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Abstract: Cannabis and its major cannabinoid cannabidiol (CBD) are reported to exhibit anticancer
activity against skin tumors. However, the cytotoxic effects of other minor cannabinoids and synthetic
CBD derivatives in melanoma are not fully elucidated. Herein, the antiproliferative activity of a
panel of phytocannabinoids was screened against murine (B16F10) and human (A375) melanoma
cells. CBD was the most cytotoxic natural cannabinoid with respective IC50 of 28.6 and 51.6 µM.
Further assessment of the cytotoxicity of synthetic CBD derivatives in B16F10 cells identified two
bipiperidinyl group-bearing derivatives (22 and 34) with enhanced cytotoxicity (IC50 = 3.1 and
8.5 µM, respectively). Furthermore, several cell death assays including flow cytometric (for apoptosis
and ferroptosis) and lactate dehydrogenase (for pyroptosis) assays were used to characterize the
antiproliferative activity of CBD and its bipiperidinyl derivatives. The augmented cytotoxicity of 22
and 34 in B16F10 cells was attributed to their capacity to promote apoptosis (as evidenced by increased
apoptotic population). Taken together, this study supports the notion that CBD and its derivatives
are promising lead compounds for cannabinoid-based interventions for melanoma management.

Keywords: cannabinoids; cannabidiol; bipiperidinyl; skin cancer; melanoma; apoptosis; ferropto-
sis; apoptosis

1. Introduction

Skin cancers, including basal cell carcinoma, squamous cell carcinoma, and melanoma,
present a significant global health challenge due to their widespread prevalence and the
associated high morbidity and mortality rates [1]. Among these, melanoma, though less
prevalent than basal cell and squamous cell carcinomas, is particularly notorious for its
aggressive nature and propensity for rapid metastasis. Treatment strategies for melanoma,
adjusted according to the tumor’s stage and location, often involve surgery, immunother-
apy, and chemotherapy [2]. In instances where first-line treatments like immunotherapy
are unsuitable, chemotherapy drugs are employed. Notably, natural product-derived an-
ticancer agents, including paclitaxel and vinblastine, are commonly used in conjunction
with other therapies to mitigate drug resistance [3].
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A considerable amount of research effort has been directed at discovering natural prod-
ucts (and their derivatives) with anti-melanoma effects. Preclinical studies demonstrated
that cannabis and its bioactive compounds, namely, cannabinoids, present promising effects
on the inhibition of tumor growth and reduction in tumor size [4]. For instance, it was
reported that cannabidiol (CBD), a major non-psychoactive cannabinoid in cannabis, can
decrease the growth rate of melanoma tumors and increase the animal survival curve
in a murine melanoma model [5]. However, the underlying mechanisms of CBD’s anti-
melanoma effects remain to be fully elucidated.

Our group has initiated a program to systematically evaluate CBD’s multifaceted
biological activities including anti-inflammation, antioxidant, and inhibitory effects on
enzymes (including cholinesterases, kynurenine-3-monooxygenase, and virus main pro-
tease) [6–9]. Additionally, we have explored CBD’s antimicrobial effects against methicillin-
resistant Staphylococcus aureus [10]. Furthermore, a panel of CBD’s derivatives was chemi-
cally synthesized for augmented antibacterial activities, which provided insights into the
structural–activity relationship (SAR) for CBD’s mechanism of action.

However, the challenges remain as to whether the antiproliferative effect of CBD
on melanoma cells can be enhanced by structural modifications. The objectives of this
study are (1) to evaluate the antiproliferative effects of phytocannabinoids, including CBD,
against both murine (B16F10) and human (A375) melanoma cell lines; (2) to investigate how
structural modifications to CBD influence its antiproliferative effects; and (3) to explore the
effects of CBD and its derivatives on various forms of programmed cell death including
apoptosis, ferroptosis, and pyroptosis.

2. Materials and Methods
2.1. Chemical and Reagents

Cannabinoids including cannabidiol (CBD), cannabigerol (CBG), cannabicitran (CBT),
cannabinol (CBN), cannabichromene (CBC), cannabigerolic acid (CBGA), cannabidiolic
acid (CBDA), and cannabidivarin (CBDV) delta-8-tetrahydrocannabinol (∆8-THC) were
purchased from Cayman Chemical (Ann Arbor, MI, USA; see their chemical structures in
Figure 1).
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Chemicals including the erastin, etoposide, and lactate dehydrogenase (LDH) assay kit
were purchased from Cayman Chemicals. The derivatives of CBD (1–56) were chemically
synthesized by our laboratory with a protocol previously reported [10]. Phosphate-buffered
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saline (PBS), dimethyl sulfoxide (DMSO), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT), 2′,7′-dichlorofluorescin diacetate fluorescent probe (DCF-DA), and crystal
violet were purchased from Sigma-Aldrich, Co. (St. Louis, MO, USA). Paraformaldehyde
and the Alexa FluorTM 488 Annexin V/Dead cell apoptosis kit were purchased from
Thermo Fisher Scientific (Waltham, MA, USA). The Liperfluo and FerroOrange assay kits
were obtained from Dojindo Lab (Kumamoto, Japan).

2.2. Cell Culture and Viability Assay

Murine melanoma (B16F10) cells and human melanoma (A375) cells were purchased
from the American Type Culture Collection (ATCC; Rockville, MD, USA) and cultured
according to protocols by ATCC. The Dulbecco’s modified Eagle’s medium (DMEM; Life
Technologies, Gaithersburg, MD, USA) supplemented with 10% fetal bovine serum (Life
Technologies) and 1% antibiotic solution (Sigma-Aldrich, Co., St. Louis, MO, USA) was
used for the culture. The cell viability was measured by the MTT assay [11]. Briefly, cells
were maintained at 37 ◦C in a 5% CO2 incubator, which has a 95% relative humidified
atmosphere. Test samples were dissolved in DMSO as a stock solution (100 mM) and
then diluted with the cell culture medium to the desired concentrations. The final DMSO
concentration was <0.1%. Cells were seeded in 96-well plates at 5 × 103 cells/mL in 100 µL
of cultural medium in quadruplicate and cultured overnight. Then, the culture medium was
replaced with fresh medium containing test samples at various concentrations (1–100 µM).
After treatment with test samples (24 h), the MTT reagent (20 µL) was added and incubated
for 4 h. The absorbance of each well at 570 nm was recorded with a SpectraMax M2 plate
reader (Molecular Devices, Sunnyvale, CA, USA). The inhibition of proliferation by the
sample treatment is expressed as a percentage compared to the control cells (with ≤0.1%
DMSO). Data are presented as mean values ± standard error of the mean (SEM) and were
obtained from four separate experiments.

2.3. Cell Colony Formation Assay

B16F10 cells were seeded in 6-well plates at a density of 1 × 103 cells/well and allowed
to grow for 24 h. CBD (40 µM) and its derivatives 22 (10 µM) and 34 (10 µM), which are
bipiperidinyl moiety-containing analogs with the most promising antiproliferative effect
selected from a panel of synthetic cannabinoids, were included for the cell colony assay.
After treatment of the test samples for 12 h, the culture medium was replaced with a fresh
medium for 12 h. The culture medium was then changed every three days. After 7 days,
cells were washed with ice-cold PBS and the clones were fixed with 4% paraformaldehyde
for 20 min and then stained with 0.1% crystal violet for 15 min. Subsequently, the excess
crystal violet solution was removed by slowly washing the cells with PBS. Colonies were
photographed and quantified. The colony numbers were counted using the software of
Image J Version 1.52 (http://rsb.info.nih.gov/ij/; accessed on 19 October 2023).

2.4. Detection of Apoptosis and Necrosis

Apoptosis and necrosis cells were assessed by flow cytometric assay [11]. Briefly,
B16F10 cells were cultured at a density of 2 × 105 in 6-well plates for 12 h and then treated
with CBD, 22, and 34 at concentrations that were near their IC50 of the cytotoxicity for
24 h. Next, B16F10 cells were collected and labeled with FITC-conjugated-annexin V and
PI reagents according to the manufacturer’s instructions. Then, the population of apoptotic
and necrotic cells was measured by flow cytometry (BD FACSCalibur, San Jose, CA, USA)
and data were analyzed using the software FlowJo v8 (LLC, Ashland, OR, USA).

2.5. Measurement of Ferroptosis

The effects of CBD and its derivatives on ferroptosis were evaluated with two methods
including lipid peroxidation and cellular ion assays. The content of lipid peroxide (LPO)
was detected by the Liperfluo assay [12]. Briefly, B16F10 cells were cultured at a density of
2 × 105 in 6-well plates overnight and then CBD (40 and 50 µM), 22 (5 and 10 µM), and
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34 (10 and 15 µM) were added after cell adhesion. Next, cells were collected and washed
with PBS and then labeled with Liperfluo reagent in the incubator for 30 min. Then, cells
were washed with PBS twice. The fluorescence signals were detected and analyzed by
flow cytometer (BD FACSCalibur) and data were analyzed using the software FlowJo. The
content of intracellular ion (Fe2+) was detected by the FerroOrange staining assay [13].
Briefly, B16F10 cells (2 × 105 cells per well) were seeded in a 6-well plate and incubated
overnight for adherence. Cells were collected after 24 h of treatment with CBD, 22, and
34 and then washed with PBS and incubated with the FerroOrange reagent in the dark
at 37 ◦C for 30 min. Finally, they were assayed by flow cytometry and analyzed by the
software FlowJo, which is the same as the above method.

2.6. Detection of Reactive Oxygen Species

The cellular oxidative stress was measured by the detection of reactive oxygen species [14].
Briefly, B16F10 cells were cultured at a density of 2 × 105 in 6-well plates and treated with
CBD (40 µM), 22 (5 µM), and 34 (10 µM) for 24 h. Then, cells were collected and treated
with DCF-DA (20 µM) for 30 min before being washed with PBS twice. Then, cells were
quantified by flow cytometry and analyzed by the software FlowJo.

2.7. Detection of LDH

The lactate dehydrogenase levels of cells treated with test samples were evaluated
by an LDH kit according to the manufacturer’s instructions [7]. Briefly, B16F10 cells were
cultured at a density of 5 × 103 in a 96-well plate and treated with CBD, 22, and 34 (40 µM)
for 24 h. Then, the supernatant was transferred to a 96-well plate followed by adding the
LDH reaction solution with gentle shaking for 30 min at 37 ◦C. The absorbance of each well
at a wavelength of 490 nm was recorded with a SpectraMax M2 plate reader.

2.8. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 10 (GraphPad Software, La
Jolla, CA, USA). Data are expressed as the mean value ± standard deviation (SD) obtained
from triplicates of experiments. The significance of differences was determined using a
one-way analysis of variance (ANOVA).

3. Results and Discussion
3.1. Phytocannabinoids Inhibit the Proliferation of Murine and Human Melanoma Cells

We first evaluated the antiproliferative effects of natural phytocannabinoids (including
CBD, CBG, CBT, CBN, CBC, CBGA, CBDA, CBDV, and ∆8-THC; chemical structures are
shown in Figure 1) in murine (B16F10) and human (A375) melanoma cells. At a lower
concentration (10 µM), these phytocannabinoids showed weak antiproliferative effects with
up to 27.2% inhibition (Table 1). Their antiproliferative effects were stronger at 100 µM and
several phytocannabinoids including CBD, CBN, CBG, CBDV, and ∆8-THC inhibited the
growth of B16F10 and A375 cells by 84.7–93.7% and 82.7–94.7%, respectively. Etoposide
was used as a positive control and it showed antiproliferative effects by 46.7% and 78.2%
inhibition at 10 µM in B16F10 and A375 cells, respectively.

The antiproliferative effects of CBD, CBN, CBG, CBDV, and ∆8-THC in B16F10 and
A375 cells were further evaluated at various concentrations (12.5, 25, 50, and 100 µM) for
24 h. CBD, CBN, and ∆8-THC at 25 and 50 µM showed an inhibition of 28.0% and 80.2%,
18.0% and 85.5%, and −4.3% and 77.0%, respectively, in B16F10 cells (Figure 2A). A similar
trend was observed where these cannabinoids (25 and 50 µM) inhibited the growth of A375
cells by 4.7% and 48.0%, 2.5% and 46.3%, and 16.5% and 51.7%, respectively (Figure 2B).
The antiproliferation IC50 values of CBD, CBN, CBG, CBDV, and ∆8-THC are shown in
Table 2.

Among the tested phytocannabinoids, CBD had the most promising antiproliferative
effects in B16F10 cells with an IC50 of 28.6 µM. We further evaluated the cytotoxicity of CBD
in melanoma cells at multiple time points. CBD had comparable inhibitions on the growth
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of B16F10 cells at the time points of 24, 48, and 72 h (Figure 3A), whilst its antiproliferative
effects were more significant for the longer treatment times (24 and 72 h) in A375 cells
(Figure 3B).

Table 1. Effects of phytocannabinoids on the cell viability of murine (B16F10) and human (A375)
melanoma cells.

Cell Viability (as of Control%)

Compd (10 µM) B16F10 A375 Compd (100 µM) B16F10 A375

CBD 135.0 ± 2.0 100.8 ± 4.7 CBD 8.5 ± 0.3 5.3 ± 0.3
CBG 102.8 ± 2.6 84.8 ± 1.9 CBG 15.3 ± 1.2 7.0 ± 0.4
CBT 101.8 ± 5.0 84.5 ± 3.8 CBT 69.0 ± 2.0 76.3 ± 6.4
CBN 105.5 ± 2.9 97.8 ± 4.6 CBN 6.8 ± 0.5 6.5 ± 0.3
CBC 101.3 ± 0.7 93.0 ± 3.7 CBC 54.7 ± 7.5 47.7 ± 2.4
CBGA 95.7 ± 2.1 72.8 ± 6.4 CBGA 36.0 ± 2.1 65.5 ± 3.0
CBDA 92.3 ± 2.7 74.3 ± 4.3 CBDA 62.8 ± 2.1 75.3 ± 0.8
CBDV 99.0 ± 2.0 89.0 ± 2.9 CBDV 14.3 ± 2.0 17.3 ± 1.5
∆8-THC 117.0 ± 1.7 103.8 ± 1.7 ∆8-THC 6.3 ± 0.3 6.8 ± 0.5
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Table 2. The antiproliferation IC50 values of phytocannabinoids on B16F10 and A375 melanoma cells.

IC50 (µM)

Cell line CBD CBG CBN CBDV ∆8-THC
B16F10 28.6 50.3 31.9 53.2 37.5
A375 51.6 56.0 64.0 51.3 50.9

Although several cannabis extracts have been reported to exert inhibitory effects on
the growth of melanoma cells [15,16], only limited studies explored the antiproliferative
activity of the individual cannabinoids. A study reported that CBD and CBG showed the
most promising antiproliferative effect (IC50 = 12.0 and 12.1 µM, respectively) compared
to other minor cannabinoids, such as CBN and CBC, in human melanoma A375 cells [17].
It was also reported that CBD had the highest inhibitory effect on the growth of murine
melanoma cells (B16F10) with an IC50 of 80 µM compared to other minor cannabinoids [17].
This trend was in agreement with data from our current study showing that the cytotoxicity
of CBD was higher than other minor cannabinoids in murine melanoma cells. Next, we
sought the augmented antiproliferative effect in B16F10 cells by modifying CBD’s structure.

3.2. Effect of CBD Derivatives on the Growth of Murine Melanoma Cells

The cytotoxic effects of a panel of synthetic CBD derivatives (1–56) in B16F10 cells
were evaluated. In the primary screening, 12 CBD derivatives were synthesized with
structural modifications including oxidation at the A ring of CBD (1–5) and various group
substitutions at the 7-, 2′-, and 6′-positions (6–12) (Figure 4A). The antiproliferative effects of
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these synthetic analogs (at 20 µM) in B16F10 were assessed. Several compounds including
3, 4, 5, and 12 showed improved cytotoxicity compared to CBD by 10.7%, 22.5%, 5.3%, and
6.5%, respectively (Figure 4B).
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As CBD derivatives (1–12) showed limited improvement in the antiproliferative ef-
fects in B16F10 cells, we made additional structural modifications by introducing various
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functional groups in CBD at position 7 and in CBD analogs with two acetoxy groups
(-OAc) replacing the phenol groups in the B ring. In the secondary screening, several CBD
analogs showed enhanced antiproliferative effects in B16F10 and A375 cells. For instance,
compounds 15 (-carboxamide), 18 and 30 (-methylpiperazine), 19 (-phenylpiperazine),
22 and 34 (-bipiperidine), 23 (-oxycyclohexane), and 36 (-chlorophenyl) showed a higher
inhibition (41.7%, 46.5% and 66.2%, 48.0%, 86.5% and 88.5%, 66.5%, and 32.2%, respectively)
compared to CBD (Table 3). A similar trend was observed as compounds 15, 22, 34, and 36
showed enhanced antiproliferative effects in A375 cells.

Table 3. Inhibitory effects of two sets of CBD derivatives with various functional groups (13–36) on
the growth of B16F10 and A375 cells at the concentration of 20 µM.
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25 4.5% 17.7% 

14 n.a. 67.0% 

 

26 42.2% 47.0% 

15 41.7% 55.7% 

 

27 27.5% 21.2% 

16 35.2% 69.5% 
 

28 22.2% 11.1% 

17 1.5% 34.7% 29 36.7% 13.4% 

18 46.5% 31.2% 
 

30 66.2% 46.2% 

19 48.0% 38.5% 

 

31 n.a. 48.5% 

20 11.5% 12.7% 

 

32 21.2% 49.5% 

21 n.a. 6.2% 

 

33 n.a. 22.2% 

22 86.5% 89.1% 

 

34 88.5% 76.5% 

23 66.5% 17.3% 

  

35 6.0% 11.2% 

24 13.5% 12.7%  
 

36 32.2% 51.1% 

a n.a. = not active (no inhibition). 
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3.3. Bipiperidinyl Derivatives Enhance the Antiproliferative Effect of CBD

It was noted that the CBD bipiperidinyl derivatives including 22 and 34 showed
superior inhibitory effects on the growth of both B16F10 and A375 cells in the secondary
screening. To confirm the antiproliferative effects of these two lead compounds, we further
evaluated their cytotoxicity at multiple concentrations in B16F10 cells. Compound 22 was
assayed at concentrations of 1, 2.5, 5, 10, and 15 µM, which showed an inhibition of 12.5%,
38.3%, 73.0%, 92.2%, and 92.5%, respectively, on the cell growth. Compound 34 was assayed
at concentrations of 5, 7.5, 10, 12.5, and 15 µM and it showed antiproliferations of 5.3%,
11.3%, 91.0%, 93.2%, and 94.5%, respectively. The antiproliferation IC50 of 22 and 34 was
3.1 µM and 8.5 µM, respectively (Figure 5).

Additionally, the antiproliferative effects of CBD, 22, and 34 were compared in a colony
formation assay. Treatment with CBD (40 µM) showed a moderate reduction in colony
formation compared to the vehicle control group, whilst compounds 22 and 34 (both at
10 µM) significantly reduced colony formation by 83.5% and 65.6%, respectively (Figure 6).

The reaction intermediates 37–49 with leaving group (i.e., triflate; -OTf) and protecting
group (pivaloyl; Piv) were inactive in the antiproliferative assay (Supplementary Materials
Table S1). In addition, a group of CBD derivatives (50–56) with various side chains in the
B-ring showed drastic activities. Compounds with a cyclohexane (54) and a cyclopentane
(55) side chain showed inhibition of 55.2% and 61.7%, respectively, whereas the other
derivatives were inactive (Supplementary Materials Table S2).

The SAR analysis suggested that the introductions of nitrogen-containing rings to CBD,
i.e., piperazine (18 and 30) and piperidine group (22 and 34), can lead to the augmentation of
cytotoxicity in B16F10 cells. This was not surprising as these functional groups are common
moieties in several clinically used drugs. For instance, piperacillin, a broad-spectrum
β-lactam antibiotic, has a bipiperidine side chain that enhances its penetration into Gram-
negative bacteria [18]. In addition, it is reported that bipiperidine-containing agents such
as DNA-intercalating polyketide glycosides can exert enhanced antiproliferative effects
against human leukemia cells and human cervix carcinoma cells [19]. It was suggested that
the enhanced antiproliferative effects of these bipiperidine sugar surrogates were partially
due to their improved water solubility. However, further mechanistic studies are warranted
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to confirm that the augmented antiproliferative effect of CBD bipiperidine derivatives was
attributed to their solubility. Moreover, given that the mediation of programmed cell death
is a critical mechanism for anti-cancer agents with piperidine moiety [20], we next evaluated
the effects of CBD and its bipiperidine derivatives on various types of programmed cell
death in B16F10 cells.
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3.4. CBD Bipiperidinyl Derivatives Induce Apoptosis in B16F10 Cells

To further explore the possible mechanisms of the lead compounds’ antiproliferative
activity, the effects of CBD and its derivatives 22 and 34 on various types of programmed cell
death including apoptosis, ferroptosis, and pyroptosis were assessed. In a flow cytometric
assay, the induction of apoptosis by CBD, 22, and 34 in B16F10 cells was detected with
Annexin V/PI double staining reagent. Compared to the control group, CBD (40 and
50 µM), 22 (5 and 10 µM), and 34 (10 and 15 µM) increased the population of cells with
late apoptosis (Figure 7A). Quantitative analysis of the apoptosis index showed that CBD
(50 µM), 22 (10 µM), and 34 (15 µM) increased the overall population of apoptotic cells by
18.9%, 4.4%, and 4.8%, respectively (Figure 7B).
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Figure 7. Effects of CBD, 22, and 34 on the population of apoptotic B16F10 cells. Flow cytometry plots
of B16F10 cells exposed to CBD (40 and 50 µM), 22 (5 and 10 µM), and 34 (10 and 15 µM) induced
apoptosis (A). Changes in the percentage of the apoptosis index of cells exposed to CBD, 22, and 34
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as *** p < 0.001 and **** p < 0.0001 when compared to the control group.

3.5. CBD Bipiperidinyl Derivatives Promote Lipid Peroxidation in B16F10 Cells

Next, we evaluated the effects of CBD and its derivatives on ferroptosis, which is a
form of programmed cell death mediated by cellular lipid peroxidation and iron levels.
Lipid peroxidation in B16F10 cells exposed to erastin (a ferroptosis inducer as the positive
control), CBD, 22, and 34 were detected by the Liperfluo assay. It showed that the cellular
lipid peroxidation in cells exposed to CBD (40 µM), 22 (5 and 10 µM), and 34 (10 and 15 µM)
elevated by 22.8%, 17.2% and 27.3%, and 17.4% and 16.8%, respectively (Figure 8). Erastin
(15 µM), a known ferroptosis inducer, increased the cellular lipid peroxidation by 23.8%.
These findings suggest that CBD and its derivatives 22 and 34 may promote ferroptosis in
B16F10 cells but further investigation of ferroptosis-related biomarkers (i.e., the cellular
iron level) is warranted to confirm the occurrence of ferroptosis.
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signal by 58.8% (Figure 9). These results showed that CBD and its derivatives (22 and 34) 
had a weak effect on the iron accumulation in B16F10 cells, which suggests that these 
compounds may not suppress the cell growth via ferroptosis given that the elevation of 
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Figure 8. Evaluations of lipid peroxidation in B16F10 cells exposed to erastin, CBD, 22, and 34. Plots
of a flow cytometry assay with the Liperfluo staining reagent showing the lipid peroxide levels
(upper panel; data are shown as the FITC values) and quantitative analysis of the mean fluorescence
intensity (lower panel; data are expressed as the mean ± SD MFI values) in B16F10 cells exposed to
CBD, 22, and 34 (A–C). Significance was defined as ** p < 0.01, *** p < 0.001, and **** p < 0.0001 when
compared to the control group.

In the FerroOrange assay, the iron accumulation in B16F10 cells exposed to erastin
(15 µM), CBD, 22, and 34 was detected. While the fluorescent signal of cells exposed to
CBD was insignificant, treatment with compound 22 (5 and 10 µM) resulted in an elevation
of fluorescence signals by 50.7% and 57.9%, respectively, compared to the control group.
Similarly, treatment with compound 34 at 15 µM led to an increased fluorescence signal by
58.8% (Figure 9). These results showed that CBD and its derivatives (22 and 34) had a weak
effect on the iron accumulation in B16F10 cells, which suggests that these compounds may
not suppress the cell growth via ferroptosis given that the elevation of iron level in cells is a
critical characteristic of ferroptosis.
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Figure 9. Evaluations of intracellular iron in B16F10 cells exposed to erastin, CBD, 22, and 34. Plots of
a flow cytometry assay with the FerroOrange staining reagent showing the intracellular iron levels
(upper panel; data are shown as the PE values) and quantitative analysis of the Fe2+ level (lower
panel; data are expressed as the mean ± SD MFI values) in B16F10 cells exposed to CBD, 22, and 34
(A–C). Significance was defined as * p < 0.05 and ** p < 0.01 when compared to the control group.
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3.6. CBD and Its Bipiperidinyl Derivatives Elevate Intracellular ROS in B16F10 Cells

Given that both apoptosis and ferroptosis can trigger cell death by increasing the
production of intracellular reactive oxygen species (ROS) [21], we measured the effect
of CBD and its derivatives on the production of ROS in B16F10 cells using the DCF-DA
assay (Figure 10). CBD (40 µM) showed a promising effect in elevating the ROS level (by
1.23-fold) compared to the control group. Although compounds 22 and 34 both had a trend
of promoting ROS production, only 22 (5 µM) significantly increased the level of cellular
ROS by 27.2% (Figure 10B).
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Figure 10. Intracellular ROS levels in B16F10 cells exposed to CBD, 22, and 34. (A) Flow cytometry
analysis of intracellular ROS levels using the DCF-DA probe. (B) Quantitative analysis of intracellular
ROS levels detected by the fluorescence signals. Data are shown as the averaged FITC and MFI
values. Data are expressed as the mean ± SD values. Values are expressed in means ± SD from three
experiment replicates. Significance was defined as * p < 0.05 and **** p < 0.0001 when compared to
the control group.

3.7. CBD and Its Bipiperidinyl Derivatives’ Effect on Pyroptosis in B16F10 Cells

In addition to oxidative stress, cellular inflammatory stress can also trigger a specific
type of programmed cell death known as pyroptosis. In this study, the effects of CBD,
22, and 34 on pyroptosis in B16F10 cells were evaluated by measuring the level of cell
supernatant dehydrogenase (LDH), which is a biomarker for damage to cell membrane
integrity. At the concentrations used in the apoptosis and ferroptosis assays, CBD, 22, and
34 had no significant effects on the release of LDH nor cytokine (IL-1) in B16F10 cells. These
compounds at a higher concentration (40 µM) increased the production of LDH by 19.0%,
52.0%, and 47.3%, respectively, compared to the control group (Figure 11). This suggests
that pyroptosis was not a major contributor to the overall B16F10 cell death induced by
CBD and compounds 22 and 34.
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Figure 11. The level of cell supernatant dehydrogenase (LDH) in B16F10 cells treated with CBD,
22, and 34. The fluorescence intensity was measured by an LDH kit and values are expressed
in means ± SD from three experiment replicates. Significance was defined as ** p < 0.01 and
**** p < 0.0001 when compared to the control group.



Antioxidants 2024, 13, 478 13 of 15

It is reported that cannabinoids may alleviate tumor progression by initiating pro-
grammed cell death (e.g., apoptosis) to inhibit cancer cell proliferation. Cannabinoids
confer the anti-tumor activity by the induction of apoptosis through cannabinoid recep-
tors 1- and 2-dependent stimulation [22]. In particular, THC was reported to induce the
apoptotic death of glioma cells via the production of pro-apoptotic sphingolipids [23].
Although this mechanism is less clear with CBD, studies proposed that CBD may promote
cancer cells’ apoptotic death independently of CB1 and CB2 receptors [24]. Regardless of
the involvement of cannabinoid receptors, it seems that the promotion of apoptotic cell
population in cancer cells is due to cannabinoids’ capacity to stimulate ROS production [25].
This is in agreement with our observation that CBD increased the cellular ROS in B16F10
cells (Figure 10). In addition, studies showed that CBD can trigger the depletion of glu-
tathione (GSH) to aggravate oxidative stress and cell death in human glioma cells [26]. This
suggests that CBD’s effects on cellular redox homeostasis may play a critical role in its
anti-proliferative effects in cancer cells. Given that GSH and ferroptosis are interconnected
in the context of cellular biology, we evaluated the effects of CBD and its bipiperidine
derivatives on the lipid peroxidation and cellular iron level (which are the characteristic
biomarkers of ferroptosis) in B16F10 cells. Data from the Liperfluo and FerroOrange assays
showed that CBD and its bipiperidine derivatives only alter lipid peroxidation but not iron
accumulation in B16F10 cells. Thus, it is not clear whether these cannabinoids can effec-
tively induce ferroptosis in melanoma cells. Further experiments using specific ferroptosis
inhibitors (such as ferrostatin-1 [27]) are warranted to explore CBD’ and its bipiperidine
derivatives’ potential role in ferroptosis in melanoma cells. Notably, our group reported
that CBD can alleviate erastin-induced ferroptosis in noncancer skin cell lines (HaCaT
cells) [28], suggesting that CBD’s effect on ferroptosis in skin normal cells and cancer cells
is different. Moreover, our data showed that CBD and its bipiperidine derivatives had a
weak effect on releasing LDH in B16F10 cells, which suggests that CBD and compounds
22 and 34 did not induce pyroptosis to exert an antiproliferative effect. Interestingly, our
group reported that CBD can protect human skin keratinocytes from oxidation-induced
pyroptosis by reducing cellular LDH levels [7]. This suggests that CBD may have selective
effects on pyroptosis in different types of skin cells. A similar modulatory effect of CBD on
pyroptosis in normal and cancer cells has been reported. CBD can suppress the growth of
hepatocellular carcinoma cells by inducing a caspase-3/GSDME-dependent manner [29],
whilst CBD showed an alleviative effect against alcohol-induced liver damage by regu-
lating the NLRP3–pyroptosis pathway [30]. However, mechanistic studies are warranted
to elucidate CBD’s role in mediating pyroptosis for skin protection. Nevertheless, this is
the first study showing that the antiproliferative effect of CBD against melanoma cells can
be improved by introducing a bipiperidine moiety. In addition, CBD and its bipiperidine
derivatives suppress the growth of B16F10 cells by mediating programmed cell death
(i.e., apoptosis), which provides useful information for developing cannabinoid-based
anti-tumor agents.

4. Conclusions

In summary, a series of phytocannabinoids were evaluated for their antiproliferative
effects against melanoma cells (B16F10 and A375) and CBD showed the most promising
activity. In addition, chemical modifications by introducing a bipiperidinyl group in CBD
resulted in a pair of CBD derivatives (22 and 34) with enhanced cytotoxicity on B16F10
and A375 cells. Furthermore, data from a panel of bioassays supported the notion that the
enhanced antiproliferative effects of CBD and its bipiperidinyl derivatives were associated
with their capacity to mediate programmed cell death such as apoptosis in B16F10 cells.
Further studies on the anti-tumor effect of CBD and its bipiperidinyl derivatives with
in vivo models are warranted to better understand their effectiveness in the potential
development of melanoma management.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/antiox13040478/s1, Table S1: Inhibitory effects of the reaction
intermediate 37–56 with a leaving group triflate (-OTf) or a protecting group pivaloyl (-Piv) on the
growth of B16F10 cells at the concentration of 20 µM; Table S2: Inhibitory effects of the synthetic
cannabinoids 50–56 with various side chains on the growth of B16F10 cells at the concentration of
20 µM.
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