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Abstract: We present a novel set of quantitative measures for “likeness” (error function) designed to
alleviate the time-consuming and subjective nature of manually comparing biological recordings from
electrophysiological experiments with the outcomes of their mathematical models. Our innovative
“blended” system approach offers an objective, high-throughput, and computationally efficient
method for comparing biological and mathematical models. This approach involves using voltage
recordings of biological neurons to drive and train mathematical models, facilitating the derivation
of the error function for further parameter optimization. Our calibration process incorporates
measurements such as action potential (AP) frequency, voltage moving average, voltage envelopes,
and the probability of post-synaptic channels. To assess the effectiveness of our method, we utilized
the sea slug Melibe leonina swim central pattern generator (CPG) as our model circuit and conducted
electrophysiological experiments with TTX to isolate CPG interneurons. During the comparison of
biological recordings and mathematically simulated neurons, we performed a grid search of inhibitory
and excitatory synapse conductance. Our findings indicate that a weighted sum of simple functions is
essential for comprehensively capturing a neuron’s rhythmic activity. Overall, our study suggests that
our blended system approach holds promise for enabling objective and high-throughput comparisons
between biological and mathematical models, offering significant potential for advancing research in
neural circuitry and related fields.

Keywords: CPG; blended approach; neural network; parameter optimization; model training

1. Introduction
Central Pattern Generators

A central pattern generator (CPG) comprises interneurons that generate stable rhyth-
mic patterns from non-rhythmic input. Such multi-phase patterns or repetitive rhythms are
critical for animal functioning and behavior [1,2]. Examples of motor actions controlled by
CPGs include heartbeat, respiration, sleep, chewing, and locomotion [3–10]. CPGs have also
been suggested as the operational machinery of the cortex [11]. There are two basic types
of CPG models and their building blocks: biophysically realistic and phenomenological.
Biophysical models incorporate known molecular mechanisms underlying the generation
of electrical activity in neurons and synapses, while phenomenological models simplify
the firing of an action potential (AP) as an instantaneous pulse and effective synaptic
coupling [12–17].

Several mathematical models of CPGs have been proposed to capture the dynamic
properties of biological CPGs, such as robustness and flexibility [18–24]. Additional re-
search has delved deeper into the constituents of CPGs that encompass several rhythmic
patterns. These investigations have revealed that CPGs can be flexibly switched between
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multiple rhythms based on prevailing inputs, which steer the CPG towards one of these
rhythms. These models can be classified into phenomenologically and biophysically re-
alistic approaches. Recently, it has been demonstrated that a single CPG can generate
multiple rhythms, leading to a multiplicity of emergent rhythmic patterns [25–28]. Several
computational studies have focused on the attraction wells of small neural networks, which
draw inspiration from biological circuits such as the crustacean stomatogastric ganglion
(STG) pyloric CPG [29], as well as the Tritonia swim CPG [30]. These studies have explored
the dynamics of three- and four-cell neural networks coupled by chemical (excitatory,
inhibitory, or both types of synapses) as well as electrical synapses, revealing the ability
of these networks to produce multiple rhythmic patterns [31–36]. One of the aims of this
research trend was to investigate the impact of synaptic coupling variations on network
capacity to generate distinct bursting patterns of activity.

In many CPGs, particularly spatially symmetric ones, such as the swim CPGs of
two sea slug species, Melibe leonina and Dendronotus iris [9], there is a common building
block called a half-center oscillator (HCO) [37]. The HCO, comprising two mutually
inhibiting neurons or neuron populations, produces anti-phase bursting, which is its key
feature. Our long-term goal has been to develop, as accurately as possible, the biologically
plausible models of these swim CPGs to understand how they support their rhythm-
generating dynamics, maintain stability (including structural), and remain flexible yet
resilient to perturbations.

A few mathematical models of the Melibe swim CPG were developed based on its
biological counterpart to explore the dynamical foundations of the emergent network-
level bursting HCO rhythm [38–40]. The circuitry of the CPG was found to be complex
(see Figure 1) despite the relatively simple movement of lateral bending swimming. The
mathematical model used here was constructed in a simplified configuration of the Melibe
swim CPG, as previously developed in Ref. [39]. Figure 2 illustrates the reeducation stages
toward the simplified CPG model. To qualify as an HCO demonstrating an emergent
bursting rhythm, experimental studies on these two specific circuits have de facto shown that
their interneurons must display either solely tonic-spiking activity and quiescent states or a
combination of these behaviors when isolated. When reciprocally pair-wised coupled and
tuned to produce specific dynamical properties, tonic spiking, and quiescent interneurons
create a bursting anti-phase emergent pattern network [40]. Non-endogenous bursting
neurons, such as tonic spiking and quiescent interneurons, still require dynamic mechanisms
such as synaptic escape and post-inhibitory rebound to function properly [41,42].

Figure 1. Panel (A) demonstrates an intricate circuitry of eight identified interneurons that comprise
the center pattern generator (CPG) regulating swimming behavior in the sea slug, Melibe leonina. This
CPG is comprised of two opposing neuronal populations of several half-center oscillators (HCOs),
each consisting of pair-wise inhibitory-coupled right (R) and left (L) swim interneurons (sIs). The
synapses here are represented by dashed/solid lines with symbols △, ▽, and •, which indicate
slow-/fast-activated synapses, excitatory and inhibitory, respectively, whereas jagged lines indicate
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electrical synapses. Panel (B) demonstrates the synchronized intercellular voltage recordings of
the six CPG interneurons during a swimming episode in the control case, revealing the network
bursting pattern with fixed phases. Interneurons 1L, 2L, and 3R display specific burst periods of
approximately 5 s (in normal swim) and with anti-phase (0.5) phase lags between corresponding
contralateral interneurons.

Figure 2. The CPG circuitry in panel (A) represents a first-step reduction in the number of ipsilateral
interneurons, where interneurons 1L/R and 2L/R, introduced in Figure 1A, are combined into a
single cluster due to strong gap junctions connecting them on each side, denoted by 1/2L and 1/2R,
respectively, with close bursting phase episodes. The CPG configuration in panel (B) is a further
reduction, achieved by bypassing the intermediate interneurons 4L and R, following the bursting
phases generated by the combined 1/2L and 1/2R due to the feed-forward drive through slightly
delayed excitatory synapses. The synapses denoted by dashed/solid lines represent slowly/quickly
activated synapses, respectively, while jagged lines denote gap junctions (electrical synapses).

The electrophysiological recordings were acquired using Spike2 ver. 8 software at a
sampling rate of 3 kHz. Although the voltage traces may appear continuous, they consist
of discrete values; see Table 1.

Table 1. This table presents a vector array of voltage values sampled at a rate of 1.05 ms electrophysiolog-
ical recordings on the Melibe swim CPG, in vitro. The time array is located in the left column, while the
remaining columns represent voltage samples of interneurons 1L, 1R, and 3L. These recordings serve
as the training data for blended and bio-math neural networks, which are coupled and run using such
a dataset.

Time (s) 1L (mV) 1R (mV) 3L (mV) 3R (mV)

0 −52.14 −7.96 −36.16 −46.87

0.00105 −52.29 −20.14 −34.05 −46.97

0.00210 −52.15 −27.64 −33.26 −46.74

0.00315 −52.03 −32.23 −33.83 −46.51

0.00420 −53.87 −35.02 −33.92 −46.17

. . . . . . . . . . . . . . .

The voltage values (in mV) were time-sampled and represented as a time series, like
in Figure 3.

Subsequently, the voltage data were imported into MATLAB and stored as vector
arrays for further analysis. Determining the sampling rate used during the electrophysio-
logical recordings is crucial as it is utilized at a time step of 1.05 ms in the ODE integration
algorithm, ensuring that the mathematical and biological neurons run synchronously.
Aligning the sampling rate with the integration step is a critical step in the analysis. Failure
to do so results in a misalignment in the temporal scales of the mathematical and biological
time series.
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Figure 3. An episode of simultaneous electrophysiological voltage recordings of four CPG interneu-
rons at a sampling rate of 1.05 ms using Spike2 ver. 8 software. To train and optimize the suggested
neuron models, we further synchronize these recordings with mathematical simulations using the
Euler ODE solver with an equal time step of 1.05 ms. One can observe that relying on time-averaging
over voltage traces was hardly feasible to detect and evaluate variations in neural activities due to
sparse representations of fast spikes with limited sampling points compared to heavily populated
longer inter-spike intervals dominating the recordings.

Experimental studies using tetrodotoxin (TTX) have effectively demonstrated that
this neuroblocker, as illustrated in Figure 4 when applied to the pedal commissure (where
axons cross contralaterally), resulted in the following: (i) the decoupling of interneurons in
the Melibe swim CPG (as shown in A); (ii) the cessation of normal network bursting (B); and
(iii) the revelation that the interneurons remained tonically active with similar spike rates
when isolated from each other (C). Furthermore, swim interneurons only exhibited quies-
cence or tonic-spiking activity in isolation even when injected with hyper- or depolarizing
currents. In this study, the biological recordings of the CPG were confined to voltage time
series obtained through neuronal electrophysiology experiments (intracellular recordings).

The periodic bursting observed in the Melibe swim CPG has been identified as a
network-level phenomenon that emerges stably due to nonlinear and reciprocal interactions
among its coupled interneurons involved in rhythm generation, as depicted in Figure 1.
Based on the TTX experiments, the AP frequency in Si3 (swim inter) neurons was found
to be higher than in the Si2 neurons during swim episodes. This observation should be
accounted for in the mathematical modeling of the system.

Figure 4. Application of a tetrodotoxin (TTX) neurotoxin on the pedal commissure of the axons
crossing contralaterally (i) decouples the opposing interneurons of the Melibe swim CPG circuit, as
shown in panel (A); which results in (ii) ceasing the normal network bursting (the three control traces
in panel (B)), and (iii) reveals that the interneurons remain tonically active (traces in panel (C)) with
similar spike rates when become isolated from each other.

To create mathematical models of biological CPGs, it is necessary to compare mathe-
matical time series to biological recordings. This comparison involves analyzing the voltage
output, which is obtained from electrophysiological experiments in biological models and
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simulations in mathematical models. However, this approach suffers from two drawbacks:
it is both time-consuming and imperfect. Although mathematical models may closely
resemble biological neurons, there can still be minute differences between the two, such as
variations in the shape of APs.

Comparing biological recordings from electrophysiological experiments to their mathe-
matical models is a time-consuming process that involves manual processing. This low rate
of comparison highlights the need for a high-throughput and accurate method to streamline
model construction. To address these imperfections and reduce time consumption, the
development of an error function is necessary to quantify differences between biological
and mathematical voltage time series. While various methods have been proposed for com-
paring neural time series, they fail to provide a quantitative measurement for weighing and
comparing separate characteristics [43–45]. The ability to quantify separate characteristics
is crucial for expanding the scope and flexibility of the error function, thereby accurately
weighing relevant qualities in computational studies.

In this study, we compare a number of the so-called blended CPG circuits, which
incorporate voltage recordings measured in the biological swim CPG interneurons to train
and optimize the parameters of mathematical neurons to generate “similar” voltage traces
as outcomes. First, we develop a blended synaptic current to inject into a mathematical
neuron. The key component of this current is the synaptic probability or neurotransmitter
release rate or transmission rate as a nonlinear function of the voltage variable (mainly due
to the action potential (A) or spike frequency) conserved in biological recordings. Such a
synapse is modeled by a single differential equation (or an ODE system) that simulates
a possible biophysical activity of a biological synapse to be coupled or unidirectionally
integrated into a mathematical model called a math neuron. To synchronize or time-
wrap the biological recordings, we execute our mathematical models—both cellular and
synaptic—at a fixed time step that matches the sampling rates of the experimental voltage
time series. This can be conducted using an Euler and fourth-order Runge–Kutta ODE
solver with a constant time step, provided the date sampling rate is high enough. To
evaluate the “healthy” parameter space of the error function, we conduct a grid search of
the conductance of the inhibitory and excitatory synapse from the biological recordings
and create an error parameter space.

In what follows, we will present neurophysiological data, specifically intracellular
recordings from the swim Melibe CPG interneurons in normal conditions and a curare
bath, and what pivot cellular qualities and qualities matter most for our study. Next, we
introduce the model of the synapse and how time-varying strength correlates strongly
with the spike frequency in presynaptic neurons, biological or mathematical. After that,
we introduce the math neuron model and discuss its pivot qualities. The blended CPG
networks are introduced to incorporate biological and mathematical neurons and to train
the latter. Their outcomes are measured and compared against each other to find the degree
of their likeness with the combined toolkit of error or cost functions proposed. At the end,
we will discuss our findings and future work.

2. Methods
2.1. Blended Synapse

To simulate the dynamical properties of the swim CPG, it is necessary to model its
intrinsic coupling through synaptic interactions, varying from a weak to a strong drive,
depending on the spike frequency in presynaptic neurons, which can nonlinearly affect
and modulate the dynamics in the driven postsynaptic neurons. In a blended system, the
mathematical synapse must unidirectionally translate the activity of a biological neuron
into a mathematical neuron, as well as facilitate interactions among mathematical neurons
when coupled. To achieve this, we utilized the features of the synaptic current, represented
as follows:

Isyn = gsynS(t)(Vpost(t)− Erev). (1)
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Here, gsyn is the maximal (constant) conductance of the chemical synapse, Vpost is the
membrane potential of the targeted postsynaptic neuron, and Erev is the synaptic reversal
potential. In our study, we set the reversal potential to Einh

rev = −80 mV for inhibitory
chemical synapses and Eexc

rev = +40 mV for excitatory ones, in line with previous modeling
studies [39]. However, experimental evidence suggests that reversal potentials are not
uniform across all neurons. For instance, the reversal potential for swim interneuron Si2
was found to be Einh

rev = −80 mV, while that for Si3 was Einh
rev = −50 mV. Additionally,

excitatory synapses in the Melibe CPG had a reversal potential of Eexc
rev = −10 mV.

To translate the voltage Vpre recordings of a biological interneuron into the synaptic
probability 0 ≤ S(t) ≤ 1, we utilized the single ODE equation, as follows:

dS
dt

=
α(1 − S)

1 + e−k(Vpre(t)−Vth)
− βS, (2)

where k, α, and β are two positive constants that, loosely speaking, determine how quickly
the initiation of an inverted growth of the synaptic probability is, and the rate of its
exponential decay due to β. Here, the parameter, Vth, denotes the synaptic threshold. When
the voltage, Vpre, in the presynaptic neuron drops below Vth, the synaptic probability, S(t),
decays following the linear ODE, S′(t) = −βS. Conversely, as long as Vpre exceeds Vth,
the differential equation for S(t) above temporally acts as S′(t) = α(1 − S)− β S, which
makes S(t) increase toward its possible fixed value S∗ = α/(α + b) ≤ 1. The value of Vth
is set between the AP peak and its hyperpolarized value at some threshold set between
−20 and 20 mV, allowing S(t) to oscillate quickly or slowly between [0, 1] depending on
the values of α and β calibrated selectively to match the admissible spike frequency range
in the presynaptic neurons. Let us reiterate that when the presynaptic neuron fires an AP,
the synaptic probability is maximized, for example, during active phases of bursting. In
contrast, S(t) decreases when the AP falls below the synaptic threshold (Vpre < Vth); this
infers that the neurotransmitter release does not occur, and neuron communication either
weakens or becomes non-existent during such episodes, for example, during the quiescent
phase of bursting. When k is large, the switching from Vpre < Vth to Vpre > Vth and back
is nearly instantaneous, rendering the equation a continuous sigmoidal approximation
S(t) = 1/

(
1 + e−k(Vpre(t)−Vth)

)
of the Heaviside step function, which is also termed as a

fast threshold modulation (FTM) [46].
The above synaptic Equation (2) is commonly referred to as an α- or α-β-synapse that

describes the first-order kinetics [46] of chemical synaptic signaling. It incorporates the
logistic function that modulates the transition from a closed to an open state, represented
by α. This equation is based on earlier work that simulated synaptic potentials using the α-
function [47]. The transition rates between the open and closed states are governed by two
constants, α and β, where α denotes the rate of transition from a closed to an open state and
β represents the rate of transition from an open to a closed state. The α-values correspond
to the strength of binding of neurotransmitters to post-synaptic receptors, whereas the
β-values are influenced by various factors, such as enzymatic inactivation, diffusion, and
the presynaptic reuptake of neurotransmitters in the synaptic cleft.

In instances where β ≪ α, the rate of depletion of neurotransmitters is slow, leading
to an accumulation of neurotransmitters even at low AP frequencies. Consequently, the
probability of the system being open is higher than closed. For example, in the case of the
Melibe swim CPG, whose active interneurons demonstrate spike rates varying between
5 and 12 Hz during the swim episodes (see Figure 4), fast synapses can be realistically
modeled with the constants set around α = 0.05 and β = 0.005, while slow synapses
are better represented with smaller values, such as α = 0.02 and β = 0.0002, for example.
Lowering α reduces the synaptic speed, necessitating a decrease in β to avoid an abnormally
fast increase in the accumulation rate.

A significant characteristic of CPGs in sea slugs is the sigmoidal relationship between
the probability of synapses opening, and AP frequency ranging typically between 5 and
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12 Hz. Prior research [48] demonstrated the sigmoidal relationship between vesicle release
rate and presynaptic calcium concentration, as presented in Figure 5. To replicate the ob-
served biological relationship between the Si2 and contralateral Si3 neurons and configure
the mathematical synapse, we reproduced the sigmoidal relationship between the average
of the postsynaptic variable and the AP frequency of the presynaptic neuron, as shown
in Figure 6. By estimating an appropriate pair of values for α and β (as manifested by
Figure 6B), we were able to achieve the dynamic responses of Si3 neurons that are shown
in Figure 5B.

Figure 5. Experimental evidence of a biphasic synaptic response in the Melibe swim CPG. (A) Experi-
mental setup: a spike train is injected into the quiescent presynaptic interneuron 1R to stimulate a
burst of action potentials, to examine postsynaptic potentiation in the interneuron 3L coupled with a
biphasic synapse ending with a fast •-inhibitory terminal and an adjacent slow ▲-excitatory terminal.
(B) Stimulation of the interneuron 1R with a train of short depolarized pulses at 15 Hz triggers a
biphasic synaptic response in interneuron 3L, consisting of an initial fast hyperpolarization followed
by a slow depolarization. The initiation phase of the depolarization is marked by an asterisk in the
time progression. The slow depolarization persists until the end of the stimulation, followed by a
slow relaxation phase back to the steady state voltage level.

Figure 6. The time-scale calibration of the α-synapse model (2) to pair it and match it with the range
of spike rates observed in the swim CPG interneurons. Panel (A) displays a significant buildup
of synaptic probability S(t) in a given α synapse as the spike frequency in the presynaptic neuron
increases. Panel (B) shows the nonlinear dependence of the average synaptic probability, ⟨S⟩, in the
α-synapse model (2) with fast activation due to a fixed large time constant, α = 0.5, and decreasing
time constant, β, from 0.5 in the fast synapse to 0.001 in the slow synapse, on the spike frequency in
the presynaptic neuron.

In the utilized model, the determination of a synapse as slow or fast is exclusively
based on the α and β values, with no other parameters involved. If the value of α signifi-
cantly exceeds that of β, synaptic probability attains saturation at low frequencies. In other
words, the synaptic ion channels open with minimal stimulation and persist in an open
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state, as demonstrated by the upper characteristic curve (red dots) in Figure 6B. Conversely,
when the value of β is approximately equivalent to α, the synapse becomes fast and, thus,
necessitates a higher spike frequency in the presynaptic neuron to achieve an expected
saturation plateau, if any, in its characteristics. This phenomenon is illustrated by the lower
characteristic curve (yellow dots) in Figure 6B. One can see from this figure that the average
synaptic probability ⟨S⟩ builds up nonlinearly with the increase in the interspike frequency
in the presynaptic interneuron. This implies the synapse of the synaptic current remains
weak at low frequencies and may become fully saturated at frequencies higher than 10 Hz,
depending on its calibration.

Inspired and backed up by accurate neurophysiological experiments that detail the
correlation between spike frequency variations in presynaptic interneurons and the cor-
responding responses—known as IPSP/EPSP, abbreviations for inhibitory and excitatory
synaptic potentiation, or deviations in voltages observed in the postsynaptic neurons—we
carefully calibrate the time constant in the synapse model (2) to ensure that the synaptic
probability S(t) strongly correlates (varies) with the spike frequency in the active presynap-
tic neurons, both biological and mathematical. This feature is manifested in all simulations
involving voltage traces in our blended networks; see Figures 7–11, where the voltage
traces are aligned with simulated synaptic outcomes to underscore this key property, which
happens to be pivotal for the successful and plausible modeling of flexible, non-stiff dy-
namics in oscillatory networks, like swim CPGs in sea slugs. For example, one can see
from Figure 7 that the synaptic parameters α and β are adjusted so that the corresponding
time-varying probabilities, S(t), corresponding to the color-matched voltage traces of the
interneurons S1/2L and 3R are maximized and minimized to match the fluctuations of
the spike frequencies during the bursts, demonstrating some small summation due to
spontaneous spike trains during the quiescent phase.

Figure 7. Panel (A) demonstrates a long, 12–14 s, bursting alternation pattern between the leading
interneurons 1/2L and 1/2R and the following post-synaptic interneurons 3L/R of the Melibe leonina
swim CPG in a curare bath (see Figure 8(A1) below) blocking chemical synapses of 3L/R. (B) Spike
frequency variations (matching colors) of all four cells are plotted across time, revealing higher
spike rates in the postsynaptic interneurons 3L and 3R, driven by expiatory synapses originating in
interneurons 1/2R and 1/2L. (C) Simulated neurotransmitter release probabilities S(t) throughout
a “blended” α-synapse model (2) demonstrate a strong correlation with specific time-varying spike
rates in the voltage recordings of biological neurons 1/2R and 3R shown in Panel (A).
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Figure 8. The 4-cell swim CPG in a curare bath (panel (A1)) designed to block outgoing synapses of
both interneurons 3L and 3R, and a blended network (panel (A2)), where biological bursters 1/2R and
1/2L provide (contralaterally) a simulated excitatory drive and (ipsilaterally) a simulated inhibitory
drive, resp., onto the mathematical replicas ML/MR of interneurons 3L and 3R. Panels (B1,B2): slow
12–14 s bursting generated by an HCO due to strong inhibitory reciprocation between interneurons
1/2L and 1/2R in the absence of feedback inhibition from interneurons 3L/R. Panels (B3,B4): an
excitatory drive from the alternating bursters 1/2L and 1/2R causes the counter-lateral quiescent
interneurons of both types, biological interneurons 3L and 3R (gray voltage traces), and their math-
ematical replicas ML and MR (superimposed red traces) to follow, while the bilateral inhibition
cuts them off into even spike trains. Here, the traces are superimposed with the corresponding
synaptic probabilities emulated through Equation (2) to model excitatory and inhibitory currents (by
Equation (1)) injected in the mathematical neurons (in red) of the blended circuitry in panel (A2).

Figure 9. Panels (A1,A2) show the 4-cell swim CPG in a normal swim case in saline (A1), and a
blended network (A2), both consisting of two biological interneurons, 1/2R and 1/2L, which project
an excitatory drive contralaterally and an inhibitory drive ipsilaterally, respectively, onto the biologi-
cal interneurons, 3L/R, and the mathematical models ML/MR (A2). Panels (B1,B2) depict voltage
recordings of the Melibe swim CPG interneurons 1L and 1R bursting in anti-phase, which are super-
imposed below with the aligned simulated traces of neurotransmitter release probabilities S(t) for
each neuron. Panels (B3,B4) demonstrate voltage recordings (in gray) of the biological interneurons
3L and 3R, overlapping with simulated voltage traces (in red) of their mathematical models ML and
MR at ∆Ca = −30 mV, alongside the bottom traces of neurotransmitter release probabilities.
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Figure 10. (A) A blended network where the voltage recordings of the Dendronotus swim CPG neuron
Si1 are used to activate and induce an alternating bursting rhythm in two quiescent mathematical
neurons, M1 (blue) and M2 (green). The excitatory and inhibitory mathematical synapses are
indicated by ▲ and •, resp. (B) Color-matched voltage time series of the pre-recorded tonically
spiking Dendronotus interneuron Si1 alongside its simulated synaptic probability, whose excitatory
drive injected into two quiescent mathematical neurons makes them burst in alternation.

Figure 11. A blended 3-cell configuration utilizing voltage recordings of the Dendronotus Si3-neuron
to induce an alternating bursting rhythm in two mathematical M1/M2 neurons. (A) The system
schematics include the biological Si3 neuron, which excites (via a synapse with (▲) a quiescent M1
neuron and inhibits (a synapse with •) a tonic-spiking M2 neuron; both M1 and M2 also inhibit
each other during their active phases. Panel (B) presents a voltage time series of the Dendronotus
swimming interneuron Si3, and a simulated varying synaptic probability (trace below), along with
voltages and synaptic probability traces to model synaptic interactions between the mathematical
neurons in alternating bursts.

2.2. Mathematical Model of the Swim CPG Interneurons

The mathematical model used to simulate and match biological swim interneurons
(Sis) in the Melibe leonina CPG is a specific adaptation of the original Plant model [49–52],
which was derived using the conductance-based Hodgkin–Huxley (HH) formalism. The
Si model was calibrated to demonstrate quiescent or tonic spiking activity only, without
generating bursting endogenously or in response to perturbation of external currents. Its
key features are a pronounced post-inhibitory rebound and a noticeable spike frequency
adaptation in response to hyperpolarizing pulse perturbations, like the behaviors of their
biological counterparts. A detailed analysis of the Si model and the pairing of matching
synaptic properties to build pairwise rhythm-generating circuits can be found in Ref. [53].
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The spike generation mechanism of the SI model, concerning its fast dynamics, re-
sembles that of the original HH model. It consists of fast-inward sodium and calcium
currents, II , an outward potassium current, IK, and an ohmic leak current, Ileak, bidirection-
ally coupled through the voltage, V(t), with a slow TTX-resistant sodium–calcium inward
current, IT , and an outward calcium-activated potassium current, IKCa, as summarized in
the following equation:

Cm
dV
dt

= −II − IK − Ih − IKCa − IT − Ileak − ΣIsyn. (3)

Here, the h-current, Ih, is another quickly depolarizing current that becomes active when
the membrane voltage falls below −50 mV. The inclusion of Ih in the Si model prevents it
from over-hyperpolarization. Additionally, the term ΣIsyn represents the flow of various
synaptic currents, inhibitory, excitatory, and electric, from other presynaptic neurons, as
described by Equation (3). Detailed descriptions and equations for both fast and slow
currents are provided in the Appendix A section below.

We will next elaborate in detail on the slow dynamics of the Si model, which are
attributed to the outward calcium-sensitive potassium current, IKCa, and the TTX-resistant
calcium current, IT . The first current is typically expressed as follows:

IKCa = gKCa

[Ca]
[Ca] + 0.5

(V − EK), (4)

where gKCa is the conductance of the channel, [Ca] is the intracellular calcium concentration,
V is the membrane potential, and EK is the potassium equilibrium potential. Meanwhile, the
intercellular calcium dynamics, defining the pace of IKCa, obey the following ODE equation:

d[Ca]
dt

= ρ(Kc × (ECa − V + ∆Ca)− [Ca]), (5)

where ρ is a small scaling factor designed to slow down the rate of change of [Ca], Kc is
the calcium equilibrium constant, and ∆Ca (mV) is a control parameter that allows for the
manipulation of the calcium reversal potential ECa within the range of 80 mV to 140 mV.
See the Appendix A below for details.

It is worth noting that the slow dynamics of the Si model are mainly attributed to
the calcium-dependent conductance of the IKCa channel and the persistent activation of
the TTX-resistant IT channel. These mechanisms, coupled with the intercellular calcium
dynamics, result in the gradual spike frequency adaption of the membrane potential, which
is the key feature of this calibrated neuron model. Overall, these findings shed light on the
physiological relevance of calcium dynamics in shaping the electrophysiological properties
of the biological CPG interneurons.

The properties of the second current, represented by IT = gT × (V − EI), are deter-
mined by the slow dynamics of the voltage-gating variable governed by the following
differential equation:

dx
dt

=
x∞(V + ∆x)− x

τx(V)
. (6)

Here, the bifurcation parameter ∆x (mV) was introduced as a deviation from the voltage
level at which the x-gating variable becomes half-activated, i.e., x = 1/2.

A bifurcation diagram of the model with these parameters is presented in Figure 12.
One can see that it is partitioned into three major regions of activity: tonic-spiking, bursting,
and hyperpolarized quiescent, and their borderlines in the (∆Ca, ∆x)-parameter plane.
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Figure 12. The (∆Ca, ∆x)-bifurcation diagram of the Si-neuron model with the three regions corre-
sponding to tonic-spiking, bursting, and quiescent activity. Below the level, ∆x = −2.5 mV, the
neuron model demonstrates tonic-spiking activity or quiescence only, depending on the ∆Ca-value.

By manipulating two parameters, the slow dynamics of the Si model can be modulated
to produce either hyperpolarized quiescent or tonic spiking activity for ∆x values below
−2.5 mV. The outcome is contingent on the ∆Ca parameter. Further information on the
dynamical and bifurcation characteristics can be found in a recent study [53]. In this study,
a value of the parameter ∆x = −3.5 mV was fixed to ensure that the Si model bursts en-
dogenously. The dynamics of the targeted Si2 and Si3 neurons in the Melibe swim CPG were
calibrated by varying the primary control parameter, ∆Ca. The Si model remained inactive
or quiescent as long as the value of ∆Ca exceeded −30 mV, whereas deeper hyperpolariza-
tion of the Si model was observed with increasing ∆Ca values. Conversely, the Si model
exhibited tonic firing with ∆Ca values below the threshold of around −30 mV. To account
for the difference in AP frequencies between the Si2- and Si3-neurons, their respective
∆Ca-values were set to −44 mV and −54 mV. This ensured that the Si3-neurons exhibited
higher spike rates than the Si2-neurons, consistent with TTX-experimental observations
(see Figure 4).

2.3. Blended System Setup
Blended CPG Network

In a conventional computational study, the key factor in the strength and time pro-
gression of the synaptic current described by Equation (1) is the time-varying value of the
synaptic probability or neurotransmitter release rate given by Equation (2) in the presy-
naptic neuron during its active phase—when its voltage is above the synaptic threshold,
i.e., outsourced from another mathematical neuron, so to speak. In our novel computa-
tional approach, referred to as “blended”, synaptic coupling (or drive) is evaluated from
the voltage data recorded from the biological neurons in neurophysiological experiments.
Specifically, at each time step of the integration process, the biological voltage value is
directly incorporated from a pre-recorded voltage trace (see Figure 7). The details of this
process will be expounded upon in the subsequent section.

Let us first describe the configuration shown in Figure 8(A1). The biological neurons
of the Melibe swim CPG represent a neural cluster, an HCO, of pair-wise coupled non-
endogenously bursting neurons Si1/2, which generate the anti-phase bursting rhythms
shown in Panel B1 due to reciprocally inhibitory coupling. This network bursting is slow
as the CPG is exposed to the curare bath, which blocks any synaptic feedback originating
from the interneuron Si3, and influences the pace and dynamics of the top HCO. In this
unique setup, the interneuron 1/2L (R) simultaneously provides a contralaterally excitatory
(represented by the triangle) drive to interneuron 3R (L), and an ipsilateral inhibitory
(represented by a circle) drive to partition its burst initiation and termination.
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The blended network replica in Figure 8(A2) comprises two biological neurons (blue
circles) and two mathematical neurons (red circles). The mathematical neurons that we
will refer to briefly are the adapted Si model, which is set to be a quiescent mode to the
right from the tonic-spiking border in the parameter place in Figure 12. The mathematical
neurons in this blended setup are meant to receive the same kinds of stimulating drives
as the biological ones and, therefore, respond as biological originals, 3L/R. The outcomes
of the simulations are demonstrated in Figure 8(B3,B4), showcasing the overlaid voltage
traces of the biological neuron (3L), its replacement (ML), the bio-neuron (3R), and the math
neuron (MR). A detailed examination of the voltage traces confirms they passed an eyeball
test, with close spike frequency distributions demonstrated by the traces on both bio- and
mathematical neurons, close phases of bursting and quiescent models, even characteristic
spontaneous spikes seen in both, and rather good agreement between the corresponding
synaptic probability levels.

The configurations shown in Figure 9 demonstrate the normal swim pattern generated
by the Melibe CPG in the control as well as the blended network. The main difference
between this swim pattern and that in the curare bath is its short period that fluctuates
within a 4–6 s range. This is due to the reciprocal inhibitory feedback from the interneurons
3L/R; see the circuitry in Figure 2B that is absent in the curare case. The other distinction
is the presence of the reciprocal inhibitory coupling that is supposed to make anti-phase
bursting between the neurons 3L and 3R more pronounced and, therefore, the emergent
oscillations in the whole circuit more stable.

As above, the blended network in Figure 9(A2) includes two biological neurons (blue
circles) that provide the same characteristic excitatory and inhibitory drives to the mathe-
matical neurons (red circles). In addition, the mathematical neurons are coupled reciprocally
by the inhibitory synapses, just like in the bio-CPG. The results of the simulations are shown
in Figure 9(B3,B4), representing the overlaid voltage traces of the bio-neurons (3L/R) and
the math neuron (ML/R), respectively. By varying, or more accurately, by minimizing
the values of the corresponding maximal conductance, ge and gi, in the blended excretory
and inhibitory synapses given by Equation (1), we can regulate their strength to optimize
the voltage traces of the mathematical neurons to match the original biological record-
ings. The typical characteristics include the spike frequencies on the driven mathematical
neurons, burst initiations and terminations, their phases, as well as the possible synaptic
probabilities to match those of biological neurons. As before, one can attest that the close
examination of the voltage traces confirms that it passed an eyeball test, with a close spike
frequency distribution demonstrated by the traces of both bio- and mathematical neurons,
close phases of bursting and quiescent models, as well as a good agreement between the
corresponding synaptic probability levels.

In the following, we propose and discuss the cons and pros of our empirical approach,
which aids in substituting or enhancing/complementing the qualitative eyeball test with
more quantitative computational algorithms to measure the degree of “likeness” between
biological recordings and simulated outcomes of the corresponding mathematical models,
and test it on several blended configurations, which we have already discussed, and will
present below near the end of the paper.

3. Error Functions

In this section, we discuss how the combined error function (CEF) is derived by
integrating five distinct sub-functions designed to quantify specific aspects of neural
bursting activity generated by the CPG neurons and their math models. These functions
were empirically combined using a weighted sum approach, as outlined in Equation (13)
below, in order to best allocate appropriate emphasis to the relevant features. These include
a commonly used spike count per burst, as well as measures of quiescent phase proximity
and active phase initiation and cessation. In order to avoid the possibility of data peeking,
these qualities, with the exception of the spike count, were indirectly quantified.
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The first function is the absolute value of the spike count difference, denoted as ∆spikes,
defined by Equation (7), which measures the difference between the spike counts of the
original biological counterpart and the corresponding mathematical neuron as follows:

∆spikes =
∣∣∣mbio

spike − mmod
spike

∣∣∣, (7)

where mbio
spike is the number of spikes in the biological recordings and mmod

spike is the spike
count of the mathematical time series of the same length. The spike count algorithm is
determined by using the method described in Appendix A, specifically by Equation (A13).

The second function, denoted as |S| in Equation (8) below, is the synaptic distance,
which quantifies the error in the synaptic probability distribution between the neurons. To
calculate |S|, we evaluate the difference between the biological and mathematical synaptic
probabilities, and take the square root of the sum of squares (SRSS) of the differences. We
use the synaptic probability instead of the voltage as it is a smoothing function of the same
neuron voltage while preserving the information that informs about the AP frequency.
Note that the voltage amplitude in biological data can fluctuate substantially, especially in
the case of intracellular recordings where the electrode is poked in the soma of the same
targeted cell. The synaptic probability is given by the following equation:

∥S∥2 =

√√√√ N

∑
i=1

(
Sbio

i − Smod
i

)2, (8)

where Sbio and Smod denote the synaptic probability functions of the biological recordings
and the mathematical neuron, respectively (see Equation (A14) in the Appendix A for
more information).

The third function is the voltage distance of the moving average, denoted as |V̂| in the
following equation:

∥V̂∥ =

√√√√ N

∑
i=1

(
V̂bio

i − V̂mod
i

)2. (9)

We calculate |V̂| using the SRSS of the differences between the voltage moving averages of
the biological and mathematical time series. The voltage moving average of the mathemati-
cal time series, V̂mod, and biological recordings, V̂bio, are as follows:

V̂ =
1
k

N

∑
i=N−k+1

Vi, (10)

where V̂ is the moving average, defined as the average of the k last entries of the voltage
time series of the N-length.

The fourth function quantifies the similarity of compared patterns as the variance of
the difference in the voltage’s moving average, s2, given by Equation (11). A value of zero
indicates that the pattern is perfectly aligned between the two moving averages along the
time axis. The function is defined as follows:

s2 =
1

N − 1

√√√√ N

∑
i=1

(
|V̂bio

i − V̂mod
i | − µ

)2, (11)

where µ is the mean of |V̂bio − V̂mod|.
The fifth function is the sigmoid of the distance in the enveloped voltage time series,

denoted as |E|, and is given by Equation (12). This function normalizes the error values by
calculating the upper and lower envelopes of a voltage time series. It then determines the
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SRSS from the upper and lower envelopes of another voltage time series. Specifically, it is
defined by the following equations:

∥E∥ = fσ(∥L∥+ ∥U∥), where

∥L∥2 =

√√√√ N

∑
i=1

(
Lbio

i − Lmod
i

)2,

∥U∥2 =

√√√√ N

∑
i=1

(
Ubio

i − Umod
i

)2,

fσ(x) = 1/
(

1 + e−a(x−c)
)

,

(12)

where Lbio and Lmod are the lower envelopes and Ubio and Umod are the upper envelopes
of the biological recordings and the mathematical voltage time series, respectively. The
sigmoid function is used for normalization with some positive, and empirically defined
constants, a and c. The envelope is further discussed in Appendix A below. In summary,
the fourth and fifth functions are essential for quantifying the pattern similarity and
normalizing the error values, respectively. These functions are prepared for combinations
by rescaling their output to a domain defined on a unit interval [0, 1].

4. Results

The synaptic strength in the blended synapses is regulated by the corresponding
maximal conductance gex and gin from Equation (1), correspondingly. We use these
two parameters to optimize the outcomes of the mathematical neurons to match the origi-
nal biological recordings. We note that, on their own, the individual functions introduced
above can only provide a limited understanding or give biased insights to compare and
quantify distinct types of neuronal rhythmic activity. So, while the synaptic distance func-
tion |S| given by Equation (8) measures the error in the active phase of a neuron, it fails
to differentiate between inactive phases, as all of them have a synaptic probability of zero.
Consequently, this function alone is not a proper characteristic of the neuronal activity. Ad-
ditionally, a positive relationship is observed between the excitatory synaptic conductance
and error, as demonstrated in Figure 13(A1). The minimum error time series (MET) for
the |S| function is found to occur when ge = 0 and gi = 0.0105, as can be observed from
Figure 13(A2). However, the synaptic distance function does not adequately weigh the
importance of the AP frequency either.

The spike difference function, ∆spikes, defined by Equation (7), also has its own lim-
itations, as it demonstrates two local minima shown in Figure 13(B1), and does not dif-
ferentiate well between active and inactive phases of bursting. While the MET for this
function qualitatively matches the data well, as manifested by the shape of the function
revealed in Figure 13(B2), the value of gi has little effect on the error space in the ∆spikes
error space, as one can observe from Figure 13(B1). For instance, with gi = 0, ge = 0.395, the
voltage time series of the math neuron would continue spiking during the inactive phase
in the biological trace, as illustrated in Figure 14(A2). Overall, these findings highlight
the importance of considering multiple functions for a better characterization of neuronal
rhythmic activity.

The quantitative evaluation of rhythmic activity by neurons is also crucial for a deeper
understanding of the neuronal mechanisms underlying various physiological processes. Ex-
isting error functions, such as |S| and ∆spikes, fail to capture the qualitative characteristics of
a neuron’s rhythmic activity. Another function, |V̂|, is based on the moving average voltage
distance as it can distinguish between inactive and active phases of bursting in voltage traces
but treats both phases as equally valuable contributors to the rhythmic activity of the neuron.
As such, it may fail to account for the higher importance of an active phase, which contains
a wealth of pivotal data compared to interburst intervals, which can be only differentiated
by their durations and the baseline, representing the voltage equilibrium level. Similarly, the
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difference variance function, s2, is more discerning than |V̂|, but may still allow the neuron
to continue spiking during its inactive phases. Both |V̂| and s2 measure the moving average
time series, which cannot differentiate whether the neuron is firing AP, only that it is above the
spike threshold.

The distance in the enveloped voltage time series, |E|, has no apparent preference for
either the active or inactive phase. However, there is a high variance in the error values
associated with |E|, and the most effective target for the MET involves overexposure to
excitatory conductance, as evidenced by the rising active phase minimums. Furthermore,
|E| cannot account for AP frequency adaptation due to its inability to measure AP frequency.
In summary, |S| fails to account for the active phase, |V̂| and s2 overlook the inactive phase,
and function ∆spikes cannot detect it (as it was not designed for this purpose). Additionally,
function |E| has a high variance and cannot well differentiate between AP frequencies.

However, we argue below that the combination of the five functions can effectively
compensate for their intrinsic faults by using a proportioned-weighted sum WS, defined
as follows:

WS = w1 ∆spikes + w2∥S∥+ w3∥V̂∥+ w4s2 + w5∥E∥, (13)

with the respective weights of the functions, denoted as wi, are chosen manually as follows:
w1 = 0.10, w2 = 0.58, w3 = 0.10, w4 = 0.19, and w5 = 0.03, where i denotes the function index.
The selection of these weights is subject to constraints ensuring that the error space meets certain
desired criteria, namely, the absence of AP firing during the quiescent phases, synchronization
of burst onset and termination, and a quiescent phase that does not deviate significantly from
the biological reference. Thus, the defined weighted sum WS given by Equation (13) allows for
mutual compensation of the individual functions, as demonstrated in Figure 15.

Figure 13. (A1,B1) Error spaces and minimum error time series (MET) space. The vertical axis repre-
sents the rescaled value of the error functions, while the x-axis and y-axis represent the conductances,
gi and ge, of the inhibitory and excitatory synapses, resp. (A2,B2) Voltage recordings of the bio-neuron
(3L) and the math neuron (ML) are compared to find the gi and ge values corresponding to the lowest
error value for each function. (A1) The synaptic distance error space and (A2) synaptic distance MET.
The synaptic distance error space evaluated through Equation (8) at gi = 0.0013 and ge = 0 (indicated
by *) indicates the large mismatch between the spiking frequencies of the mathematical and biological
neurons in the curare bath. (B1) The spike difference error space elevated through Equation (7) is
minimized at gi = 0.0171 and ge = 0.0711 (indicated by *), where the spiking frequencies of the
mathematical and biological neurons agree well, as seen in panel (B2).
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Figure 14. (A1,B1,C1) The z-axis represents the rescaled value of the error function, the x-axis and
y-axis represent the conductances, and gi and ge denote the inhibitory and excitatory synapses.
(A1) Voltage distance error space evaluated using Equation (9) is minimized at gi = 0026, ge = 0.0237
(indicated by *). (A2) Here, the math neuron keeps spiking during the inactive phase of the bio-neuron.
(B1) Evaluation of the difference variance error space (DVES) according to Equation (11). (B2) The
traces of the math- and bio-neurons do not fully overlap at The local min of MET at gi = 0.0145,
ge = 0.0237 (indicated by *) (C1) Envelope distance error function given by Equation (12). (C2) The
traces of both neurons match well at the local min of MET at gi = 0.0197, ge = 0.0553 (indicated
by *), although the function can barely detect a spike frequency adaptation in the bio-neuron in the
curare bath.

Figure 15. The combined error function (CEF) can effectively adjust to the cellular properties of the
mathematical neuron. (A) The error space of excitatory and inhibitory synaptic conductance; here
* indicates a local minimum foe the optimal conductance values. (B) All best-fit time series—whether
the Si model exhibits tonic-spiking activity at ∆Ca = −40 mV, resides on a borderline at
∆Ca = −40 mV, or becomes quiescent at ∆Ca = −25 mV—exhibit qualitatively similar voltage
time series. The minimum error becomes smaller along the inhibitory conductance axis as the math-
ematical neuron shifts from a tonic spiking activity with gi = 0.01579 and ge = 0.0316; borderline
with gi = 0.0118 and ge = 0.0316; to a quiescent neuron with gi = 0.0066 and ge = 0.0395. Each MET
matches the other and those of the biological neurons in the curare bath.
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A combined error function (CEF) was constructed using these weights. To ensure
the generalizability of CEF, a regularization term is usually added to prevent overfitting.
However, in this study, such a term is not included as it would require a comparison of
the fit to the goal voltage recording, which raises the issue of comparing the raw voltage
time series.

Despite the limitation of not being able to achieve adequate objective regularization
through the error function, we explore the error space of three different endogenous states
of the biological and mathematical neurons and their METs. These states include tonic
spiking to the left of the borderline state around ∆Ca = −30 mV, and quiescent neurons to
the right of the parameter space shown in Figure 12. We found that the CEF was able to
determine unique gi and ge values (indicated by *) for each state with a minimum error, as
depicted in Figure 15.

To further evaluate the performance of the CEF, we blended biological recordings
with the mathematical neurons in a specific order. Specifically, we blended the same
recordings with tonic-spiking mathematical neurons, then borderline neurons, and finally
with quiescent neurons. The MET for the blended system using tonic spiking mathematical
neurons was minimized at gi = 0.01579 and ge = 0.0316. Similarly, the blending with
borderline neurons had a MET minimized at gi = 0.0118 and ge = 0.0316, while the
blending with quiescent neurons had a MET minimized at gi = 0.0066 and ge = 0.0395.
Notably, each of these different gi and ge coordinates had similar METs, and no discernible
difference was observed among them, as one can observe from Figure 15B).

However, we observed a difference in the error space between each blending with the
different mathematical neurons. Specifically, the minimum error decreased as inhibitory
conductance increased, corresponding to a shift from more intrinsically active states (i.e., from
tonic spiking to borderline and eventually to a quiescent neuron). This finding was consistent
with our expectation since the stronger the mathematical neuron is quiescent intrinsically, the
less inhibition is needed to suppress its firing during the naturally inactive phases.

One additional verification step was performed to test the effectiveness of the CEF
in the context of biological recordings. Specifically, the CEF was blended with normal
swimming biological recordings, where the CPG was not exposed to curare. The configura-
tion of the biological CPG in the absence of curare featured a pair of mutually inhibitory
synapses between the biological neurons, Si3 (see Figure 9A), which were absent in the
simplified CPG model depicted in Figure 2B). To incorporate this feature into the CEF,
two corresponding synapses were added between the mathematical neurons to recreate
the reciprocal inhibition while keeping the conductance constant, to avoid introducing
an additional parameter dimension. The resulting MET for this configuration is shown
in Figure 9B. While the MET detects well some types of rhythmic activity similar to the
biological recordings, such as overlapping bursts, the AP bursting frequency in the math-
ematical neurons is not as high as in the bio-recordings. Nevertheless, considering that
only two parameters were optimized, the MET shows good agreement with the normal
biological recordings.

In the CEF error space of the blended system, employing normal biological recordings
resulted in the identification of the MET for normal swimming, as shown in Figure 16.
Comparable to the blended system utilizing curare voltage time series and configuration,
the optimal fit time series showed a decrease along the inhibitory conductance (gi-axis) and
an increase along the excitatory conductance (ge-axis), as the mathematical neurons were
transformed step-by-step from endogenous tonic-spiking in panels A1 and A2 in Figure 16,
to borderline activity in panels B1 and B2 in Figure 16), to the hyperpolarized quiescent
state in Figure 16C1,C2. However, the inhibitory and excitatory conductance values for
the normal blended system differed from those of the curare blended system, which is
discussed in the subsequent section, and is evident from the dissimilar conductance values
indicated in the captions of Figures 15 and 16.
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Figure 16. The application of CEF to the normal swim voltage recordings. The minimum error
becomes smaller along the gi-axis, similar to the curare case, as the mathematical neuron shifts
from (A1) tonic spiking activity at gi = 0.0711, ge = 0.0711 (indicated by *) throughout (B1), a
borderline at gi = 0.0789, ge = 0.0789 (indicated by *) , and ultimately to (C1), a quiescent state at
gi = 0.0237, ge = 0.0474 (indicated by *) . (A2,B2,C2) MET-function comparing the mismatch between
the neuron (3L) and a mathematical neuron (ML). It is evaluated by varying gi and ge values to
determine its lowest error value corresponding to qualitatively similar voltage time series, biological
and mathematical. Furthermore, the minimum error becomes larger along the ge-axis.

The error value obtained from the analysis of the slow bursting in a curare bath illus-
trated in Figure 8 is significantly low at 0.073, surpassing even the optimal fits identified
through bi-parameter sweeps. This can be attributed to the limited number of parameters
engaged in the aforementioned methods, which are restricted solely to the synaptic cou-
pling parameters. Conversely, the hand-tuned blended system includes the tuning of fast
subsystem parameters, playing a crucial role in the firing of APs and other related func-
tions. This finding serves as an excellent example of how a meticulously calibrated blended
system can yield an accurate fit for the CEF. However, upon a careful examination of the
presented Tables 2–5, a discrepancy in the weighted error value column of the mathematical
neuron is observed. The synaptic distance emerges as the primary contributor to the error,
while the envelope yields the least error. This indicates that the voltage of the mathematical
neuron is not relatively shifted, but rather the spiking frequency is inconsistent with that of
the biological recording.

The analysis demonstrates that the error value associated with results concerning
the blended network for the normal swim depicted in Figure 9 is around 0.15 (0.1498), as
determined by the CEF. This value falls within the acceptable range of a good fit, as per the
predetermined threshold set at value 2.2. Further examination of the results presented in
the accompanying Tables 2–5 reveals that the mathematical neuron exhibits a considerable
error in the weighted error value column. Notably, the contribution of the synaptic distance
to the overall error is significant, while the variance in the moving average difference is
comparatively minor. This observation suggests that there is a moderate level of consistency
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in the phase alignment between the two models. However, the voltage of the mathematical
neuron is lower than that of the biological recording.

Table 2. Error values for Figure 8.

Error Function Error Value Weighted Error Value

CEF 0.073

Synaptic 0.0861 0.0497

Spikes 0.1051 0.0101

Volt. MA 0.0981 0.0094

Variance diff. 0.0175 0.0034

Envelope 0.0115 0.0004

Table 3. Error values for Figure 9.

Error Function Error Value Weighted Error Value

CEF 0.1498

Synaptic 0.1014 0.0585

Spikes 0.5008 0.0482

Volt. MA 0.0223 0.0021

Variance diff. 0.2028 0.0634

Envelope 0.0036 0.0002

Table 4. Error values for Figure 17.

Error Function Error Value Weighted Error Value

CEF 0.0715

Synaptic 0.0423 0.0244

Spikes 0.2336 0.0225

Volt. MA 0.1616 0.0155

Variance diff. 0.0418 0.008

Envelope 0.027 0.001

Table 5. Error values for Figure 18.

Error Function Error Value Weighted Error Value

CEF 0.0727

Synaptic 0.0551 0.0318

Spikes 0.2172 0.0209

Volt. MA 0.0589 0.0057

Variance diff. 0.0703 0.0135

Envelope 0.0219 0.0008

The error value for Figure 17 is 0.0715, which is comparable to that of the hand-tuned
curare case. Upon inspection, APs in the figure appear thicker than in the corresponding
biological recordings (see Figure 19). This discrepancy suggests that the CEF may inade-
quately represent the AP shape. This observation is noteworthy, as the curare swim case
does not exhibit thicker APs despite similar CEF values. Analysis of the four Tables 2–5
indicates that synaptic distance is the primary error source, with the spike count error also
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in adequate proximity, while the envelope yields the least error. These findings imply that
spike frequency is inconsistent with the biological recording.

Figure 18 demonstrates an error value of 0.0727, which is comparable to the two
preceding cases. Upon zooming in, it becomes apparent that the APs in the mathematical
neurons are thicker in shape than those in their biological counterparts (see Figure 19). The
analysis of the table indicates that, as before, the synaptic distance is the primary error
source, while the envelope has the least error and a higher variance difference than the
previous case. These results suggest that the AP characteristics significantly contribute to
the overall error, potentially due to inconsistencies in spike frequency. Notably, the voltage
of the mathematical neuron is not relatively shifted, but the phase alignment is suboptimal
compared to previous cases, as evidenced by the higher variance difference.

Figure 17. Another blended 4-cell network to train the mathematical neurons, M1/2, using the voltage
recordings of the biological Melibe Si1 interneurons. (A) The blended circuit where biological Si1
interneurons project excitatory drive (▲) into quiescent mathematical neurons, which are also inter-
coupled reciprocally by inhibitory synapses denoted by •. (B) Color-matched voltage traces of the
Melibe interneurons, M1 (blue) and M2 (green), are shown alongside the voltage time series of the
two mathematical neurons. The red arrow represents perturbation due to a short depolarized current
pulse flipping unsuccessfully in the middle of a long burst in the biological HCO in a curare bath.

Figure 18. (A) A blended configuration utilizing the voltage recordings from biological Melibe in-
terneurons (Si1L/R) is used to train, via unidirectionally inhibitory synapses, the tonically spiking
mathematical neurons, which are also coupled reciprocally by inhibitory synapses in a curare bath,
and under perturbation with a positive electric pulse injected in Si1L during its long quiescent phase,
to switch the bursting order in the HCO. (B) A previously recorded voltage time series of the Melibe
swim interneurons (Si1s), alongside the voltage time series of the two mathematical neurons. The
inhibitory synapses are indicated by •, while the black synapses depict the mathematical synapses
driven by the biological recordings from the Si1 neuron. The mathematical neurons are represented
by M1 (in blue) and M2 (in green), while Si1 denotes the previously recorded swimming interneuron
(in black). The perturbation location is highlighted with a red arrow.
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Figure 19. Time series of the voltage of mathematical neurons are overlaid on top of the neurophysi-
ological voltage recordings of their images—biological neurons Si1 and Si2 in the blended system
presented in Figures 17 and 18, as well as simulated synaptic probabilities S(t) that agree rather well.
(A,B) From Figure 18: Voltage time series (in blue and green) of the mathematical neurons, ML/R,
superimposed on the voltage recordings of their corresponding neurons, Si1, right and left. resp.,
along with a zoomed-in section of an active burst indicated by a black box. (C,D) From Figure 17: the
voltage time series (in blue and green) generated by the mathematical neurons are superimposed
onto the voltage recordings of the corresponding Si2L/R cells, along with the simulated synaptic
probabilities show a good agreement.

5. Discussion

We presented a novel type approach, denoted as blended systems, where pre-recorded
neurophysiological data and intra-cellular voltage recordings from swim CPG interneurons
of the sea slugs Melibe leonina and Dendronotus iris are employed to train and optimize
biologically plausible mathematical neurons and synapses. These systems have the potential
to offer significant advantages in computational neuroscience research, particularly in the
field of brain–computer interfaces (BCIs). While BCIs also interact with biological neurons,
they differ in that they connect to living neurons rather than pre-recorded ones. The most
promising application of BCIs is the restoration of vision, hearing, and locomotion. However,
existing algorithms for BCIs do not fully capture—both qualitatively and quantitatively—the
observed (voltage) rhythmic activity of biological neurons.

To address this issue, we developed a set of error functions to quantify the closeness
or likeness as well as differences in neural activities between biological recordings and
mathematical time series. Our results indicate that a weighted summation of five distinct
functions (termed the CEF) yields a robust functionality that can distinguish well between
voltage time series. When evaluated individually, these functions were insufficient to
qualitatively mimic the target biological recording. We hypothesize that the CEF should
(ideally) yield a perfect match when its value is zero.

Moreover, due to the convex nature of the error functions in the parameter space of
neural systems, it can function as a cost function for artificial neural networks (ANNs) to
train them to qualitatively mimic the voltage time series of a mathematical network using
limited input parameters. We also utilized the error function to investigate the similarity
between the outcomes of a mathematical CPG and the pre-recorded biological CPGs.

In the preceding section, it was observed that the conductance parameters for the
METs differed between the normal biological CPG and the curare-bathed system. This
unexpected difference can be attributed to the long inactive phases in the bursting of the
curare blended system, which allows for more forgiving time series transitions between
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inactive and active phases. Therefore, weaker excitatory and inhibitory conductance can
still produce expected results, as evidenced by the conductance parameters of the normal
blended system, which can be extrapolated to the curare blended system.

Additionally, voltage recordings from Dendronotus iris were utilized to construct two
distinct blended systems, each capable of producing an HCO rhythm in the mathematical
neurons (refer to Figures 10 and 11). These systems serve as examples of the versatility
of the blended approach in generating various types of CPGs, drivers, and pacemakers.
In Figure 10, the blended system emulates the behavior of Si1 neurons in the Dendronotus
swimming CPG, acting as a driver neuron and inducing anti-phase firing of other neurons
in the CPG. Figure 11 presents an alternative hypothetical configuration of a blended system
that produces an HCO rhythm, where the Si3 voltage recording excites a quiescent mathe-
matical neuron (M1) and inhibits a tonic spiking mathematical neuron (M2), thus creating
a typical pacemaker CPG.

The error function proposed in this paper can enhance the optimization of mathe-
matical neuron parameters and aid developers of circuits that interface with biological
neurons. However, the computational expense of the CEF may limit its utility. Therefore,
further innovation is necessary to devise an error function that can advance computational
neuroscience research.
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Appendix A

The sodium and calcium current, II , and its activation variable, m∞, are defined
as follows:

II = gIm3
∞(V)h(V − EI), (A1)

with

m∞(V) =
αm(V)

αm(V) + βm(V)
, (A2)

where EI = 30 mV is the reversal potential and gI = 4 nS is the maximal conductance.
Furthermore, αm and βm are defined by the following:

αm(V) = 0.1
50 − Vs

1 + e(50−Vs)/10
, βm(V) = 4e(25−Vs)/18. (A3)

https://github.com/jbourahmahGSU/Voltage-recording-Error-function.git
https://github.com/jbourahmahGSU/Blended-System.git
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The inactivation variable, h, is defined by the following:

dh
dt

=
h∞(V)− h

τn(V)
, (A4)

with

h∞(V) =
αh(V)

αh(V) + βh(V)
, τh(V) =

12.5
αh(V) + βh(V)

, (A5)

αh(V) = 0.07e(25−Vs)/20, βh(V) =
1

1 + e(55−Vs)/10
, (A6)

where Vs =
127V+8265

105 mV .
The potassium current is given by the following:

Ik = gkn4(V)(V − Ek), (A7)

where Ek = −75 mV is the reversal potential and gk = 0.3 nS is the maximal conductance.
The following equations define the dynamics of the n-gating variable, as follows:

dn
dt

=
n∞(V)− n

τn(V)
, n∞(V) =

αn(V)

αn(V) + βn(V)
, (A8)

where
τn(V) =

12.5
αn(V) + βn(V)

,

and
αn(V) = 0.01

55 − Vs

e(55−Vs)/10 − 1
, βn(V) = 0.125e(45−Vs)/80. (A9)

The depolarizing current Ih is defined as follows:

Ih = gh
y(V − Eh)

(1 + e−(V−63)/7.8)3
, (A10)

where Eh = 70 mV, and gh = 0.0006 nS. The activation probability y(t) is given by
the following:

ẏ = gh
y(V − Eh)

(1 + e−(V−63)/7.8)3
. (A11)

Finally, the leak current is defined by the following: Ileak = gL(V − EL) with EL = −40 mV
and gL = 0.0003 nS .

One of the currents that is responsible for the slow dynamics of the neuron is the
TTX-resistant calcium current, IT = gTx(V − EI), with EI = 30 mV gT = 0.01 nS. The
differential Equation (6) defining the x-gating variable includes the steady state function
given by the following:

x∞(V) =
1

1 + e−0.15(V+50−∆x)
, (A12)

with the fixed time constant τx = 235 ms. The outward calcium-sensitive potassium current
IKCa is given by Equation (4), where EK = −75 mV and gKCa = 0.03, while the intra-
cellular calcium concentration is described by Equation (5) with constants EK = 140 mV,
ρ = 0.00015 mV−1, and Kc = 0.00425 mV−1.

The process for counting actuation potential time series uses the MATLAB function,
as follows:

[pks, locs] = f indpeaks(data) (A13)

with the parameters MinPeakHeight set to 0, and MinPeakDistance set to 5 (10 mV, 5 ms).
This function notes every local maxima. This function simply takes local maxima as simply
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being a data point that is greater than the data points before and after the data point
being evaluated.

The SRSS, Euclidean norm, or L2-norm of a vector, X, with N elements, is defined by
default, as follows:

∥X∥ =

√√√√ N

∑
i=1

|Xi|2. (A14)

Here, vector X in this paper is found from a voltage time series, or through the synaptic
probability equation (Equation (2)), a moving average voltage defined by Equation (10),
as well as from upper and lower envelopes of the time series given by Equation (12). The
particular MATLAB function used to calculate the SRSS is “norm()”. The envelope function
used is the Matlab function ”envelope()”. With ’peak’ as an input parameter, it returns
the upper and lower envelopes of the data. The envelopes are determined using spline
interpolation over local maxima separated by at least a set number of samples.
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