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Abstract: The safety and immunogenicity of the two-dose Ebola vaccine regimen MVA-BN-Filo,
Ad26.ZEBOV, 14 days apart, was evaluated in people without HIV (PWOH) and living with HIV
(PLWH). In this observer-blind, placebo-controlled, phase 2 trial, healthy adults were randomized
(4:1) to receive MVA-BN-Filo (dose 1) and Ad26.ZEBOV (dose 2), or two doses of saline/placebo,
administered intramuscularly 14 days apart. The primary endpoints were safety (adverse events
(AEs)) and immunogenicity (Ebola virus (EBOV) glycoprotein-specific binding antibody responses).
Among 75 participants (n = 50 PWOH; n = 25 PLWH), 37% were female, the mean age was 44 years,
and 56% were Black/African American. AEs were generally mild/moderate, with no vaccine-related
serious AEs. At 21 days post-dose 2, EBOV glycoprotein-specific binding antibody responder rates
were 100% among PWOH and 95% among PLWH; geometric mean antibody concentrations were
6286 EU/mL (n = 36) and 2005 EU/mL (n = 19), respectively. A total of 45 neutralizing and other
functional antibody responses were frequently observed. Ebola-specific CD4+ and CD8+ T-cell
responses were polyfunctional and durable to at least 12 months post-dose 2. The regimen was
well tolerated and generated robust, durable immune responses in PWOH and PLWH. Findings
support continued evaluation of accelerated vaccine schedules for rapid deployment in populations
at immediate risk. Trial registration: NCT02598388 (submitted 14 November 2015).
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1. Introduction

The frequency and size of Ebola disease (ED) outbreaks have increased since its dis-
covery in 1976, including two large outbreaks from 2014 to 2016 and 2018 to 2020 and, more
recently, three outbreaks in 2021, two in 2022, and one spanning 2022–2023 [1–4]. A two-
dose vaccine regimen with an adenovirus type 26 (Ad26) vaccine encoding the Zaire Ebola
virus (EBOV) glycoprotein (GP; Ad26.ZEBOV, Zabdeno, Janssen Vaccines & Prevention B.V.,
Leiden, The Netherlands) and a multivalent modified vaccinia Ankara filovirus vaccine
(MVA-BN-Filo, Mvabea, Bavarian Nordic, Hellerup, Denmark) has been safe and immuno-
genic in clinical trials, inducing robust and durable antibody and T-cell responses [5–17].
The 56-day Ad26.ZEBOV, MVA-BN-Filo regimen received marketing authorization under
exceptional circumstances from the European Medicines Agency (EMA) [18,19], was recom-
mended by the World Health Organization (WHO) Strategic Advisory Group of Experts on
Immunization for prophylactic use in people with lower risk of Ebola infection during the
2018–2020 outbreak [20] and was granted WHO prequalification in April 2021 [21]. While
this Ad26.ZEBOV, MVA-BN-Filo regimen has been well studied [5–17], regimens reversing
the product order are less robustly characterized in terms of numbers of participants and
types of populations studied.

Compressed ED vaccine schedules are similarly less well studied. Safe accelerated
vaccination schedules rapidly inducing peak immune responses could be advantageous for
immunizing outbreak responders, similar to accelerated pretravel vaccination schedules
for the prevention of hepatitis A and B, rabies, and tick-borne encephalitis [22]. In a phase 1
study, the MVA-BN-Filo, Ad26.ZEBOV vaccine regimen induced higher and more frequent
cellular immune responses and lower but similarly frequent humoral responses when
administered over a 14-day period compared to a 56-day period in healthy adults [10].

As ED outbreaks primarily occur in regions of high HIV prevalence, and antibody
responses to vaccines for other pathogens (e.g., hepatitis B) are lower in people living with
HIV (PLWH), a thorough evaluation of ED vaccines in PLWH is relevant to the product’s
intended use [23]. We, therefore, included a cohort of PLWH in a clinical trial to assess
the safety and immunogenicity of the 14-day MVA-BN-Filo, Ad26.ZEBOV regimen in this
population. Safety data from this pilot study (Part 1) informed progression to a larger,
subsequent evaluation of accelerated Ebola vaccine regimens (Part 2).

2. Methods
2.1. Study Design

Part 1 of EBL2003/RV456 (NCT02598388) was conducted at a single center in the U.S.,
specifically the Walter Reed Army Institute of Research Clinical Trials Center, and Part 2 of
the trial was conducted at six centers in sub-Saharan Africa; Part 1 results are presented
here, with Part 2 results presented separately. Part 1 included people without HIV (PWOH)
and PLWH, evaluating MVA-BN-Filo with Ad26.ZEBOV 14 days later. Randomization was
conducted with a 4:1 ratio of vaccine to placebo, and study groups were enrolled in parallel.
The study was conducted in accordance with the Helsinki Declaration and was approved
by the Walter Reed Army Institute of Research Institutional Review Board. All participants
provided written informed consent. The study protocol and statistical analysis plan are
available in Supplements S1 and S2.

2.2. Participants

Participants were healthy and aged 18–70 years at randomization. PLWH were re-
quired to have chronic infection treated with stable antiretroviral therapy and CD4+ T-cell
count > 200 cells/µL. Exclusion criteria included breastfeeding or pregnancy, prior ED,
vaccination with a candidate Ebola vaccine, vaccination with a live-attenuated vaccine in
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the previous 30 days, inactivated vaccine receipt in the previous 14 days, and previous
severe adverse reactions to vaccination.

2.3. Randomization and Masking

Participants were centrally randomized using computer-generated randomization
with a block size of five. Study personnel (except those responsible for vaccine prepara-
tion) and participants were blinded to study vaccine allocation until all participants had
completed at least the Day 380 visit (or discontinued earlier) and the database locked.
Dispensing syringes were covered with masking tape.

2.4. Objectives

The primary objectives were to assess the safety and immunogenicity of the MVA-
BN-Filo, Ad26.ZEBOV regimen, as expressed by the number of participants with adverse
events (AEs), and anti-EBOV GP antibody responses as measured by Filovirus Animal Non-
Clinical Group (FANG) EBOV GP enzyme-linked immunosorbent assay (ELISA) at Day 36.
A secondary objective compared the safety and tolerability of the regimen in PWOH and
PLWH. Exploratory objectives included assessment of binding antibody responses at other
time points, EBOV GP-specific CD4+ and CD8+ T-cell responses measured by intracellular
cytokine staining (ICS), cross-strain neutralizing antibody responses, Fc-mediated EBOV
GP-specific antibody effector functions, and changes in viral load among PLWH.

2.5. Vaccines and Vaccinations

Ad26.ZEBOV is a recombinant, replication-incompetent, Ad26-vectored vaccine that
encodes EBOV Mayinga GP [5]. MVA-BN-Filois a recombinant, nonreplicating, modified
vaccinia Ankara-vectored vaccine that encodes the EBOV Mayinga GP, Sudan virus Gulu
GP, Marburg virus Musoke GP, and the Taï Forest virus nucleoprotein [5]. Consistent
with the approved dose levels and volumes for the 56-day regimen [18,19], all doses were
administered via a single 0.5 mL intramuscular deltoid injection. Participants randomized
to active vaccine received MVA-BN-Filo (1 × 108 infectious units) on Day 1, followed by
Ad26.ZEBOV (5 × 1010 viral particles) on Day 15; placebo recipients received 0.9% saline at
these time points.

2.6. Safety Evaluations

Participants were observed for ≥30 min post-vaccination. Local and systemic solicited
AEs were recorded for seven days following each vaccination. Safety blood tests were
performed seven days after each vaccination. Unsolicited AEs and serious AEs (SAEs) were
recorded from informed consent until Day 57 and study end, respectively. AEs were graded
as 1—mild, 2—moderate, or 3—severe, according to the adapted Division of Microbiology
and Infectious Diseases Toxicity Tables [24]. Toxicity scales for clinical laboratory assessments
were based on the U.S. FDA toxicity grading scale for healthy adults/adolescents enrolled in
preventive vaccine trials [25]. For PLWH, viral loads and CD4+ T-cell counts were measured
at prespecified time points (Supplementary methods, Supplement S3).

2.7. Immunogenicity Assessments

Peripheral blood mononuclear cells (PBMCs) and serum specimens were cryopre-
served from time points prior to each vaccination on Days 1, 15, 36 (21 days post-dose
2), 57 (42 days post-dose 2), 195 (6 months post-dose 2), and 380 (12 months post-dose 2).
Total immunoglobulin G (IgG) EBOV GP (Kikwit)-specific binding antibody concentra-
tions were assessed using the EBOV GP (Kikwit) FANG anti-EBOV GP IgG ELISA at Q2

Solutions Laboratories (San Juan Capistrano, California, USA) [11,26]. EBOV GP- specific
neutralizing antibody titers specific for Zaire strains Kikwit and Makona, as well as for the
Bundibugyo EBOV, were measured by pseudovirion neutralization assay (Supplementary
methods, Supplement S3) at the U.S. Army Research Institute of Infectious Diseases (Fort
Detrick, Maryland, USA). PBMCs were stimulated with peptide pools covering the GP
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from the EBOV Mayinga strain and analyzed to establish the percentage of CD4+ and CD8+
T-cells producing interferon γ (IFN-γ) and/or interleukin-2 (IL-2; qualified markers) by
ICS (Supplementary methods, Supplement S3) [27].

Additionally, IL-4, IL-21, tumor necrosis factor-α (TNF-α), and CD154 were mea-
sured by ICS at the same time points and were used for combinatorial polyfunctionality
analysis of antigen-specific T-cell subsets using the computational COMPASS package
in R (version 4.2.3) (Supplementary methods, Supplement S3) [28]. EBOV GP-specific
antibody-dependent cellular phagocytosis (ADCP), antibody-dependent natural killer cell
activation (ADNKA), as well as antibody-dependent complement deposition (ADCD) were
measured (Supplementary methods, Supplement S3) [29]. EBOV GP-specific antibody
polyfunctionality was defined by positivity for all three Fc-mediated effector functions and
neutralization.

2.8. Statistical Analysis and Sample Size

The sample of 75 participants, which included 60 who received active vaccine, was
not based on formal statistical hypothesis testing. Nevertheless, if a specific AE was not
observed, the one-sided 97.5% upper confidence limit of the true rate of this AE was
<16.8% and <8.8% for a sample size of 20 (PLWH) and 40 (PWOH) active vaccine recipients,
respectively. Additionally, this sample size permitted a thorough immunologic assessment
of the accelerated regimen. Data were analyzed when all participants completed the study
or discontinued prior to its end. Safety analyses for unsolicited events were performed
on the full analysis set (those receiving ≥ 1 study vaccine dose). Analyses of solicited
adverse events were based on participants in a full analysis set with recorded reactogenicity
data in the database. The primary immunogenicity analysis set included all vaccinated
participants who received both doses within the protocol-specified window and who had
≥1 evaluable post-vaccination immunogenicity sample. Data were analyzed descriptively
without formal hypothesis testing. Spearman’s correlation coefficients for binding antibody
concentrations and neutralizing antibody titers were calculated on Day 36. Spearman’s
correlation coefficients for binding antibody concentrations and HIV viral load or CD4+
T-cell count were calculated on Days 15 and 36. PRISM version 9.4.1 (GraphPad Software,
Boston, MA, USA) was used for ICS graphs. All other statistical analyses employed SAS
version 9.2 (SAS Institute, Cary, NC, USA).

3. Results

The study was performed from 14 December 2015 to 14 December 2017. Of the 138 indi-
viduals screened, 63 were not eligible (60 did not meet inclusion/exclusion criteria and 3 were
due to other reasons), and 75 participants were randomized and received ≥1 vaccine dose;
40 PWOH and 20 PLWH received the active vaccine, and 10 PWOH and 5 PLWH received
placebo (Figure 1). The mean age was 44 years, and 37% were female. Most participants were
Black/African American (56%) or White (41%; Table 1). Overall, 72/75 (96%) participants
completed the study; three discontinued in the active vaccine group (one PWOH and one
PLWH were lost to follow-up; one PLWH moved out of state; Figure 1).

Solicited AEs were predominantly mild-to-moderate (Figure 2; Supplementary
Tables S1 and S2, Supplement S3). The most frequently reported local AE across groups
was injection-site pain. Eight participants reported a total of nine grade 3 solicited lo-
cal AEs, seven of which were erythema, all occurring after Ad26.ZEBOV vaccination.
Headache, myalgia, and fatigue were the most frequently reported solicited systemic
AEs after any vaccination/placebo. No grade 3 solicited systemic AEs were observed
following MVA-BN-Filo or placebo, and no grade 3 fevers were reported following any
vaccination/placebo. Three participants (all PWOH) reported grade 3 solicited systemic
AEs following Ad26.ZEBOV receipt. No remarkable trends were noted in unsolicited AE
reporting. One grade 3 unsolicited anemia AE following MVA-BN-Filo administration
occurred in a participant without HIV (Supplementary Table S3, Supplement S3) and was
considered unrelated to the study vaccine.
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Table 1. Participants’ demographic and baseline characteristics; full analysis set.

PWOH PLWH All Participants

MVA, Ad26 Placebo,
Placebo MVA, Ad26 Placebo,

Placebo

Analysis set: Full analysis set, N 40 10 20 5 75
Age (years) at screening

Mean (SD) 42.0 (14.4) 47.3 (11.8) 46.7 (12.9) 46.0 (8.6) 44.2 (13.4)
Body mass index (kg/m2)

Mean (SD) 26.0 (4.9) 29.4 (7.7) 26.3 (4.8) 27.7 (4.4) 26.7 (5.3)
95% CI (24.5–27.6) (23.9–34.9) (24.0–28.5) (22.2–33.2) (25.4–27.9)

Age group
18–50 years, n (%) 25 (63) 6 (60) 12 (60) 3 (60) 46 (61)
51–70 years, n (%) 15 (38) 4 (40) 8 (40) 2 (40) 29 (39)

Sex
Female, n (%) 18 (45) 7 (70) 2 (10) 1 (20) 28 (37)
Male, n (%) 22 (55) 3 (30) 18 (90) 4 (80) 47 (63)

Race
American Indian or
Alaska Native, n (%) 0 0 2 (10) 0 2 (3)

Black/African
American, n (%) 19 (48) 6 (60) 13 (65) 4 (80) 42 (56)

White, n (%) 21 (53) 4 (40) 5 (25) 1 (20) 31 (41)

Ad26, Ad26.ZEBOV; CI, confidence interval; MVA, MVA-BN-Filo; N, number of participants; PLWH, people
living with HIV; PWOH, people without HIV; SD, standard deviation.
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Figure 2. Solicited adverse events. (A) Solicited local adverse events; (B) Solicited systemic ad-
verse events. Percentages reflect n/N, where n is the number of participants with one or more
adverse events and N is the number of participants with available reactogenicity data after the given
dose. Ad26, Ad26.ZEBOV; MVA, MVA-BN-Filo; PLWH, people living with HIV; PWOH, people
without HIV.

Five SAEs were reported by four participants, all of which occurred >28 days post-
vaccination (Supplementary Table S4, Supplement S3) and were considered unrelated to
the study vaccine. No deaths were reported. One participant did not receive dose 2 due to
grade 1 leukocytosis. The event occurred in a participant without HIV post-vaccination
with MVA-BN-Filo and was considered nonserious and possibly related to the study vaccine
by the investigator.

All PLWH had HIV viral loads < 200 copies/mL at screening and at the final visit,
with a single transient post-vaccination blip (Supplementary Table S5, Supplement S3).

Fifty-seven participants who received the MVA-BN-Filo, Ad26.ZEBOV active regimen
(38 PWOH; 19 PLWH) and 15 placebo recipients fulfilled the criteria for inclusion in the
per-protocol immunogenicity analyses set.
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On Day 15, 4/38 (11%) and 2/19 (11%) PWOH and PLWH, respectively, displayed
an EBOV GP-specific binding antibody response following the first active vaccination
(Figure 3A–C; Supplementary Table S6, Supplement 3). On Day 36, responder rates in-
creased to 36/36 (100%) and 18/19 (95%), with geometric mean concentrations (GMCs) of
6286 ELISA units (EU)/mL (95% confidence interval (CI), 4730–8355) and 2005 EU/mL (95%
CI, 923–4353) for PWOH and PLWH, respectively. Binding antibody response magnitude
(GMC) for both populations decreased by Days 195 and 380. However, responder rates
remained high at 100% in PWOH and 94% in PLWH on Day 380. In nearly all placebo
recipients, binding antibody responses were low or not quantifiable over the course of the
study. The negligible impact of HIV parameters on EBOV GP-specific binding antibody
responses is illustrated in Supplementary Figure S1, Supplement S3.
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Figure 3. FANG anti-EBOV GP IgG ELISA measurements of EBOV GP-specific binding antibody
responses. (A) In PWOH; (B) In PLWH; (C) All PWOH and PLWH active vaccine regimen and placebo
recipients. The points (symbols) represent individual GMCs, and error bars denote 95% CIs. Ad26,
Ad26.ZEBOV; CI, confidence interval; EBOV, Ebola virus; ELISA, enzyme-linked immunosorbent
assay; FANG, Filovirus Animal Non-Clinical Group; GMC, geometric centration; GP glycoprotein;
IgG, immunoglobulin G; LLOQ, lower limit of quantification; MVA, MVA-BN-Filo; N, number of
participants; NA, not applicable; PLWH, people living with HIV; PWOH, people without HIV.

On Day 15, neutralizing antibody responses against the Kikwit strain were observed in
1/40 (3%) PWOH and 0/20 (0%) PLWH (Figure 4A). On Day 36, Kikwit-specific neutralizing
antibody responses were observed in 37/40 (93%; geometric mean titer (GMT): 251 50%
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inhibitory concentration (IC50) titer) PWOH and 16/20 (80%; GMT: 126 IC50 titer) PLWH. A
strong positive correlation between EBOV GP binding antibody and neutralizing antibody
responses was observed for both study populations (pooled PWOH and PLWH Day
36 Spearman correlation factor: 0.728; Supplementary Figure S2, Supplement S3). Ninety-
eight percent (39/40) of PWOH and eighty-five percent (17/20) of PLWH developed
cross-strain neutralizing responses to the Makona strain, while thirty-five percent (14/40)
of PWOH and ten percent (2/20) of PLWH developed cross-neutralizing responses to
Bundibugyo (Supplementary Figures S3 and S4, Supplement S3). Neutralization declined
after Day 36 but remained detectable to Day 380, except for the Bundibugyo strain among
PLWH. Correlation plots of cross-strain neutralization and binding antibody responses are
shown in Supplementary Figure S5, Supplement S3.
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Figure 4. EBOV GP-specific functional antibody responses. (A) Neutralizing antibody responses
to EBOV GP Zaire 95 Kikwit (psVNA); (B) Antibody-dependent cellular phagocytosis (ADCP);
(C) Antibody-dependent natural killer cell activation (ADNKA); (D) Antibody-dependent comple-
ment deposition (ADCD). Specimens from PWOH or PLWH who were vaccinated with MVA, Ad26,
or placebo were evaluated by (A) psVNA to measure the cross-neutralizing antibody response against
EBOV Zaire 95 Kikwit strain. Blood was collected on Days 0, 15, 36, 57, 195, and 360 and ran in the
assays. (B) Antibody-dependent cellular phagocytosis, (C) NK cell activation as measured by ICS,
and (D) complement deposition were evaluated on Days 0, 36, and 360. For (A), data are plotted
as geometric mean IC50 titers ± 95% CI, and the lower assay limit was 20 (dotted line). For (B–D),
data are plotted as geometric mean ± 95% CI, and the threshold for positivity was determined
using plasma from controls (dotted line). Ad26, Ad26.ZEBOV; CI, confidence interval; EBOV, Ebola
virus; GP glycoprotein; IC50, 50% inhibitory concentration; ICS, intracellular cytokine staining; IFN-
γ, interferon γ; MVA, MVA-BN-Filo; NK, natural killer; PLWH, people living with HIV; psVNA,
pseudovirion neutralization assay; PWOH, people without HIV; TNF, tumor necrosis factor.

EBOV GP-specific ADCP responses were highest in vaccine recipients on Day 36, with
27/40 (68%) responders in PWOH and 12/20 (60%) responders among PLWH (Figure 4B;
Supplementary Figure S6, Supplement S3). Response magnitude declined by Day 380 but
remained quantifiable in both groups at the end of the study, at which point 23/39 (59%)
PWOH and 12/18 (67%) PLWH had detectable EBOV GP-specific ADCP responses. On Day
36, 39/40 (98%) PWOH and 15/20 (75%) PLWH displayed an ADNKA response (Figure 4C;
Supplementary Figure S7, Supplement S3). ADNKA responses persisted in 29/39 (74%)
and 13/19 (68%) PWOH and PLWH, respectively, to Day 380. ADCD response rates were
greater in PWOH on Day 36, manifesting in 63% (25/40) of PWOH and 47% (9/19) of
PLWH (Figure 4D). ADCD responses, in contrast to the other effector responses, were
less durable, with 14/39 (36%) PWOH and 4/18 (22%) PLWH demonstrating responses
on Day 380 (Supplementary Figure S8, Supplement S3). At the Day 36 immune response
peak, polyfunctional EBOV GP-specific antibody responses were observed in 60% (24/40)
of PWOH and 32% (6/19) of PLWH (Supplementary Figure S9, Supplement S3). By Day
380, antibody polyfunctionality had declined to 31% (12/39) of PWOH and 11% (2/18) of
PLWH. In almost all placebo recipients, EBOV GP-specific functional antibody responses
were low or not quantifiable.

In vaccine recipients at Day 36, EBOV GP-specific CD4+ T-cells expressing IFN and/or
IL-2 were detected in 17/33 (52%) PWOH (median value: 0.1027%) and in 7/18 (39%)
PLWH (median: 0.0746%; Figure 5A,B). By Day 380, the response among PWOH had
declined to 9/36 responders (25%, median: 0.0417%), whereas for PLWH, there were 7/17
responders (41%, median: 0.0761%).
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Figure 5. T-cell–mediated analysis of EBOV-specific vaccine response. (A) CD4+ T-cell responses in
PWOH; (B) CD4+ T-cell responses in PLWH; (C) CD8+ T-cell responses in PWOH; (D) CD8+ T-cell
responses in PLWH. EBOV GP-specific T-cell responses were measured by intracellular cytokine
staining. Total cytokine response, identified by qualified cytokines, was assessed on Days 1, 15, 36,
57, 195, and 380. Participants (N), responders (%), and median responses are listed in rows above
each corresponding graph. Data are plotted as individual points with bars indicating median and
interquartile range. Ad26, Ad26.ZEBOV; EBOV, Ebola virus; GP, glycoprotein; IFN-γ, interferon γ;
IL-2, interleukin-2; MVA, MVA-BN-Filo; NA, not applicable; PLWH, people living with HIV; PWOH,
people without HIV.



Vaccines 2024, 12, 497 11 of 15

EBOV GP-specific CD8+ T-cells expressing IFN-γ and/or IL-2 were detected in 10/33
(30%) PWOH (median: 0.0704%) and 4/18 (22%) PLWH (median: 0.0291%) on Day 36 in the
active vaccine group (Figure 5C,D). On Day 380, EBOV GP-specific CD8+ T-cells expressing
IFN-γ and/or IL-2 were detected in 12/36 (33%) PWOH (median: 0.0435%) and 3/17 (18%)
PLWH (median: 0.0165%).

COMPASS analysis revealed that most Ebola responders developed polyfunctional
Ebola-specific CD4+ T-cells that produced IFN-γ, CD154, and TNF-α with or without IL-2.
CD8+ T-cell responses included mainly IFN-γ and TNF-α (Supplementary Figure S10,
Supplement S3).

4. Discussion

This study illustrates an accelerated two-dose heterologous Ebola vaccination schedule
comprised of MVA-BN-Filo followed by Ad26.ZEBOV 14 days later is well tolerated and
can elicit durable humoral and cellular responses against the EBOV GP in both PWOH
and PLWH. Solicited AEs were generally mild-to-moderate with limited duration in both
populations. Among PLWH, vaccination had no appreciable clinically significant impact
on HIV viral suppression.

In the absence of efficacy data, immunobridging is used to infer a vaccine’s protective
effect by comparing immunogenicity in humans to the relationship between immunogenic-
ity and survival after challenge in nonhuman primates (NHP). Although a mechanistic
correlate of protection for this vaccine has not yet been identified, binding antibodies
against the EBOV surface GP strongly correlate with survival post-challenge in a fully
lethal EBOV Kikwit NHP challenge model [30,31]. The Ad26.ZEBOV, MVA-BN-Filo 56-day
regimen provided nearly 100% protection against infection in this model. The protec-
tive efficacy of this vaccine regimen was demonstrated via immunobridging, facilitating
marketing authorization approval under exceptional circumstances by the EMA [18,19].

Compared to the 56-day regimen of the Ad26.ZEBOV, MVA-BN-Filo vaccines, the
accelerated reverse regimen in this study elicited lower binding antibody concentrations
21 days post-dose 2; however, response rates were high, and antibody concentrations at 6
and 12 months post-dose 2 were similar [5,7–9,11–13]. As the immunobridging model is
only informative for the 56-day regimen, the degree of protection against infection induced
by this trial’s accelerated schedule cannot be extrapolated. Also, the protective efficacy of
these vaccine regimens may be underestimated in this highly stringent animal model [30].

A cross-strain evaluation of neutralizing antibody responses demonstrated robust and
durable titers to the Ebola Zaire Kikwit and Makona strains with strong correlations to the
binding antibody responses measured in the FANG anti-EBOV GP IgG ELISA employing
the Kikwit EBOV GP. Cross-strain neutralizing antibody responses against the Bundibugyo
virus were detectable in some participants but at low titers. Animal model results suggest
that antibody-dependent cell-mediated cytotoxicity and ADCP could confer protection
against EBOV [32–34]. Therefore, effector antibody functions such as ADCP, ADNKA, and
ADCD were evaluated, and these responses were generally durable and polyfunctional.
An HIV vaccine regimen based on the same Ad26 platform has also been shown to induce
polyfunctional antibody responses in both humans and NHP [35], and ADCP activity has
been linked to protection against infection in a relevant simian-human immunodeficiency
virus challenge model [36]. Cellular responses have also been linked to protection in NHP
models [37], and in this study, we observed both CD4+ and CD8+ T-cell responses.

This trial’s data are aligned with previous observations that vaccines can stimulate
functional immune responses in well-controlled PLWH, even if the magnitude of response
is decreased [38]. Protection with this accelerated schedule is not yet established; how-
ever, recent data characterizing immune responses elicited by a Day 360 boost with either
Ad26.ZEBOV or MVA-BN-Filo have shown a significant anamnestic response across het-
erologous regimens irrespective of the vaccination order or dosing interval of the primary
regimen [10]. Indeed, we observe that this accelerated vaccine regimen induced a polyfunc-
tional antibody, as well as T-cell response, in both PWOH and PLWH, often persisting to
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12 months. Taken together, these data suggest that a heterologous two-dose vaccination
regimen with an accelerated MVA-BN-Filo, Ad26.ZEBOV schedule may establish immune
memory that can be rapidly recalled by subsequent boosting or even pathogen exposure.

Study limitations include the relatively small sample size, which limited statisti-
cal power to compare HIV status groups. Additionally, women were slightly under-
represented in the enrollment (37%). Study results would have greater utility if the ap-
proved 56-day regimen was included for direct comparison. Finally, the specimen collection
schedule was not optimized for defining early innate immune responses.

5. Conclusions

In summary, this is the first study to demonstrate safety and EBOV GP-specific im-
munogenicity in PLWH with an Ebola vaccination regimen of MVA-BN-Filo followed by
Ad26.ZEBOV 14 days later. These results show that an accelerated vaccination schedule is
well tolerated in both PWOH and PLWH and induces a broad array of durable humoral and
cellular immune responses. These findings support continued consideration for accelerated
regimen development for rapid deployment among outbreak responders and relevant
global populations at immediate risk.
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