neuroscience researchers as a neuroinflammation model. While in vitro experiments
have established that B355252 potentiates NGF-promoted neurite growth and possesses
neuroprotective effects against glutamate-, 6-hydroxydopamin-, and cobalt-induced cell
death in cell cultures [1–6], to date, only one in vivo study has been conducted, and the
results showed that B355252 reduced infarct volume and inhibited neuroinflammation, as
evidenced by reductions in ROS accumulation, IL-1β content, and microglia and astrocyte
activation [8]. In the present study, we induced an inflammatory model in mice via in-
traperitoneal LPS injection and examined the anti-inflammatory effects of B355252. LPS
significantly reduced animal behavioral scores, with nine out of eleven animals showing
declined scores after 24 h of LPS injection, characterized by reduced active body movements
and slowed reactions to stimuli. These behavioral changes could either be caused by the
inflammatory response in the whole-body systems or damage to the brain, especially to
the hippocampus.

LPS resulted in mild neuronal damage in the cortex, Cpu, CA1, and CA3 4 h post-LPS
injection. The damage in the hilus region is significantly high. Using Fluoro Jade staining,
Ekdahal and colleagues observed pronounced neuronal death in the hippocampal hilus
region after LPS injection [33], suggesting that the hilus region may be more vulnerable
than other brain regions to LPS-induced injury. The numbers of damaged neurons were
further escalated at 24 h post-LPS injection. B355252 significantly ameliorated the above
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alterations caused by LPS at 24 h, demonstrating that B355252 possesses a neuroprotective
effect in an LPS-induced inflammatory model in vivo. It has not been examined whether
B355252 can pass through the BBB. However, in one study, Wang and colleagues injected
B355252 intraperitoneally in mice subjected to ischemic stroke and their results demon-
strated remarkable neuroprotection in reducing ischemic brain damage and suppressing
neuroinflammation by B355252 [8]. In another study, our group examined whether B355227,
an analog of B355252, could pass through the BBB using an in vitro model of the BBB. The
result demonstrated that the BBB is permeable to B355227 [9]. Although there is no direct
evidence proving the passage of B355252 through the BBB, these two experiments presented
a strong probability.

Our findings indicate that B355252 exhibits an anti-inflammatory effect in the brain.
Neuroinflammation, characterized by the activation of microglial cells and astrocytes [34–36],
was observed following LPS systemic injection. Microglia normally display a ramified mor-
phology with extended or retracted dendrites under physiological conditions. However, in
pathological conditions, microglia undergo hyper-ramification, with elongated dendrites and
increased branching in the early stages of activation. This progresses to dendrite retraction
and thickening, culminating in an amoeboid shape for phagocytosis [37]. Despite not observ-
ing Iba-1 positively labeled amoeboid microglial cells even after 24 h of LPS injection, our
results suggest that the microglial cells’ activation was in its early or intermediate stages.

Astrocyte activation is typically characterized by an increase in the number of GFAP-
positive-stained cells, enlarged soma, and increased dendritic processes [35,38]. These
morphological changes were evident in animals injected with LPS after 4 h, most promi-
nently after 24 h, indicating an accelerated neuroinflammatory response. B355252 effectively
suppressed the activation of both microglial and astrocytic cells, highlighting its potent
anti-inflammatory properties. Considering that a B355252 analog with similar molecular
structure can permeate the BBB [9], further exploration of B355252 in vivo application is
warranted. We anticipate that our study will broaden the preclinical applications of B355252
in the short term and facilitate its clinical translation as a potentially valuable therapy for
mitigating neuroinflammatory responses overall.

Our findings suggest that B355252 may attenuate LPS-induced neuroinflammation
and inhibit the pyroptotic pathway. The key steps in pyroptosis activation involve the
formation of NLRP3-mediated inflammasome and subsequent caspase-1 activation, IL-1
and IL18 cleavage, and N terminal release from GSDMD. Toll-like receptor 4 (TLR4) plays
a crucial role in the immune system by recognizing pathogen-associated molecular pat-
terns (PAMPs). Recent studies have shown that TLR4 exacerbates microglial pyroptosis
through NLRP3 inflammasome activation [39,40]. Our results revealed that LPS increased
the levels of TLR4, NLRP3, cleaved caspase-1, IL-1β, and IL-18, which is in agreement
with previous publications showing activation of TLR4 and NLRP3 by LPS [28,29,41].
B355252 suppressed TLR4, NLRP3, caspase-1, IL-1β, and IL-18 in LPS-injected animals,
demonstrating that B355252 is capable of inhibiting the LPS-activated pyroptosis signaling
pathway. Pyroptosis has been shown to be involved in the pathogenesis of cardiovascular
diseases, metabolic diseases, and neurological diseases (for reviews, see [42–48]). In the
nervous system, pyroptosis is associated with Parkinson’s disease, Alzheimer’s disease,
amyotrophic lateral sclerosis (ALS), and cerebral stroke. Therefore, pyroptosis has emerged
as a novel therapeutic target for various diseases [48–50]. For example, activation of py-
roptosis suppresses tumor growth and promotes anti-cancer drug sensitivity [51,52]; while
inhibition of pyroptosis prevents neuronal death and improves behavioral performance in
Parkinson’s disease, Alzheimer’s disease, ischemic stroke, traumatic brain and spinal cord
injuries, and diabetic encephalopathy models [53–61].

Furthermore, our results demonstrate that LPS leads to an increase of 75 or 42 cy-
tokines when using 2.0- or 2.5-fold elevation as cutoffs, respectively. These increased
cytokines could be classified into six subgroups: interleukins (IL-2, IL-3, IL-6, IL-12 p40,
IL-13, IL-33), TNF cytokines (BAFF/TNFRSF13B, Pentraxin 2/SAP, Pentraxin 3/TSG-
14), C-C and C-X motif chemokines (CCL2/JE/MCP-1, CCL16/C10, CCL11/Eotaxin,
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CCL12/MCP-5, CCL17/TRAC, CCL22/MDC, CXCL1/KC, CXCL9/MIG, CXCL10/IP-10,
CXCL13/BLC/BCa-1, CXCL16, LIX), growth factor cytokines (Amphiregulin, Angiopoi-
etin 2, Endostatin, FGF21, Gas6, IGFBP-1, IGFBP5, PDGF-BB, Reg3G, WISP-1/CCN4),
and metabolism-regulating cytokines (Adiponectin, Angiopoietin-like protein 3, chemerin,
chitinase 3-like-1, fetuin, LDLR, leptin, Resistin). Additionally, there were increased levels
of neutrophil gelatinase-associated lipocalin (NGAL/LCN2/Lipocalin-2), matrix metal-
loproteinase 9 (MMP-9), myeloperoxidase (MPO), and osteopontin (OPN). These results
demonstrate that LPS can induce broad inflammatory responses in the CNS, and B355252
efficiently suppresses almost all the LPS-triggered cytokines.

The broad-range increases in cytokines could be the consequence of pyroptosis pathway
activation or independence. Interleukins, TNF cytokines, and c-c and c-x chemokines could
be released as part of an inflammatory response triggered by pyroptotic cell death [62–65].
Inhibiting TNF-α by CC-5013 has been shown to suppress pyroptosis signaling in the liver
and kidneys through a caspase-1 independent pathway [66]. Although the relationships
between growth factor cytokines, metabolism-regulating cytokines, and pyroptosis are not
well defined, nonetheless, B355252 inhibited the majority of the LPS-triggered cytokine
elevation, suggesting the B355252 possesses a broad anti-inflammation effect in the CNS.

Two cytokines, CCL21/6Ckine and EGF, exhibited decreases of more than 50% in LPS-
injected animals. CCL21/6Ckine, a highly expressed chemokine in secondary lymphoid
organs such as lymph nodes and the spleen, plays a crucial role in adaptive immune
responses and inflammation. In the CNS, CCL21 drives CD4+ T cell proliferation and
migration into the CNS parenchyma [67]. Overexpressing CCL21 induces significant
neuroinflammatory responses in the brain [68]. EGF (epidermal growth factor) promotes
epidermal keratinocyte proliferation and differentiation and mitigates inflammation [69].
While it is understandable that LPS suppresses the anti-inflammatory EGF, it remains
unclear as to why LPS decreases the pro-inflammatory CCL21 as well.

B355252 alone increased the levels of two cytokines: IL-2 and MMP-9. IL-2 (interleukin-
2) regulates both pro- and anti-inflammatory responses. On the one hand, it promotes T cell
proliferation and differentiation and activates the RAS-ERK signaling pathway; on the other
hand, it activates the TORC1 signaling pathway, which has been shown to be associated
with energy metabolism and enhanced inflammation [70,71]. MMP-9 regulates extracellular
matrix degradation and remodeling. In the CNS, MMP-9 promotes neuroinflammatory
processes [72]. The observed increase in IL-2 and MMP-9 suggest that B355252 alone may
fine tune the inflammatory processes in the brain.

The present study has the following limitations: (1) although we have employed
statistical methods that are robust with respect to smaller sample sizes, one should be
cautious when interpreting the results due to the low numbers of animals in each group
for the histology and biochemical analyses; (2) a single-dose injection of LPS was used to
induce neuroinflammation; in clinic, chronic inflammatory responses may serve as one of
the underlying pathogenesis causing chronic neurodegenerative disorders; thus, exploring
the effects of repeated low-dose LPS injection in relation to chronic neural degeneration may
shed light on the pathogenesis of neurodegenerative disorders; (3) though indirect evidence
suggests that B355252 may pass through the BBB, no control of B355252 permeation into
the brain tissue was performed.

5. Conclusions

In summary, our results confirmed that LPS activated the pyroptotic pathway and
caused prominent neuroinflammatory responses. Furthermore, we demonstrated that
B355252 possesses a potent anti-inflammatory effect in the brains of animals systemically
injected with LPS. This effect may be related to its ability to suppress NLRP3-mediated
pyroptotic signaling and pan-cytokine release. The therapeutic effects of B3555252 warrant
further examination in other disease models.
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