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Abstract: Rotenone is a pesticide used in research for its ability to induce changes similar, in vivo and
in vitro, to those observed in Parkinson’s disease (PD). This includes a selective death of dopaminergic
neurons in the substantia nigra. Nonetheless, the precise mechanism through which rotenone modifies
structure and function of neurons remains unclear. The PC12 cells closely resemble dopamine terminal
neurons. This makes it a preferred model for studying the morphology of central dopamine neurons
and predicting neurotoxicity. In this paper, we investigated the effects of 0.5 µM rotenone for
24–48 h on PC12 cell viability and ultrastructure (TEM), trying to identify primary and more evident
alterations that can be related to neuronal damages similar to that seen in animal PD models. Cell
viability decreased after 24 h rotenone treatment, with a further decrease after 48 h. Ultrastructural
changes included vacuolar degeneration, mitochondrial mild swelling, decrease in the number of
neuropeptide granules, and the loss of cell-to-cell adhesion. These findings are in agreement with
previous research suggesting that rotenone, by inhibiting energy production and increasing ROS
generation, is responsible for significant alterations of the ultrastructure and cell death of PC12 cells.
Our data confirm the link between rotenone exposure, neuronal damage, and changes in dopamine
metabolism, suggesting its role in the pathogenesis of PD.

Keywords: PC12; rotenone; transmission electron microscopy; neurotoxicity; neuropeptide granules;
synaptic vesicle; cellular and molecular rehabilitation

1. Introduction

Although the etiology of Parkinson’s disease (PD) is not completely understood, it
is accepted that in its pathogenesis, an important role is played by interactions between
genetic and environmental factors [1]. Exposure to certain pesticides found in the environ-
ment has been linked to an elevated risk of PD, likely due to their mitochondrial toxicity, as
indicated by epidemiological research [2–4]. Rotenone ranks among the extensively utilized
pesticides globally. Classified by the World Health Organization as a moderately hazardous
substance (a class II pesticide), rotenone rarely causes acute poisoning in humans. This
rarity stems from its notably higher estimated oral LD50 in humans (300–500 mg/kg b.w.)
compared to the chronic exposure experienced environmentally [5]. However, epidemio-
logical evidence also suggests that rotenone chronic exposure represents a risk factor for
PD pathogenesis [6]. Betarbet et al. [7] successfully replicated many of the clinical, bio-
chemical, and pathological characteristics associated with PD in rats chronically exposed
to rotenone. Since then, rotenone has garnered significant interest due to its potential role
as an environmental neurotoxin involved in the development of PD. Furthermore, it has
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become a widely used experimental model for studying the basic mechanisms contribut-
ing to neuronal damage leading to PD and assessing potential novel treatments for this
condition [8].

For its remarkable lipophilicity, rotenone easily traverses biological barriers, such as
blood–brain barrier, and cell membranes, including the outer and inner mitochondrial
membranes, lysosomes, endoplasmic reticulum (ER), and Golgi [9]. It produces its major
toxic effects at the level of mitochondrial cristae by specifically blocking complex I of the
respiratory chain and decreasing mitochondrial adenosine triphosphate (ATP) production
by 30% [10]. As a consequent effect, it increases the mitochondrial production of reactive
oxygen species (ROS) which can rapidly diffuse to the other subcellular compartments
through voltage-dependent anion channel (VDAC) and mitochondrial aquaporins [11].
The decrease of energy charge and the detrimental effects of ROS are responsible for a
number of PD-related subcellular neuronal changes in the substantia nigra. In particular,
mitochondrial swelling and opening of mitochondrial VDAC, release of cytochrome C and
APAF, activating apoptosis and other so-called “dopaminergic cell death”; oxidative stress
produces α-synuclein phosphorylation and aggregation, protein deglycase (DJ-1) acidifica-
tion and translocation, dysfunction of the proteasome system, and the accumulation of iron
in the substantia nigra [12].

At a clinical level, it replicates certain non-motor symptoms of PD, particularly disrup-
tions in gastrointestinal function and olfactory discrimination [13]. Its utility in evaluating
various endpoints such as α-synuclein accumulation, and the functioning of the ubiquitin–
proteasome system, in addition to its capacity to preserve dopaminergic neurons and
related motor functions. These are among the most commonly utilized endpoints in studies
focused on neuroprotection [14]. These effects of rotenone can be traced back to 1968 when
Palmer and collaborators discovered that the primary effect consisted of hindering the
transfer of electrons from the iron–sulfur midpoints in complex I to ubiquinone. This
inhibition resulted in the disruption of electron transfer along the respiratory chain with a
decreased production of ATP [8].

More recently, Peng and collaborators [15] reported that exposure to rotenone induces
changes in mitochondrial biogenesis and dynamics by reducing the cellular levels of
peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which
controls mitochondrial growth, fission, and fusion.

In another study, it was demonstrated that inhibiting fission effectively decreased
rotenone-induced neurotoxicity in primary neurons [15]. Rotenone, following mitochon-
drial damage, can trigger apoptosis and other types of cell death through diverse signal-
ing pathways, including the AKT/Glycogen synthase kinase-3β (GSK-3β) pathway [16].
Cofilin, a crucial modulator of actin filament dynamics, and tubulin have been observed
after mitochondrial damage [17]. Specifically, de-phosphorylated cofilin, tubulin, and some
tubulin-associated proteins relocate from the cytoplasm to the mitochondria before the
release of cytochrome c, ultimately aggravating mitochondrial damage [18,19].

The primary objective of our research is to investigate the PC12 cell line, as model
of dopamine neurons, the acute (24–48 h) toxic effects of low-dose of rotenone [20,21] on
viability and ultrastructural changes which appears the most evident association between
environmental exposure and the degeneration of dopaminergic neurons [22]. Further
insight detailing the risk of rotenone exposure to the broader population and of the mecha-
nism(s) of damage will be useful to define this cell line as a model system to explore the
physiology of central dopamine neurons and to assess the potential neurotoxicity of other
compounds that affect these neurons and identify precise and personalized therapeutic
targets [23,24].

2. Materials and Methods
2.1. Cell Culture

PC-12 (CCL-185 ATCC) cells were purchased by ATCC and grown as monolayers
following the ATCC’s protocols. Cells were grown in DMEM/F12 medium (Gibco, Thermo
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Fisher Scientific, Waltham, MA, USA) at 37 ◦C in a 5% CO2. The culture medium was
supplemented with 5% heat-inactivated fetal bovine serum, 100 IU/mL penicillin, and
100 µg/mL streptomycin (Gibco, Thermo Fisher Scientific, Waltham, MA, USA). Cells were
seeded in 25 cm2 flasks at a density of 5 × 104 cells/flask. The media was refreshed every
2–3 days. The experiments were performed on the specimens between passage 15 and
25. The treatments with/without rotenone (0.5 µM; Sigma-Alderich, St. Louis, MO, USA)
for 24 h or 48 h were accomplished 3–8 days after subculture. Rotenone was dissolved in
dimethyl sulfoxide (DMSO, Sigma-Alderich, St. Louis, MO, USA). Following the removal of
the supernatant from PC12, they were rinsed with PBS, followed by treatment with Trypsin-
EDTA (Gibco, Thermo Fisher Scientific, Waltham, MA, USA), and then incubated for 1 min
at 37 ◦C. Subsequently, the cells were transferred to a centrifuge tube, where complete
medium was added to neutralize the trypsin-EDTA, and the cells were centrifuged for
5 min at 1200 RPM. The supernatant was removed, cells were resuspended in PBS, and
were centrifuged for 5 min at 1200 RPM. The supernatant was removed, the cells were
resuspended in a glutaraldehyde solution, and stored at +4 ◦C.

2.2. Cell Viability

Cells were initially seeded in a 100 mm dish and treated according to the specified
protocol upon reaching 80–90% confluence. Afterward, at 24 and 48 h time points, cells
were harvested and combined with Trypan blue at a dilution ratio of 1:2. The resultant cell
suspension was then examined using a hemocytometer under phase contrast microscopy
for quantification. The experiments were conducted twice, with each condition analyzed
in triplicate. The number of cells was calculated using the formula N◦ cells × mL = (N◦

cells/N◦ quadrants) × 200 × 1000 following cell counting using a Burker chamber. For
each condition in triplicate, both live and dead cells were counted and compared.

2.3. Transmission Electron Microscopy

PC12, after diverse treatments, were collected and fixed overnight in 2.5% glutaralde-
hyde with 0.1 M sodium hydroxide, 0.1 M, pH 7.3 [25]. Samples were washed 6 times in the
sodium hydroxide buffer, and then post-fixed in 2% osmium tetroxide in the same buffer
for 2 h at room temperature and treated following a standard protocol for embedding
in EPON resin [26]. Next, polymerization procedure overnight at 65 ◦C was performed,
ultrathin sections of 80 nm of thickness, were cut on a Leica Ultracut E Ultramicrotome
(Leica Microsystems, Wetzlar, Germany) and placed on copper grids, contrasted with
UranyLess stain and lead hydroxide, and, lastly, examined in a JEOL-1400 Plus TEM (Jeol
Ltd., Tokyo, Japan).

2.4. Morphometric Analysis

Mitochondria and neuropeptide granule numerical density was evaluated as previ-
ously reported [27]. Briefly, at least 15 specimens per group were imaged using TEM at the
same magnification (2500×) on at least five equatorial sections (distance between the sec-
tions: 3–4 µm) and analyzed by means of ImageJ 1.53 software (http://rsbweb.nih.gov/ij/,
accessed on 20 January 2023). The digital images were additionally magnified to facilitate
the identification and enumeration of the organelles. Values are expressed as numeri-
cal density per cell or linear surface. Mitochondrial length was measured as previously
reported [28].

2.5. Statistical Analysis

The data are presented as means ± standard deviation (SD). Statistical comparisons
were conducted utilizing either one-way or two-way ANOVA, followed by Tukey’s HSD
tests for post hoc evaluation (GraphPad InStat or Prism 5, La Jolla, CA, USA). Significance
was determined at p < 0.05. Variance between groups was assessed utilizing the Levene test.

http://rsbweb.nih.gov/ij/
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3. Results
3.1. Effect on Viability

Viability tests were performed in duplicate. The results of the Trypan blue test indi-
cated elevated mortality in the samples treated with rotenone compared to the controls.
Additionally, mortality appeared to be time-dependent, with a higher incidence observed
in the 48 h condition compared to the 24 h condition (Table 1).

Table 1. Viability data expressed as mean ± standard deviation.

Treatment Cell Death (%)

Control 24 h 7.23 ± 0.95
Rotenone 24 h 14.70 ± 1.85
Control 48 h 4.65 ± 0.92

Rotenone 48 h 16.71 ± 0.40

3.2. Ultrastructural Evaluation
3.2.1. PC12 Control

Using light microscopy (LM), control cells appeared small (10/µm diameter), spherical,
and arranged in adjacent clusters. These cells showed a high nucleus/cytoplasm ratio.
Nuclei, surrounded by a prominently stained nuclear membrane, showed one or more
nucleoli. Additionally, certain cells displayed short and pointed extensions (Supplementary
Figure S1).

Using transmission electron microscopy (TEM), control cells displayed a distinct ar-
rangement resembling epithelial cells. (Figure 1A). The surfaces of adjacent cells were in
close proximity (15–30 nm) and occasionally connected by adhering regions. Beneath the
plasmalemma, there was a sparse cortex of amorphous material where occasional microfila-
ments could be identified. Several cells showed the presence of numerous long microvilli
on the external surface. The nuclei appeared eccentric with patches of heterochromatin
(Figure 1A). Microtubules and profiles of endoplasmic reticulum (ER) were occasionally
seen. The cytoplasm of the cells showed numerous neuropeptidic dense granules, synaptic
vesicles (Figure 2A,B), mitochondria (Figure 2A,B), and ribosomes. Occasionally, the TEM
micrograph showed lysosomes with a moderately dense matrix, sometimes containing a
myelin-like structure. Numerous Golgi cisternae were detected (Figure 2A).

3.2.2. PC12 Treated with Rotenone 0.5 µM for 24 h

By LM, treated PC12 cells appeared small with a spherical shape. They rarely ap-
peared organized in clusters. Similarly to the previous group, these cells presented a high
nucleus/cytoplasm ratio. Nuclei, bordered by an intact nuclear membrane, exhibited one
or more nucleoli (Supplementary Figure S1).

Cells treated with rotenone 0.5 µM for 24 h showed sublethal ultrastructural changes
with respect to the untreated cells. The major change was observed in moderately swollen
cells (20–25%) with dilated ER cisternae, condensed or swollen mitochondria, vacuoles,
and a decreased number of both dense granules and synaptic vesicles both in the cytosol
and at the secretory border. However, most of PC12 cells showed a round-to-ovoid shape
with evident roundish nuclei (Figure 1B). Chromatin distribution did not change from
that of the controls, with spots of heterochromatin usually placed in the middle of the cell
or, more infrequently, were eccentric. The cytoplasm exhibited the presence of several
round/ovoid mitochondria bordered by a double electron-dense mitochondrial membrane
with numerous platform mitochondrial cristae (Figure 2C,D). The observation also revealed
the reduction of intercellular connections through junctions and projections with respect
to the control group (Figure 1B). Furthermore, the cytoplasm of these cells presented
microfilaments, occasional microtubules and intermediate filaments, and tubules of ER.
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Figure 1. Ultrastructural evaluation of untreated, rotenone 24–48 h PC12 cells. (A) Ultrastructure
of control PC12s showing evident nuclei (N) delimited by a continuous nuclear membrane and
numerous round/ovoid mitochondria (m). Intercellular contacts (arrows) were present among
the cells. Numerous neuropeptides granules (ng) were visible. (B) Ultrastructure of PC12 treated
with rotenone 0.5 µM for 24 h showing large nuclei delimited by an intact nuclear membrane and
numerous mitochondria. Intercellular contacts among the cells were partially lost. Degenerating
cells with several vacuoles (V) were present. (C) Representative TEM micrograph of PC12 treated
with rotenone 0.5 µM for 48 h displaying clear signs of cell degeneration. Numerous vacuoles and
isolated multivesicular bodies (mvb) were visible. Ch: chromosomes; ap: autophagosome; ER:
endoplasmic reticulum.
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Figure 2. Ultrastructural comparison of neuropeptide granules and synaptic vesicles in untreated
and rotenone 24–48 h PC12 cells. (A,B) High magnification of two cell borders in the untreated
PC12 group. Note the presence of numerous neuropeptides granules (ng) attached to the plasma
membrane. Numerous Golgi cisternae (G) and mitochondria (m) with visible cristae were observed.
(C,D) Representative picture of PC12s treated with rotenone 0.5 µM for 24 h showing the reduced
presence of neuropeptide granules in proximity of the cell borders and elongated mitochondria with
evident cristae. (E,F) Ultrastructure of PC12 treated with rotenone 0.5 µM for 48 h showing an evident
reduction of neuropeptide granules, mitochondria with sign of swelling (sm), and multivesicular
bodies (mvb) containing altered synaptic vesicle (sv).

Electron micrographs showed also the presence of multivesicular bodies, vesicles,
autophagosomes, and lysosomes (Figure 2C,D). Small granules and synaptic-like vesicles,
which were extremely common in untreated PC12 cells, were minorly present in this
experimental group (Figure 2C,D).
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3.2.3. PC12 Treated with Rotenone 0.5 µM for 48 h

By LM, after 48 h rotenone treatment, PC12 cells exhibited a spherical morphology
and reduced appearance with infrequent clustering and notable large intercellular gaps.
An increased high nucleus/cytoplasm ratio was observed (Supplementary Figure S1).

By TEM, cells treated with rotenone for 48 h showed more evident ultrastructural
changes as compared to the control and to the 24 h rotenone treatment groups. In TEM
micrographs (Figure 1C) evaluation (Table 2), 48 h-treated cells showed the presence of
degenerating (swollen) cells (30–35%) with a number of subcellular changes. In particular,
electron-clear cytosol, fragmented ER with enlarged cisternae and detached ribosomes,
decreased or swollen Golgi apparatus, and substantially decreased dense granules and
synaptic vesicles/multivesicular bodies were frequent in the affected cells. Dense granules
were mostly interspersed in the diluted cytosol, being only occasionally observed close
to the secretory pole of the plasma membrane (Figure 2E,F). Cells only occasionally pre-
sented as multicellular clusters with close reciprocal contacts, while the extracellular space
appeared definitively increased. Perinuclear Golgi apparatus, often associated with ER
and vesicles, as well as with the multivesicular bodies, were seen. Similar to the rotenone
24 h group, a reduction in the presence of intercellular connections was noted (Figure 1C).
Notably, mitochondrial cristae appeared less electron-dense (Figure 1E). Occasionally au-
tophagosomes were observed, especially in swollen cells (Figures 1C and 2F). Morphometry
confirmed a significant decrease in the numerical density of dense granules, multivesicular
bodies, and synaptic-like vesicles (Figure 2E,F).

Table 2. Summary of the qualitative data obtained by TEM analysis on the main ultrastructural
features in PC12 unexposed (controls) or exposed to 0.5 µM of rotenone for 24 or 48 h.

Rotenone

Control 0.5 µM for 24 h 0.5 µM for 48 h

Mitochondria
Round/ovoid shape with

electron-dense cristae.
Uniformly distributed.

Round/elongated shape with
electron-dense cristae.
Uniformly distributed.

Round/elongated shape with
less electron-dense cristae.

Uniformly distributed.

Nuclei
Roundish, delimited by an

intact electron-dense
nuclear membrane.

Roundish, delimited by an
intact electron-dense
nuclear membrane.

Roundish or irregular, delimited
by an intact electron-dense

nuclear membrane. Presence of
nuclear invagination.

Nuclear content of
Hetero

Chromatin

Regularly distributed in the
nucleus with minor

condensation close the
nuclear envelope.

Regularly distributed in the
nucleus with minor

condensation close the
nuclear envelope.

Regularly distributed in the
nucleus with minor

condensation close the
nuclear envelope.

ER Usually found in form of
isolated cisternae.

Usually found in form of
isolated cisternae.

Usually found in form of
isolated cisternae

Neuropeptide granules Numerous. Mainly distributed
in peripheral area of the cell.

Less numerous. Mainly
distributed in peripheral area

of the cell.

Rare. Mainly distributed in
peripheral area of the cell.

Intercellular connection Numerous. Less numerous. Less numerous.

Autophagosomes and
vacuoles Rare. Occasionally present. Present.

3.2.4. Morphometric Analysis

The morphometric analysis revealed a slight downward trend in the mitochondrial
numerical density from the control to the rotenone 24 and 48 h groups (C: 24.8 ± 5.4; R 24:
22.7 ± 5.8; R 48: 20 ± 5.1). The mitochondrial length evaluation did not show significant
changes among the three groups (C: 0.418 ± 0.183; R24: 0.484 ± 0.173; R48: 0.478 ± 0.161).
Importantly, the morphometric evaluation displayed a significant downward trend in the
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neuropeptide granules numerical density from control to the rotenone 24 and 48 h groups
(C: 44.3 ± 16.5; R 24: 15.7 ± 11.4; R 48: 9.3 ± 14.3). We observed a similar downtrend with
the evaluation of the numerical density of the granules localized in the proximity of the cell
borders (C: 11.1 ± 3.2; R 24: 5.2 ± 2.4; R 48: 3.1 ± 1.7).

4. Discussion

This paper aimed to present a detailed analysis of the ultrastructure and viability of
PC12 exposed to rotenone in vitro. Although the control normal ultrastructural characteris-
tics of PC12 have already been reported [29], this is the first time that PC12 cells cultured
with rotenone were evaluated at the ultrastructural level by TEM and morphometry and
discussed in relation to PD pathogenesis.

Overall, we found that in the great number of cells, both the control and rotenone-
treated cells, did not show major alterations in shape, size, and general organization of the
cytoplasm and minor changes in subcellular organelles. However, 20–35% of rotenone-
treated cells displayed general and ultrastructural changes that were more evident with
longer time of treatment and strictly associated with increased cell death and with known
toxic mechanisms and targets of rotenone [30–32].

Based on our results and on what is already published, we aim to discuss two specific
points about the validity of rotenone-intoxicated PC12 cells as a cellular model for human
PD: 1- What are some of potential mechanism(s) by which rotenone damage PC2 cells?
2- Comparison between the morphological characteristics that were actually analyzed;
dopaminergic cells of substantia nigra seem to be a selective target of rotenone: is it true?
Can other cells, such as microglia, contribute to the neuronal damage by their specific
damage or activation?

Rotenone acts as a specific mitochondrial toxin, inhibiting mitochondrial electron
transfer at Site 1 of the respiratory chain (complex I-NADH-dehydrogenase), with two main
primary effects; a decrease in mitochondrial respiration with a reduction in ATP production
and deviation of electrons from cytochrome chain to the utilization of mitochondrial oxygen
with increased ROS production. Both energy charge decrease and ROS overproduction
affect a number of cell structures/functions, possibly leading to cell death [33].

4.1. Mitochondrial Disfunction

Following rotenone treatment, the mitochondrial matrix can be more electron-clear
(moderate swelling) with plate-like cristae or more electron-dense (condensed form) with
swollen irregular cristae. These modifications of the conformation have been described
by Hackencbrock et al. [34] in relation to the changes of mitochondrial energy charge. In
addition, morphometric data showed a decrease in the numerical density of mitochondria
and an increase in mitochondrial length in long-term rotenone-treated cells as compared
to the control. This finding is supported by Peng et al. [14] which demonstrated that
rotenone exposure alters both mitochondrial dynamics and biogenesis. In their in vitro ex-
periments, rotenone downregulated the cellular level of peroxisome proliferator-activated
receptor-γ-coactivator 1-α, a transcription factor controlling mitochondrial biogenesis
and fission/fusion processes. Furthermore, another study Arnold et al. [35] showed that
rotenone alters mitochondrial morphology by first inducing fusion as an initial compen-
satory response, followed by damage-inducing fission.

4.2. Effects of ROS and Oxidations of Other Biological Targets—Metabolic Effects

Energy production is further aggravated by the oxidation of other enzymes of glucose
and pyruvate metabolism. Chiaradia et al. [36] confirmed the correlation between rotenone
exposure and carbonylation of glycogen phosphorylase, pyruvate carboxylase, pyruvate
kinase, transketolase, and alpha-enolase, all involved in glycolysis, pentose phosphate, and
tricarboxylic acid cycle pathways. As further evidence, the oxidation of these enzymes
has been reported in PD whole brain tissues [37]. Taken together, all the alterations of the
energy metabolism from glycolysis to ATP synthesis may represent a relevant factor for
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the damage of function and maintenance of neurons, possibly linked to the occurrence of
neurodegenerative disorders [38,39].

4.3. Possible Impact on Granule/Vesicle/Multivesicular Bodies Formation, Transport and Secretion,
and Autophagocytosis

Our results showed a decrease in the distribution and number/cell of both neu-
ropeptidic dense granules and synaptic vesicles/multivesicular bodies, depending on the
duration of rotenone treatment. PC12 exposed for 48 h showed a dramatic reduction in
these structures (Table 3) in absolute number/cell and in their distribution into the cytosol
and at the secretory pole of the cell. This may suggest both a reduction in their formation
(as indicated by the decrease of Golgi complex changes) and an inhibition of their transport
to the secretory pole. Formation, transport, and secretion of vesicles and granules are
strongly energy-dependent and are inhibited when the energy charge falls below 60–70% or
normal levels. Interestingly, recent studies show that PD-linked neurotoxins, like rotenone,
determine carbonylation of specific chaperones, producing oxidative changes which affect
the protein function. One of these targets is the vacuolar-type proton ATPase subunit B,
brain isoform (V-ATPase), which has a role in vesicle/granule formation [40]. Other car-
bonylation targets are the proteasome protein subunit alpha, and transitional endoplasmic
reticulum ATPase [36], and cytoskeletal elements (microtubules and actin filaments) which
are crucial for vesicle formation, transport and secretion, as well as autophagy–lysosome
and ubiquitin–proteasome pathways aimed for removing damaged cellular components.
Prior studies have linked dysfunction in these pathways to PD pathogenesis [41–43].

Table 3. Morphometric assessment (expressed as mean ± standard deviation) of organelles in control
and rotenone-exposed groups. The analysis was conducted employing a one-way ANOVA with
Tukey HSD post hoc analysis. Same superscripts letters indicate a significant difference (p < 0.05).

Rotenone

Control 0.5 µM for 24 h 0.5 µM for 48 h

Numerical density of mitochondria (per cell) 24.8 ± 5.4 a 22.7 ± 5.8 b 20 ± 5.1 a

Mitochondrial length (µm) 0.418 ± 0.183 a 0.484 ± 0.173 b 0.478 ± 0.161 c

Numerical density of neuropeptide granules
(per cell) 44.3 ± 16.5 a,b 15.7 ± 11.4 a 9.3 ± 14.3 b

Numerical density of neuropeptides granules
on cell borders (per linear surface) 11.1 ± 3.2 a,b 5.2 ± 2.4 a 3.1 ± 1.7 b

4.4. Cell-to-Cell Contacts in Confluent Cultures

Our study showed a substantial decrease in cell-to-cell contact in the rotenone-exposed
cells as compared to the untreated cells. A previous work supports our observations, identi-
fying specific proteins in PC12 cells that are most vulnerable to the oxidative stress induced
by rotenone and can be involved in contacts. A 2D gel electrophoresis followed by pro-
teomic procedures and STRING characterization identified 17 oxidized proteins, implicated
in different cellular processes that were affected by protein oxidative modification. One
of the involved proteins was the programmed cell death 6 interacting protein (PDCD6IP)
involved in membrane repair, cytokinesis, and formation of tight junction [36].

4.5. In Vivo/In Vitro Mechanisms and Limitations of This Paper

With rotenone being a highly lipophilic molecule, it can cross biological membranes,
such blood–brain barrier (BBB), other barriers, and cell membranes such the outer/inner
mitochondrial membranes [9]. When crossing the BBB, rotenone encounters and intoxicates
different cell types, including endothelial cells, fibroblasts, astrocytes, microglia, and
neurons. A severe limitation of this PC12 cell line model is that in our analysis, we
completely missed the interactions among different cells present in the microenvironment
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of the PD target neurons (substantia nigra). Recently, the role of microglial activation
and damage, the activation of the inflammasome, and the different types of cell death
occurring in target neurons is emerging from experiments in animals where damaging
tissue signals and pathways may be explored [44] (Figure 3). Another limitation of this
paper is that several of our data (presence of cellular junction, multivesicular bodies, and
synaptic vesicle content) were qualitatively described and not quantitatively evaluated.
Future work should also exactly quantify the relative abundance of each element.
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Figure 3. Schematic representation of rotenone’s direct and indirect mechanisms of action at different
subcellular levels. Direct effects of rotenone are considered as the ATP production decrease and the
increase in ROS generation. Indirect effects stem from those direct. A decrease in energy charge affects
many aspects of structure/function maintenance such as cell and organellar volume control (cell
swelling), vesicle formation, transport and secretion, and cytoskeletal functions. Increased ROS gener-
ation affects mitochondrial components (such membranes, VDAC, enzymes, and proteins), and then,
after diffusing into the cytosol through aquaporins, may target a large number of elements, among
them the Golgi and endoplasmic reticulum (contributing to ER-stress), lysosomes and peroxisomes,
and cytoskeletal elements (microtubule and actin filament fragmentation) leading to cell movement
and architecture changes. A combined indirect catastrophic effect is the cell death through different
pathways leading to apoptosis (VDAC opening with release of cytC, APAF, mtDNA), pyroptosis [45],
ferroptosis [46], and lithic/autophagocytic death (with increased autophagocytosis) [47].

5. Conclusions

The results of our study suggest that the rotenone-treated PC12 model of neurotoxicity
could be regarded as one of the fairly reproducible and simple experimental toxin-based PD
models. However, considering the results of this study and the above referred limitations,
further analysis is necessary to enhance our understanding the rotenone neurotoxicity
when referred as PD models. Our results indicate that the toxicity of rotenone, especially
after 48 h of exposure results in important morphological and phenotypic alterations that
could serve as a model system for studying some aspects Parkinson’s disease.

PC12 cells can be induced to differentiate into a more neuron-like phenotype using
various methods, such as exposure to nerve growth factors [48]. This differentiation process
induces changes in cell morphology and functionality that renders PC12 more similar to
the dopaminergic in vivo neurons. It would be interesting to demonstrate whether the
differentiation of PC12 cells influences their sensitivity to rotenone. A further improvement
of the PC12 cell model could be the culture of organoids and or co-culture with microglia
and astroglia that could overcame the absence of inflammatory cells that recently have
acquired an important role in the PD neuronal damage and in disease progression.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci14050476/s1, Figure S1. Light microscopy of PC12 cells.
Representative LM pictures of PC12 untreated (A), treated with rotenone for 24 and 48 h (B,C).
Magnification: 20×.
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