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Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting individuals
worldwide and characterized by deficits in social interaction along with the presence of restricted
interest and repetitive behaviors. Despite decades of behavioral research, little is known about the
brain mechanisms that influence social behaviors among children with ASD. This, in part, is due
to limitations of traditional imaging techniques specifically targeting pediatric populations. As a
portable and scalable optical brain monitoring technology, functional near infrared spectroscopy
(fNIRS) provides a measure of cerebral hemodynamics related to sensory, motor, or cognitive function.
Here, we utilized fNIRS to investigate the prefrontal cortex (PFC) activity of young children with ASD
and with typical development while they watched social and nonsocial video clips. The PFC activity
of ASD children was significantly higher for social stimuli at medial PFC, which is implicated in social
cognition/processing. Moreover, this activity was also consistently correlated with clinical measures,
and higher activation of the same brain area only during social video viewing was associated with
more ASD symptoms. This is the first study to implement a neuroergonomics approach to investigate
cognitive load in response to realistic, complex, and dynamic audiovisual social stimuli for young
children with and without autism. Our results further confirm that new generation of portable fNIRS
neuroimaging can be used for ecologically valid measurements of the brain function of toddlers and
preschool children with ASD.

Keywords: autism spectrum disorder (ASD); functional near infrared spectroscopy (fNIRS); prefrontal
cortex (PFC); medial PFC (mPFC); social neuroscience

1. Introduction

Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental disorder with
global implications. According to the Diagnostic and Statistical Manual of Mental Disorders
(DSM-5), ASD is characterized by a series of combined symptoms encoded into two main
groups: (1) persistent deficits in social communication and social interaction across multiple
contexts, and (2) restricted, repetitive patterns of behavior, interests, or activities [1]. The
prevalence of ASD in children has been dramatically increasing worldwide [2]. In the USA,
for instance, one out of every thirty-six children was diagnosed with ASD by age 8 years in
2020 against one out of sixty-eight in 2010 and one out of a hundred and fifty in 2000 [3,4].
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Alongside genetic factors, these behavioral patterns are proposed to stem from deficits
in neural factors underpinning deficiencies in both nonsocial and social cognition [5].
Nonetheless, pinpointing the exact causes of ASD remains challenging, partly because of
the significant variability in clinical phenotype and the constraints of current technologies
for assessing the neural mechanisms, particularly at earlier ages [6,7].

Difficulties with social interaction is one of the core symptoms of ASD. Children within
the autism spectrum may have difficulty understanding social cues and norms, making it chal-
lenging to establish and maintain relationships with others [6]. They may also have difficulty
with nonverbal communication such as making eye contact and using and interpreting facial
expressions and body language. For instance, ASD children produced less emotional and
more ambiguous facial expressions than typically developing (TD) children during social tasks
such as interacting with an adult [8] and imitating facial productions [9]. ASD children also
presented poorer performance than TD children on tasks involving emotion recognition of
facial expressions [10–13]. Different from TD children, ASD children have also demonstrated
preferences for nonsocial stimuli such as geometric patterns and objects rather than social
stimuli such as human or animal faces [14–16]. It is noteworthy that the severity of social
difficulties among children with ASD varies widely, with some ASD children developing
successful social relationships while others may experience social isolation, exclusion, and
difficulty making and keeping friends [17].

Recent advances in neuroimaging techniques have allowed the non-invasive investiga-
tion of the brain mechanisms underlying the social processing of ASD individuals. Several
studies have applied non-invasive brain technologies such as Functional Magnetic Reso-
nance Imaging (fMRI) and Electroencephalography (EEG) to investigate the brain function
differences of ASD (see reviews [18–20]). Altered activation and connectivity patterns of
regions related to the brain referred to as the social brain, including the prefrontal cortex,
inferior frontal gyrus, and amygdala, have been observed in ASD individuals [21–23].
Cortical networks from EEG signals have presented different connectivity patterns in ASD
compared to TD groups [24]. Most of these studies, however, were with adults, adolescents,
and older children, and the experimental paradigms relied on tasks with non-dynamic
stimuli such as images, pictures, or simple auditory stimuli. Therefore, more naturalistic
studies emulating real-life situations with dynamic stimuli are needed to enhance the
understanding of the neural correlates involved in social processing among toddlers and
young children with ASD.

The limited number of naturalistic studies examining the social brain of ASD children
might be explained by specific requirements of fMRI and EEG systems, including their
high operational costs, noise, and movement restrictions that are challenging for toddlers
and children. Alternatively, functional near infrared spectroscopy (fNIRS) is an emerging
neuroimaging technology that is cost-effective, more resistant to movement artifacts, and
accessible for measuring brain activity in real-world settings, consistent with a neuroer-
gonomics approach [25–29]. As such, fNIRS has been applied to measure brain activity
among both healthy and clinical populations of children [30–33]. There are also dedicated
reviews of fNIRS studies among individuals with autism [34–36]. According to a 2019
review, at least thirty published studies applied fNIRS to measure ASD or high-risk children
between 2006 and 2018 [34]. fNIRS has been used to measure brain activity in social contexts
such as social perception among infants at-risk for ASD comparing social and nonsocial
context stimuli, ASD children interacting with a human or a robot in a video, and live
interaction between ASD children and their parents [31,37]. Also, fNIRS has been deployed
to investigate the impact on social processing of infants in low-resources and at-risk of ASD
and ADHD [38,39]. Although fNIRS offers promising avenues for investigating the social
brain function within the ASD population, the limited number of naturalistic studies with
toddlers and preschoolers underscores the need for further exploration.

This neuroergonomics study’s contributions are aimed to be threefold: (1) evaluating
young children with ASD at first diagnosis age, (2) using complex dynamic and continuous
stimuli, and (3) assessing localized prefrontal cortex activity for social cognition. Most
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fNIRS studies of social processing among children with ASD have focused on either infants
or older children and adolescents, creating a critical need for more studies with ASD
toddlers and preschoolers [40], which is the age when many children are first diagnosed.
Moreover, previous studies utilized simple stimuli with short-duration clips or static photos
that are more appropriate for infants, but not for toddlers and preschoolers. In this study,
we implement a neuroergonomic approach to investigate the cognitive load in response to
realistic, complex, and dynamic audiovisual social stimuli for toddlers, and preschoolers.
We studied the brain hemodynamic responses of ASD and TD children while watching
video clips of social and nonsocial contexts. Our aim was to evaluate prefrontal cortex
(PFC) activity in response to naturalistic stimuli. The PFC, specifically the medial prefrontal
cortex (mPFC), plays a crucial role in human social thinking and actions [41,42]. However,
information about the association between this region and social cognition in children
with autism is still underexplored [40]. We expected that ASD children would exhibit
altered PFC activation patterns compared to TD children and that such differences may
vary between social and nonsocial stimuli.

2. Materials and Methods
2.1. Participants

Twenty-eight children, twelve (nine male) ASD (3.89 y ± 1.26) and sixteen (six male)
TD (2.88 y ± 0.63), participated. Regarding participant recruitment and selection proce-
dures, we used a combination of approaches, such as advertising through online platforms,
social media, and outreach to early childcare agencies and ASD community organizations.
Potential participants’ parents and caregivers who contacted our research team were in-
formed about the study and answered questions to verify their eligibility. Exclusion criteria
for the ASD group included additional developmental disorders, severe medical conditions
(e.g., history of seizures, traumatic brain injury, stroke), hearing/visual problems, and
children on neuropsychiatric medications. For TD children, the exclusion criteria included
having a family history of ASD and/or the presence of language or developmental delays.
Once eligibility was confirmed, a mock headband was shipped to participants’ homes to
help the ASD children get familiarized with the fNIRS headband. Eligible participants were
invited for a remote session where a clinical psychologist with expertise in ASD assessment
conducted a confirmatory evaluation of the children using the TELE-ASD-PEDS [43] and
the Vineland Adaptive Behavior Scores, Third Edition (Vineland™-3) [44,45] to confirm
ASD diagnosis. After the clinical assessments, participants were invited to the session in
the lab with fNIRS data collection. Participants were monetarily compensated for their
time. The Drexel University Institutional Review Board approved the study, and caregivers
provided written consent for their and their child’s participation.

2.2. Experimental Setup

Participants were comfortably seated in front of a computer monitor on which the
videos were displayed. Children viewed four video clips, two clips each for social and
nonsocial conditions. We carefully chose all the video stimuli. For the social condition, one
video with a male actor and another with a female actress were selected to counterbalance
across our sample. The videos used for nonsocial conditions were gender neutral, as
they included only inanimate general objects which are equally common for boys and
girls (e.g., Rube Goldberg chain reaction machine). To keep participants’ engagement,
we chose, for both social and nonsocial conditions, videos that presented a sequence of
events. Each video lasted approximately two minutes; time markers were used to separate
each block condition and were later used in the fNIRS analysis. Videos were presented in
counter-balanced pseudo-randomized order. The whole experiment was video recorded by
high-resolution cameras (Logitech HDPro Webcam C920, Logitech, Lausanne, Switzerland).
The webcam video recordings of children’s faces were used to confirm that children were
watching throughout the videos.
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2.3. fNIRS Data Collection

Brain activity was monitored while the children viewed the videos. Prefrontal hemo-
dynamic responses were measured using a continuous wave fNIRS Imager Model 2000S
(fNIR Devices, LLC, Potomac, MD, USA) with wavelengths of 730 nm and 850 nm as well
as an ambient channel with a sampling rate frequency of 10 Hz using COBI Studio Modern
Software (v1.2) [46]. The prefrontal cortex activity was measured by placing an ultra-thin
flat sensor pad on the participant’s forehead. The sensor pad measured 16 cortical measure-
ment locations (optodes) with four sources and ten detectors at a 2.5 cm source–detector
distance [47]. The sensors arrangement followed the 10–20 EEG system and covered the
PFC bilaterally (see Figure 1A).
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Red and blue dots represent light emitters and detectors, respectively. Numbers (1–16) in between
each pair represent the fNIRS optodes. (B). Data collection setup with a pilot participant in front of
screen and camera (right panel).

All participants went through brief head sensor acclamation training before data col-
lection day. First, a mockup sensor (an elastic fabric headband) was shipped to participant’s
home. Before the day of data collection, participants and parents practiced putting it on
during an online meeting with a Board-Certified Behavior Analyst to ensure children can
tolerate the sensor during the data collection.

2.4. fNIRS Processing and Statistical Analysis

For each participant, raw fNIRS light intensity data (16 optodes × 2 light wavelengths)
were low pass filtered with a finite infinite response (FIR) filter order of 100 and cut-off of
0.1 Hz to attenuate high frequency noise and physiological artifacts [48]. Each participant’s
data were checked for any potential saturated channels and contamination by using the
additional ambient channel at each of the 16 optodes. Next, a coefficient of variation-based
statistical filter, sliding-window motion artifact rejection (SMAR), was applied to the light
intensity of each optode for rejecting motion artifacts, as we described previously [49].
Then, preprocessed light intensity time-series were converted into oxyhemoglobin changes
(HbO) by applying the modified Beer–Lambert law. The hemodynamic response at each
optode was averaged across time for each video block to provide a mean hemodynamic
response at each optode. The final output of each optode was mean HbO which was used
for statistical analyses.

A linear mixed model (LMM) analysis with repeated measures was applied to the HbO
signal from each optode separately, with the variables group (ASD vs. TD) and condition
(Social vs. Nonsocial) as fixed factors and age as a covariate. We used an LMM because
it is particularly useful for examining brain hemodynamic changes over time as noted in
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this review of statistical analysis of fNIRS data [50]. LMMs incorporate random effects for
individual participants while capturing variability between groups of participants [51,52].
Furthermore, LMM is flexible in handling missing data [52]. It does not require the same
number of measurements across participants, which applies to fNIRS studies in which data
may be missing due to technical issues or participant non-compliance. Finally, LMM has
been frequently applied in fNIRS studies, including those assessing motor control [53] and
cognitive processing [54,55].

False discovery rate (FDR) correction was applied to LMM results to correct for
multiple testing familywise across the entire list of optodes (with q = 0.1) [56]. Bonferroni
correction was applied during the post hoc analysis of individual contrast comparisons
within an optode that survived the previous FDR correction [50].

2.5. Correlation between fNIRS Signals and Clinical Scores

In addition, we investigated the relationship of brain activity with clinical measures.
Correlational analyses between HbO responses and clinical scores were performed for all
participants and in each social and nonsocial condition. For each of the sixteen optodes,
Spearman correlations were computed between HbO and both TELE-ASD-PEDS total
Likert scores and Vineland™-3 clinical domains. Statistical analyses were performed using
NCSS 2023.

3. Results
3.1. Clinical Assessments Results

A comparison of ASD and TD children on the Vineland Adaptive Behavior Scales is
presented in Table 1. Statistically significant differences in all domains and subdomains
were found between ASD and TD groups. As expected, ASD group had lower mean
scores than TD in all domains, indicating worse adaptive functioning. In addition, children
with ASD had significantly higher scores than TD children on the TELE-ASD-PEDS (see
Figure 2), further supporting the diagnoses of ASD among children in the ASD group.

Table 1. Vineland Adaptive Behavior Scores, Third Edition (Vineland™-3).

ASD (n = 12)
Mean (SD)

TD (n = 16)
Mean (SD)

T-Statistics
(Two Sample) DF p-Value

Adaptive Behavior Composite 64.42 (6.14) 104.75 (16.41) −9.03 20.17 <0.001
Domain Scores

Communication SS 58.42 (15.39) 105.44 (11.82) −8.81 20.02 <0.001
Daily Living Skills SS 72.92 (10.77) 101.31 (15.76) −5.62 25.84 <0.001

Socialization SS 60.67 (10.35) 105.25 (15.51) −9.11 25.73 <0.001
Motor Skills SS 81.00 (7.78) 105.44 (15.71) −5.40 23.05 <0.001

Subdomain Score Summary
Communication Receptive 7.25 (3.86) 15.63 (2.8) −6.36 19.20 <0.001
Communication Expressive 4.17 (3.04) 16.38 (3.32) −10.10 24.89 <0.001

Communication Written 12.50 (3.1) 16.25 (2.12) −3.04 15.70 <0.001
DLS Personal 8.85 (3.78) 15.44 (3.48) −4.51 22.78 <0.001
DLS Domestic 10.00 (2.21) 15.88 (2.64) −5.03 13.70 <0.001

DLS Community 9.50 (2.88) 15.38 (1.6) −5.49 14.51 <0.001
Socialization Interpersonal Relations 6.83 (2.76) 16.50 (4.03) −9.88 24.75 <0.001

Socialization Play and Leisure 7.83 (1.59) 15.94 (2.72) −9.89 24.75 <0.001
Socialization Coping Skills 8.73 (1.74) 15.46 (2.63) −7.49 20.89 <0.001
Motor Skills Gross Motor 11.33 (2.77) 15.94 (3.55) −3.85 25.93 <0.001
Motor Skills Fine Motor 12.08 (2.78) 16.50 (3.29) −3.85 25.56 <0.001

t-test: Aspin–Welch Unequal-Variance t-Test, SS = Standard Score, DLS = Daily Living Skills Domain,
ASD = Autism Spectrum Disorder group, TD = typically developing group.
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Figure 2. Mean TELE-ASD-PEDS Total Likert Scores. ASD = Autism Spectrum Disorder group,
TD = typically developing group. * t (14.81) = 8.84, p < 0.001.

3.2. fNIRS Results

Significant main effects of condition were found for HbO signals from optodes 2
(F1,91 = 12.09, p < 0.001, η2 = 0.12), 3 (F1,88 = 11.31, p = 0.001, η2 = 0.11), 5 (F1,92 = 8.42,
p = 0.005, η2 = 0.08), 8 (F1,74.1 = 6.58, p = 0.012, η2 = 0.08), and 10 (F1,70 = 13.92, p-value < 0.001,
η2 = 0.17), controlled for age and survived correction for multiple comparisons (FDR,
q < 0.1). In all these optodes, the social condition resulted in higher activity compared to
the non-social condition. More importantly, the interaction effect of group*condition was
found to be significant only at optode 10 (F1,69.6 = 9.27, p = 0.003, η2 = 0.12). Post hoc
comparison tests for optode 10 with Bonferroni correction showed that ASD children
specifically presented higher HbO levels for the ASD social condition compared to the
ASD nonsocial condition (**, F1,70.2 = 19.61, p < 0.0001, η2 = 0.22), while the TD group
did not present statistically significant differences across social vs. nonsocial conditions.
In addition, post hoc comparison of the ASD-Social condition was significantly higher
compared to TD-Social (*, F1,39 = 6.78, p < 0.03, η2 = 0.15), as shown in Figure 3. No other
optode had a significant response.
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Figure 3. Projection of optode 10 on the brain surface image (left) and mean HbO results (right) by
group (ASD × TD) and condition (Social × Nonsocial) shows significant interaction (F1,69.6 = 9.27,
p = 0.003, η2 = 0.12), and with post hoc comparisons, significantly higher ASD-Social compared to
ASD-Nonsocial (**, F1,70.2 = 19.61, p < 0.0001, η2 = 0.22) and significantly higher ASD-Social compared
to TD-Social (*, F1,39 = 6.78, p < 0.03, η2 = 0.15).
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3.3. Correlation between fNIRS and Clinical Scores

First, fNIRS responses during social video conditions (Social HbO) showed positive
correlations with TELE-ASD-PEDS scores only for optodes 10 (r = 0.37, p = 0.008) and 13
(r = 0.30, p = 0.044); the more ASD symptoms, the higher brain activation during social
video viewing. For non-social condition HbO data, there was no significant correlation for
any optode.

Next, correlations of fNIRS with standard scores from the Vineland™-3 were per-
formed. Again, social HbO showed a significant correlation with the overall Adaptive
Behavior Composite score and only for optode 10 (r = −0.031, p = 0.026) with poorer adap-
tive behavior associated with higher brain activation. There were no significant correlations
for non-social videos.

Likewise, social HbO and Vineland™-3 domains showed significant correlation only
for optode 10 for Socialization SS (r = −0.31, p < 0.030) and Communication SS (r = −0.33,
p = 0.021) and for the relevant subdomain scales of Socialization Interpersonal Relations
(r = −0.31, p < 0.030) and Communication Receptive (r = −0.30, p = 0.034).

The negative correlation between Social HbO and Vineland™-3 scores align with
the correlations with TELE-ASD-PEDS and indicates that children with lower adaptive
functioning (consistent with greater ASD symptoms) presented higher PFC activity during
social videos. Again, there were no significant correlations for non-social HbO with the
clinical measures, suggesting that the association between clinical scores and brain activity
differences is specific to the social stimuli.

For Motor Skill SS, there was a significant relationship with HbO at optode 1 (r = 0.33,
p < 0.025) for social conditions and no significant optodes for non-social conditions. For the
Daily Living Skills SS domain, there were no significant correlations for social or non-social
conditions. This is expected as these domains are not related to social and communication
skills. None of the significant correlations survived after FDR for familywise optode
multiple testing correction; however, consistent brain area (optode 10 for social cognition)
and condition (only for social videos, and none for non-social video) suggest a confirmatory
relationship to the main brain activity results.

4. Discussion

This neuroergonomic study aims to understand the neural correlates of social stimuli
processing in ASD by evaluating young children (toddlers and preschoolers using dynamic
stimuli and assessing prefrontal cortex activity with minimally intrusive wearable neu-
roimaging in ecologically valid settings. The brain activity of the young children with
and without ASD was recorded as they watched social and non-social audiovisual stimuli,
namely video clips. Our findings indicate that children with ASD exhibit distinct activation
patterns for social and nonsocial stimuli. Children with ASD demonstrated higher HbO
while watching social than nonsocial content, whereas no differences between viewing
conditions were found for TD children. Additionally, significant negative correlations
between adaptive functioning and children’s brain responses were found only for social
videos and only for the same brain area (optode 10, measuring the medial PFC [mPFC]).
These indicate that children whose Vineland™-3 clinical scores were lower (more severe
symptoms) had higher brain hemodynamic responses to social videos. Moreover, higher
activation of the same brain area (mPFC) during social video viewing was again associated
with higher TELE-ASD-PEDS scores (i.e., more ASD symptoms).

Brain activity recorded during video watching also showed a significant interaction of
group (ASD vs. TD) and condition (Social vs. non-social) in mPFC (optode 10, see Figure 3).
These findings are consistent with prior research indicating that the mPFC plays an essential
role in social cognition [57]. The mPFC activity has been associated with social stimuli
from very early in life [40,58]. For example, the mPFC showed greater activation among
5-month-old infants while viewing a video with directed eye gazing than without directed
gaze [58]; also, the mPFC was recruited when infants heard a voice calling their name but
not when calling a stranger’s name [58].
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Furthermore, the mPFC has been implicated as a relevant region in ASD-related fMRI
studies. For instance, greater activation of mPFC was found in the ASD group when compar-
ing a stimulus-oriented versus stimulus-independent attention measure [59]. Also, abnormal
functional specialization within the mPFC was found among individuals with ASD when
using multi-voxel analysis to compare brain activation of verbal versus spatial tasks [60].
Altered functional connectivity of the mPFC and other regions of the default mode network
among individuals with ASD was also found in an fMRI study [61,62]. In ASD, general hyper-
connectivity, specifically between the primary sensory cortex with paralimbic systems and
the association cortex, has been reported [63]. Both social disability and repetitive behavior
scores have been associated with hyper-connectivity patterns [63,64]. Also, ASD has been
shown to have structural cortical differences, i.e., in a postmortem study, children with
ASD presented significantly more neurons in the PFC than controls [65]. It is noteworthy
that the mPFC is just one aspect of the broader neural basis of ASD, and more investigation
is needed to build a deeper understanding of brain function differences among individuals
with ASD.

Our results suggest that children with ASD demand more brain resources to process
social cues than when in nonsocial situations (See Figure 3). Notably, the significant inverse
relationship between HbO and adaptive functioning, particularly in communication skills,
reinforces these findings (See Section 3.3). In the social videos, a person promotes interaction
with children by talking and singing, perhaps creating greater cognitive challenges and load
among individuals with ASD who may have some communication deficits. Likewise, the
correlation between brain activity and Vineland™-3 socialization scores may elucidate the
difficulties of ASD children in processing the actors’ social cues, such as facial expressions
and gestures, during the social videos. In contrast, nonsocial videos did not contain human
voices or social cues, possibly explaining the absence of a significant correlation between
brain responses and clinical scores for that condition.

The pattern of differences in brain activity between social and nonsocial stimuli for
the ASD group but not for the TD group has been reported in other studies [37,66–68].
For instance, in an fNIRS study that investigated brain hemodynamic responses of ASD
and TD children while viewing videos with humans and robots, ASD children presented
higher levels of HbO for the human condition. At the same time, no differences were
found between the human and robot conditions in the TD group [37]. Also, brain activity
measured by EEG while watching videos with social and nonsocial contexts was different
for ASD and TD children [67]. Similarly, in an fMRI experiment, ASD children exhibited
higher levels of PFC activity for pictures of human faces than pictures of houses. In contrast,
the TD children had opposite patterns [68].

Furthermore, behavioral studies of preferences for social and nonsocial stimuli show
that individuals with ASD have lower preferences for social than nonsocial stimuli, while
TD peer preferences vary across studies [16,69,70]. For instance, when comparing pref-
erences between social and nonsocial stimuli, TD children presented similar preferences,
while the ASD group presented preferences for nonsocial stimuli [15]. Similarly, in a choose-
a-movie paradigm that measures social seeking, adolescents with ASD preferred viewing
objects to smiling faces, and, in contrast, TD adolescents showed no differences across
stimuli conditions [66]. The higher PFC activity for social videos seen in our study may
relate to the lower preference or engagement/experience of ASD children for social cues,
therefore requiring higher cognitive demand to process it. TD children, on the other hand,
may equally prefer social and nonsocial videos, leading to a similar level of PFC activity to
process both stimuli.

The advantages of portable neuroimaging, such as fNIRS, have contributed to un-
derstanding the neural underpinnings of social processing in children as early as the first
months of life [71]. The neural correlates of processing social stimuli have been shown,
using fNIRS, to be related to psychosocial hazards (e.g., maternal education, maternal
stress, socio-economic status, and the caregiving environment) [38,72,73]. For instance,
higher brain hemodynamic responses to social stimuli as compared to nonsocial stimuli
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were found in infants (6 months) and toddlers (36 months) exposed to adversities, includ-
ing extreme poverty, malnutrition, recurrent infections, and low maternal education [38].
In a longitudinal study comparing low and middle-income, the 6-month infants from
both groups had similar functional connectivity patterns during a social cognition task;
however, at 24 months, different connectivity patterns were observed, including evidence
of greater global connectivity (less neural specialization) associated with environmental
adversity [72]. Similarly, another fNIRS study of infants from the first postnatal days to
the second year of life showed different activation patterns to social and nonsocial stimuli
across different cohorts [73]. While the 9–24 months group demonstrated higher brain
activity for social than nonsocial stimuli (both visual and auditory), younger infants from 0
to 2 months demonstrated higher activity for nonsocial auditory stimuli, which continued
until 8 months [73].

Other fNIRS studies have investigated the brain responses to social stimuli of in-
fants at elevated likelihood of atypical development, including those at risk for ASD and
ADHD [39,74,75]. For instance, infants (4–6 months) at high risk for autism showed greater
hemodynamic response to nonvocal stimuli and diminished response to visual stimuli in a
short video paradigm in which visual and auditory stimuli are presented separately [74].
The same pattern of activation was found at 5 months in a sample at high risk of autism
when applying a similar paradigm; while high-risk infants showed decreased activation
to social stimuli in the right posterior temporal cortex, this activation was increased in
infants at low risk of ASD [76]. Following the same direction, infants (4–6 months) with an
elevated likelihood of ASD and/or ADHD showed atypical social brain responses to visual
stimuli when compared to infants at typical development likelihood [39].

The divergence between our results of higher brain hemodynamic response to social
videos in the ASD group and the reduced brain response to social stimuli reported in infant
studies can be explained by several factors. Firstly, the differences in age range between our
study (mean age ± 36 months) and infant studies should be considered given major brain
developmental changes during this period. Secondly, we were interested in measuring
the cognitive load of social processing. Therefore, we monitored children’s prefrontal
cortex, which plays an important role in cognitive load. In contrast, the main differences in
brain responses of the infants’ studies were found in lateral regions covered by the relative
positions of the EEG 10–20 system such as T3–T4 [74–76]. Thirdly, our study used relatively
long (2 min for each video), complex, and dynamic audio-visual stimuli trying to resemble
a real-life situation. The infant studies used briefer videos that included only visual cues
(human gestures) or auditory cues at a time, as it was more appropriate to their age range.
However, these stimuli do not reflect the social complexity that older children encounter.

While this study provides insights into the neural responses of children with ASD to
social and nonsocial stimuli, some limitations should be considered. Here, we described
important albeit preliminary information about fNIRS measures of the PFC hemodynamic
response and its relationship to activation patterns during complex social and non-social
audiovisual stimuli processing. It is possible that there may be additional factors that
contribute to the cognitive load and children may have recruited areas of the brain that
were not being monitored in the current study. Examination of posterior brain regions
such as the temporal–parietal junction (TPJ) and subcortical areas could provide additional
information regarding young ASD children’s processing of social information in addition
to the prefrontal cortex, or by combining fNIRS with EEG, as these measure complimentary
aspects of brain activity [55]. This is an area for future research. Moreover, our partici-
pant recruitment was impacted by the COVID pandemic, limiting our sample size and
composition. Future studies could investigate naturalistic social stimuli processing in
ASD with larger participant pools and include additional multimodal wearable sensors.
Finally, although our results have middle to large and large effect sizes, one should still
interpret those with caution. Mixed-effects models with covariates effectively account for
multiple sources of variation. Yet, due to their ability to discern among these varied factors,
establishing a standardized effect size is challenging [77].
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5. Conclusions

In conclusion, our study demonstrates that differential responses to social and nonso-
cial video stimuli are present in the brain of young children with ASD, and specifically
in the mPFC, an area is involved with social cognition. The mPFC activity was also con-
sistently correlated with clinical measures. Collectively, these findings contribute to the
understanding of social cognition among young children with ASD and underscore the
importance of investigating the neural mechanisms underlying naturalistic social stim-
uli processing. These findings could contribute to the development of potential early
assessment approaches, interventions, and educational materials that effectively engage
and support individuals with ASD. Follow up studies should continue to investigate the
underlying mechanisms driving these response patterns. Future research with a multidisci-
plinary approach incorporating educational, clinical, and neuroscientific perspectives may
contribute to the development of potential interventions that are tailored to the individ-
ual needs of children with ASD, promoting their social interaction, learning, and overall
well-being.
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