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Abstract: Tuberculosis (TB), a chronic infectious disease affecting humans, causes over 1.3 million
deaths per year throughout the world. The current preventive vaccine BCG provides protection
against childhood TB, but it fails to protect against pulmonary TB. Multiple candidates have been
evaluated to either replace or boost the efficacy of the BCG vaccine, including subunit protein, DNA,
virus vector-based vaccines, etc., most of which provide only short-term immunity. Several live
attenuated vaccines derived from Mycobacterium tuberculosis (Mtb) and BCG have also been developed
to induce long-term immunity. Since Mtb mediates its virulence through multiple secreted proteins,
these proteins have been targeted to produce attenuated but immunogenic vaccines. In this review,
we discuss the characteristics and prospects of live attenuated vaccines generated by targeting the
disruption of the genes encoding secretory mycobacterial proteins.

Keywords: tuberculosis; live attenuated vaccines (LAVs); gene knockout; Mycobacterium tuberculosis;
BCG; secretory antigens

1. Introduction

Tuberculosis (TB) is caused by a Gram-positive bacterial pathogen, Mycobacterium
tuberculosis (Mtb), which is known for its thick cell wall made up of long-chain fatty acids
called mycolic acids [1]. Despite effective control measures, neither the death rate nor the
incidence rate of TB has shown any sign of decline in recent years, and they remain at
1.3 million and 10.6 million in 2022 [2]. In addition, a quarter of the world population is
estimated to have latent TB infection (LTBI) [3]. This situation is further aggravated by the
emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant
tuberculosis (XDR-TB) strains, which require second-line drugs and prolonged care. In
addition, HIV-TB coinfection contributes to about 12.8% of the total deaths due to TB,
because HIV-1 depletes the CD4+ T cells associated with Th1 immune response [2]. The
goal of the World Health Organization (WHO) is to reduce the number of new TB cases by
90% in the year 2035, and achieving this goal requires the development of novel drugs and
therapeutic agents for the treatment of the disease and, importantly, efficacious preventive
and therapeutic vaccines.

Currently, Bacille Calmette–Guerin (BCG) is the only approved vaccine for TB. It
was derived from the virulent Mycobacterium bovis, the pathogen that causes TB in cattle,
when it was passaged in culture media over two hundred times [4,5]. An estimated four
billion doses of BCG have been administered to infants with very few adverse incidences,
indicating that it is the safest vaccine available [6]. However, a major weakness of BCG
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is its variable efficacy (0–80%) in different populations of different ethnicities [5,7]. Sev-
eral reasons account for this discrepancy, including (a) the geographical location of the
populations tested [8], (b) environmental mycobacteria that share antigens with BCG [7],
and (c) variation in the antigenic profile of BCG sub-strains due to genetic differences [9].
In addition, it has been proposed that humans exposed to atypical mycobacteria [10] and
helminthic infections will have increased Th2 response, which can also reduce the efficacy
of BCG vaccination [11,12]. Regardless of these factors, the consensus is that BCG prevents
TB meningitis in children but has no effect on the most common pulmonary TB in children
and adults [5,7]. A recent meta-review also reiterates that infant vaccination using BCG
can prevent tuberculosis in young children but is ineffective in adolescents and adults [13].
This underscores the need for a better primary vaccine and a booster that can induce
BCG-induced primary immunity.

The past two decades have witnessed the development of many vaccines against TB,
and some of these vaccines have advanced to clinical trials [14]. These include platforms
based on protein subunits, viral vectors, recombinant mycobacterial live attenuated vac-
cines (LAVs), killed whole cell vaccines, and an mRNA-based vaccine [6,15–21]. Compared
to other vaccines that transiently express antigens, LAVs are considered superior to others
because they tend to persist for extended periods, encoding antigens and enabling the
longer-lasting stimulation of immune cells to induce protective immune responses [22,23].
Further, the antigens produced by LAVs are closer to native antigens, which are properly
folded proteins, carbohydrates, and lipids [24,25]. Moreover, these diverse antigens will
likely stimulate multiple immune cell populations like subsets of T and B cells and pheno-
types such as NK and innate T cells. Another advantage of using LAVs is that their cell wall
components can stimulate innate immunity [26,27]. Thus, cell wall lipids such as trehalose
dimycolate (TDM) can activate Mincle receptor-inducing trained immunity [28,29], whereas
other glycolipids and several pathogen-associated molecular patterns (PAMPs) can trigger
pattern recognition receptors (PRR) like TLR-2 and TLR-4 [30]. However, great caution
should be exercised when considering lipids as inducers of the immune response because
some essential Mtb lipids, like sulfoglycolipids, inhibit the innate immune response [31].
More importantly, the loss of phthiocerol dimycocerosates (PDIMs) and phenolic glycol-
ipids (PGLs) in the BCG Pasteur strain reduces the efficacy of the BCG vaccine, highlighting
the importance of PDIMs/PGLs [32]. Another attractive strategy for modifying live attenu-
ated vaccines (LAVs) is the addition of major Mtb proteins to BCG to create recombinant
BCG vaccines for better efficacy. However, our review is focused explicitly on Mtb or BCG
knockouts as LAVs.

A major approach to derive LAVs against TB depends on a ‘rational deletion of genes’
in the chromosomes of Mtb and BCG [33]. Often, the target genes play a critical role in
immune evasion by Mtb. Importantly, there is a strong link between immune evasion
mechanisms and the ‘secretory proteins’ of mycobacteria, because many of these seem to
be released into the host environment to modulate phagolysosomal (PL) fusion, autophagy,
apoptosis, the modulation of cytokines, the intracellular survival of pathogens, and other
related antimicrobial pathways [34–37] (Figures 1–3). Coincidentally, many LAVs for TB are
based on deleting genes encoding ‘secretory proteins’ or their regulators and transporters
(Tables 1 and 2). In this review, we describe the immunological parameters of LAVs deficient
in secreted protein(s) and their efficacy compared with the BCG vaccine, which also secretes
several antigenic proteins [38]. We specifically address LAVs deficient in secretory antigens,
since other gene knockout mutants have been described by others [15,18,39,40].

2. Secretory Systems of Mycobacteria

To determine the significance of host immune modulation by Mtb, it is imperative
to understand the secretory systems of mycobacteria. Bacteria generally have intriguing
mechanisms to transport some of their proteins across the cytoplasmic membrane, which
are called secretion systems or secretory pathways [41]. They transport proteins that
need to be localized in the periplasm, outer membrane, or surface or released in the
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extracellular environment and into the host cells. The two major secretory pathways
in bacteria are the general secretory pathway (or Sec pathway) and the twin-arginine
translocation pathway or TAT pathway [41]. Both are highly conserved systems and are
present in most bacteria [42,43]. In addition to Sec and TAT pathways, Gram-negative
pathogenic bacteria have special pathways to transport virulence factors. There are six such
special pathways, which are named type I through type VI secretory systems. Some of
these systems, like the type III secretion system in Salmonella species, form microneedles to
inject the effector proteins directly into the host cells [41]. The Gram-positive mycobacteria
were initially thought to have only the Sec and TAT pathways to secrete proteins. However,
a new special secretory system was later identified in mycobacteria [44] and was named
the type VII secretion system [45], in line with the previously labeled secretion systems.

In contrast to other species, mycobacteria have two Sec pathways, SecA1 and SecA2 [44].
While transporting proteins through SecA1 requires a signal sequence, no signal sequence
is required for transporting proteins through SecA2. The SecA2 pathway in Mtb appears to
mainly transport proteins related to pathogenesis, such as SodA, SapM, and PknG [46]. On
the other hand, the TAT pathway requires a TAT signal sequence to transport proteins [41].
In Mtb, the TAT pathway transports fewer proteins associated with pathogenesis, including
phospholipase A and C [46].

Further, the Type VII secretion system in Mtb and related mycobacteria has five
export systems, and they are named ESX-1 through ESX-5 [47–49]. Each system has a
cluster of genes to encode the proteins, facilitated by the structural proteins required for
transportation. The ESX systems recognize the substrates or the proteins to be transported
by the YxxxD/E signal (amino acid) motif in their sequence [50]. Among the five ESX
systems, ESX-4 seems to be the oldest system, and others appear to have evolved through
duplication events [51,52]. Notably, the gene cluster for this system lacks genes encoding
PE/PPE proteins, although the other four systems do have genes to encode these proteins.

Nonetheless, the ESX-1 system seems to be the most well-studied and is responsi-
ble for the secretion of EsxA (ESAT-6) and EsxB (CFP-10) proteins in Mtb and related
pathogens [53–56]. These proteins are both virulence factors and immunodominant anti-
gens, and coincidentally, their absence leads to an avirulent phenotype in Mtb [55]. ESAT-6
enables the bacteria to lyse the phagosomal membrane with the aid of the chaperone CFP-
10, a strategy that is missing in BCG vaccine strains [57]. The ESX-1 system also constitutes
the Region of Difference 1 (RD1), deleted in the BCG vaccine strains [54]. Indeed, the attenu-
ation of BCG appears to be due to the absence of the RD1 region in its chromosome, because
the complementation of BCG with the RD1 region restores its virulence [54]. Both ESX-1
and ESX-2 systems are intact in Mtb and other related pathogens, but little information is
available about its secreted products and role in pathogenesis [58].

Further, ESX-3 and ESX-5 systems participate in the secretion of their proteins, and the
latter plays a significant role in immune modulation or inflammasome activation [59–63]. ESX-
4 is different in functionality, and unlike other systems, it plays a vital role in conjugation
between bacteria [64]. Overall, mycobacteria use Sec, TAT, and ESX systems to transport
proteins that regulate virulence and immunogenicity. However, some secreted proteins do
not seem to have specific export signatures.
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Figure 1. Subversion of phagocytosis and related processes by mycobacterial secreted proteins.
Phagosome maturation: pattern recognition receptors (PRRs) of macrophages recognize mycobacteria
through mycobacterial pathogen-associated molecular patterns (PAMPs), resulting in the engulfment
of bacilli by a phagosome, an organelle derived from the plasma membrane. Phagosomes undergo a
series of steps called phagosome maturation to digest the engulfed bacilli and present the antigens to
the immune cells. Additionally, phagosomes fuse with early endosomes, late endosomes, and, subse-
quently, with lysosomes to acquire the materials/properties required for the killing/digestion of the
pathogen. However, intracellular mycobacteria like M. tuberculosis (Mtb), M. bovis, M. marinum, and
BCG have multiple strategies to protect them against the phagocytic processes. M. marinum secretes
PPE38 [65] to block the phagocytosis of the bacilli. Mtb secretes several secretory proteins to inhibit
the phagosome maturation process. SapM [34] and PtpB [66] dephosphorylate phosphatidylinositol-
3-phosphate (PI3P) to inhibit phagosome maturation, whereas PtpA protein inhibits phagosome
acidification by blocking Vacuolar-type ATPase (V-ATPase) [67]. TlyA inhibits Early Endosomal
Antigen-1 (EEA1), Ras-related protein 5 (RAB5), and RAB7 recruitment [68]. NdkA inhibits RAB5
and RAB7 [69], while PknG inhibits RAB7L1 [70]. Additionally, Mtb secretes UreC to alkalize the
phagosomes [71]. In addition, Mtb perforates the phagosome and escapes to the cytosol using the
concerted action of phthiocerol dimycocerosates (PDIM) and ESX-1 system [72]. Host efforts to repair
phagosomal rupture were blocked by the EsxH protein [59]. ROS/iNOS: Host NADPH oxidases
(NOX) from the cytoplasm and mitochondrial electron transport chain are the primary sources of
reactive oxygen species (ROS) production. ROS is blocked by Mtb proteins like Eis, ESAT-6/CFP-10,
NuoG, NdkA, PPE2, SodA [73–76], and inducible nitric oxide synthase (iNOS), while the mediated
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production of NO is blocked by PtpB, PPE2, PE_PGRS62, PE5, PE15, and PE4 [77–80]. Epigenetic
regulators: Mtb secretes proteins like Rv1988 [81] and Rv2966c [82] to methylate host DNA and
proteins like Eis [83] and Rv3423.1 [84] to acetylate host DNA to manipulate the host immune response.
Proinflammatory cytokines: Mtb secretes proteins like PtpA, PtpB, ESAT-6/CFP-10, Eis, EchA1, and
PknG [77,85–89] to inhibit proinflammatory cytokines. Cell death pathways: Cytosolic escape of
the pathogen leads to activation of various cell death pathways like necrosis mediated by Zmp1,
CpnT, and PE25:PPE41 [90–92] or ferroptosis via PtpA which benefits the pathogen [93]. The cytosolic
presence of bacilli DNA or RNA triggers various pathways like apoptosis, autophagy/xenophagy,
and pyroptosis, which are detrimental to the pathogen. Mtb secretes NuoG, PtpA, PtpB, NdkA,
Rv3654c, Rv3655c, and Rv3033 to block apoptosis [36,75,77,94–96]. Proteins like Zmp1, PknF, PtpB,
and Rv3364c block inflammasome activation and/or pyroptosis [35,97–99]. Autophagy/xenophagy
pathways are blocked by proteins like NuoG, Eis, SapM, PE_PGRS20, PE_PGRS47, PPE51, LprE,
and PknG [86,100–105]; however, these proteins block autophagy indirectly by blocking early/late
phagosome proteins. Note: Some live attenuated Mtb or BCG vaccines described in this review
lack one or more secretory proteins mentioned above, and they are designated in this figure with
rose-colored oval shapes.

3. Mycobacterial Vaccines Deficient in Secreted Protein(s)

As noted above, the preference for LAVs over others is due to their superior number of
antigens and ability to stimulate immune response for a more prolonged period in vivo [22].
BCG, an excellent example of an LAV, is poorly effective in adults, requiring a replacement
or a booster. Initial studies to improve BCG through the recombinant overexpression
of antigenic genes did improve its efficacy against TB in the mouse model [106–110]. In
particular rBCG30 and BCG85B vaccines showed remarkable efficacy against TB in mice but
did not advance to clinical trials. One possible reason is that they lacked the immunogenic
RD1 region that encodes ESAT6 and CFP10, which are paradoxically related to virulence in
Mtb. An extensively explored approach is deleting genes in BCG and Mtb to derive LAVs.
In the past two decades, over fifty mycobacterial mutant strains with deletion or disrupted
gene(s) in the chromosome have been tested for their vaccine efficacy in animal models,
regardless of their attenuation status [18,110]. Interestingly, a large proportion of the LAVs
tested so far are those that lack secretory proteins (Tables 1 and 2). The primary candidate
LAVs lacking secretory proteins are discussed below.

3.1. Ag85 Complex

Mtb expresses three secreted fibronectin proteins (Fbp), namely FbpA (Rv3804), FbpB
(Rv1886c), and FbpC (Rv0129c) [111,112]. All three of them are major antigens (Ag), and
hence, they are also known as Ag85A (31 kDa), Ag85B (30 kDa), and Ag85C (31.5 kDa)
and collectively as the Ag85 complex of proteins [111,112]. The amino acid sequences of
these proteins are highly conserved among mycobacterial species and, in particular, the
Mtb complex. Besides fibronectin-binding activity, these proteins show mycolyl transferase
activity essential in assembling the mycobacterial cell walls [113]. Armitige et al. [114]
disrupted the genes fbpA and fbpB in Mtb and assessed the mutant strains (∆fbpA and ∆fbpB)
for their growth and survival in culture, macrophages, and mice [114,115]. The ∆fbpA strain
was later shown to protect C57BL/6 mice against challenges with an efficacy similar to
BCG [115]. To our knowledge, this is the first study demonstrating that an Mtb mutant
lacking a secretory protein antigen is effective as a vaccine against TB. The ∆fbpA candidate
vaccine induced high levels of phagosome maturation, proinflammatory cytokines, and Th1
immune response and an increased expansion of CD4+ CXCR3+ IFN-γ+ cells in mice after
vaccination [116]. Although recombinant mycobacterial strains over-expressing Ag85B
(FbpB) and Ag85C (FbpC) also protect mice against TB [106,117], thus far, Mtb mutants
‘lacking’ these proteins have not been tested for vaccine efficacy. Notably, a BCG strain
lacking the Ag85B protein showed efficacy against TB in mice, like BCG [118]. This is not
surprising, because BCG naturally has a mutation in Ag85B, which affects the mycolyl
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transferase activity and its stability [119]. It is intriguing to note that Ag85 complex proteins
are immunogenic in mice, guinea pigs, and human immune cells, and individual deletion
yields mutants defective in cell wall lipids due to their mycology transferase activity. The
∆fbpA has reduced levels of trehalose dimycolate (TDM) in its cell wall [120] and TDM
has been thought to be a virulence factor [121]. Therefore, we are pursuing the hypothesis
that the selective deletion of Ag85 complex genes in combination with other functionally
characterized genes will lead to markedly immunogenic and concurrently attenuated
vaccines [122] (under submission). It should be noted that the MTBVAC vaccine, which is
currently undergoing clinical trials, shows a higher secretion of Ag85 proteins, indicating
its role in inducing an immune response [123].

Figure 2. Subversion of LC3-associated phagocytosis (LAP) by secreted proteins of mycobacte-
ria. LC3-associated phagocytosis is initiated by macrophage via engaging specific receptors like
TLR1/2, TLR2/6, TLR4, Fc receptors, CLEC7A/Dectin-1, and TIM4, and it also recognizes apoptotic,
necrotic, and entotic cells [124]. Once the bacilli are engulfed within a single membraned phagosome,
phosphatidylinositol-3-phosphate (PI3P) is recruited over the phagosome, which is generated by
the PtdIns3K (Class lll phosphatidylinositol 3-kinase) complex. LAP and canonical autophagy share
common features and unique features in their pathway. Both require PI(3)P production and common
machinery like BECLIN, VPS 34, ATG5, ATG7, ATG16L, TSG101, and RAB7 to recruit LC3 over the
phagosome [125]. Recruitment of LC3 over a single-layered membrane is called LAPosome. LAPo-
some subsequently fuses with lysosome to eliminate M. tuberculosis (Mtb). Some unique proteins
involved in the LAP pathway are Rac, p47, p40, p67, p22, gp91phox, and Rubicon [125]. However,
Mtb secretes multiple proteins to block the LAP pathway. Mtb proteins like CpsA, NdkA, and PPE2
inhibit the phagosomal recruitment of NADPH oxidase (NOX-2 complex) to the phagosome, whereas
NuoG and KatG proteins neutralize reactive oxygen species (ROS) [126]. Note: some live attenuated
Mtb or BCG vaccines described in this review lack one or more secretory proteins mentioned above,
and they are designated in this figure with rose-colored oval shapes.
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3.2. LpqH

Proteomics identified the LpqH (Rv3763) protein in the cell wall and the culture
filtrates of Mtb. LpqH is a 19 kDa lipoprotein that plays multiple roles in the virulence of
Mtb, such as TLR-2 interaction, the induction of humoral and T cell-mediated responses,
and apoptosis [127,128]. Macrophages infected with a mutant strain of Mtb lacking this
protein (∆19) show a reduced surface expression of MHC-II molecules and the secretion
of cytokines IL-1β, IL12p40, and TNF-α [129]. The ∆19 strain was highly attenuated for
growth in C57BL/6 mice compared to wild-type Mtb H37Rv. Despite poor in vivo growth,
in mice, LpqH elicited a protective efficacy equal to BCG (1 log10 reduction in Mtb counts
in lungs) [130]. Reduced Mtb growth correlated with increased IFN-γ-secreting CD4+ and
CD8+ T cells comparable to mice receiving the BCG vaccine, although the lung granulomas
of ∆19 strain-vaccinated mice had more lymphocytes than BCG-vaccinated mice, which
had more vacuolated foamy macrophages.

3.3. LprG

This is another mycobacterial lipoprotein agonist of TLR-2 receptors in macrophages [131],
which, in combination with immunomodulatory lipids, seems to prevent PL fusion in
macrophages and limit antigen presentation through the MHC-II pathway [132]. The
Rv1411c gene encoding LprG is transcriptionally linked to Rv1410c, which encodes a trans-
membrane efflux pump, and the deletion of the 1411c-1410c locus in Mtb (∆lprG) attenuates
its growth in immunodeficient mice [133]. The growth attenuation appears to be due to the
accumulation of intracellular triacylglycerides (TAG) and altered bacterial metabolism [133].
The ∆lprG mutant was evaluated for its immunogenicity and vaccine efficacy in three mouse
strains [134]. While ∆lprG-induced protection was comparable to BCG in C57BL/6 and
BALB/c mice, it showed a 0.9 log10 better decrease in Mtb load in the lungs of C3HeB/FeJ
mice; the latter developed necrotizing TB granulomas, similar to humans [134]. Variable
protection was also reflected in pathology as ∆lprG-vaccinated mice showed fewer granulo-
mas than mice given BCG. Further, compared to BCG, increased Ag-specific CD4+ positive
T cell responses, lower percentages of PD-1 positive T cells, and increased antigen-specific
IL-17A-secreting T cells were found in the lungs of ∆lprG-immunized mice [134]. These
data were confirmed by a recent study where increased protection was observed in ∆lprG-
immunized C3HeB/FeJ mice given a low dose aerosol infection. Protection correlated with
elevated serum levels of IL-17A, IL-6, CXCL2, CCL2, IFN-γ, and CXCL1 [135]. The ∆lprG
mutant illustrates that LAVs may show variable protection in mouse strains of different
genetic backgrounds.

3.4. BfrB

Iron limitation is a major factor affecting host–pathogen interactions [136]. Though
Mtb has multiple mechanisms to sequester iron from the host, it uses bacterioferritin (BfrB,
Rv3841), a secretory protein [137,138], to store the iron when it is abundant and to release it
when required. A ∆bfrB mutant of Mtb could not establish a chronic infection in mice [139].
When it was used as a vaccine against Mtb H37Rv in mice, the mutant generated protection
comparable to BCG, although they differed in organ pathology and lung transcriptomic
signatures [140]. Further, at eight weeks post-vaccination using ∆bfrB, mice had reduced
inflammation, smaller lung granulomas, and extensive fibrosis [140].

3.5. CpsA

Encoded by the gene Rv3484, CpsA belongs to the LytR-CpsA-Psr family of conserved
proteins related to cell wall assembly in Gram-positive bacteria [141]. Koster et al. reported
that Mtb lacking the CpsA protein (∆cpsA) enhances LC3-associated phagocytosis (LAP)
and the recruitment of NADPH oxidase to their phagosomes, suggesting that secreted CpsA
protein inhibits these innate immune responses to survive inside the host [125]. In addition,
the ∆cpsA strain showed defective growth in mice, which was restored by complementation
using a functional cpsA gene [125]. Since LAP can increase antigen presentation through
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the MHC-II pathway, the authors proposed that the ∆cpsA could be a potential vaccine
candidate and created a new mutant mc26206∆cpsA by deleting cpsA in mc26206, which is an
auxotrophic mutant strain (∆leuCD and ∆panCD) [142]. Despite increased LC3 trafficking
in BMDMs, mc26206∆cpsA showed protection similar to BCG in C57BL/6 mice challenged
with Mtb H37Rv [142]. Given its ability to increase LC3 trafficking, it is unclear why there
was no better protection than BCG, which uses a sapM-dependent mechanism to evade
autophagy. A deletion of cpsA in Mtb may generate a more protective phenotype.

3.6. BioA

The enzyme 7,8-diaminopelargonic acid synthase, also known as BioA (Rv1568), is
one of the four enzymes associated with synthesizing biotin molecules in Mtb [143]. It
appears to be critical for the acute and chronic infection of mice infected with Mtb [144].
Mtb ∆bioA was severely attenuated in guinea pigs regardless of aerosol or intradermal
route of infection, and intriguingly, the lungs of ∆bioA-infected guinea pigs did not show
live bacteria after six weeks post-infection [145]. Although vaccinating guinea pigs using
this mutant significantly reduced the bacillary burden in the lungs and spleens, repeated
vaccination before the Mtb challenge reduced its efficacy [145]. This study illustrates that
the hyperattenuation of Mtb may not always correlate with vaccine efficacy.

3.7. Gln Proteins

Glutamine synthetase activity in the culture filtrate of Mtb has been reported [146].
The Mtb genome has multiple genes encoding glutamine synthetase, namely GlnA1
(Rv2220), GlnA2 (Rv2222c), GlnA3 (Rv1878), GlnA4 (Rv2860c), and a regulator protein
GlnE (Rv2221c). However, only GlnA1, GlnA3, and GlnA4 were identified in the culture
filtrate of Mtb using proteomics [138,147]. Lee et al. [148] characterized the GlnA1, GlnA2,
GlnA3, and GlnA4 mutants and a triple mutant for GlnA1EA2. Of these, only glnA1 and
glnA1EA2 were essential for the growth of Mtb, and they were auxotrophic to glutamine.
Both ∆glnA1 and ∆glnA1EA2 showed attenuated growth in immunodeficient SCID mice
and immunocompetent C57BL/6 mice [148]. Additional studies using C57BL/6 mice
revealed that they protected mice like BCG [148]. The inability of these mutants to mul-
tiply in vivo appears to have discouraged their further validation. GlnA1 is abundant in
mycobacterial extracellular vesicles (MEV), suggesting that it may serve as a diagnostic
marker [149].

3.8. SapM

Among the three known secreted phosphatases (SapM, PtpA, and PtpB) of Mtb, SapM
(Rv3310) is the first to be identified as an acid phosphatase [150]. After Mtb infects human
macrophages, its survival within macrophages depends upon the inhibition of phagosome
maturation. SapM is one of the key enzymes implicated in phagosomal maturation ar-
rest during Mtb–macrophage interactions [46,151]. SapM dephosphorylates phagosomal
membrane-bound phosphatidylinositol 3-phosphate (PI3P), a lipid molecule associated
with the recruitment of downstream effector Rab proteins essential for phagosomal matu-
ration, also called phagosome–lysosome (PL) fusion [34]. Essentially, the SapM-mediated
removal of a phosphate molecule from PI3P affects its structure and reduces the recruitment
of effector proteins, inhibiting PL fusion. Further, SapM also inhibits autophagy by block-
ing Rab7, a small GTPase required for lysosomal fusion [100]. Two independent studies
used Mtb∆sapM to define the role of SapM during PL fusion [152,153]. Upon the infection
of macrophages, these mutants were seen more frequently in the matured phagolyso-
somal compartments enriched with lysosomal markers like LAMP1 when compared to
macrophages infected with wild-type Mtb [152,153]. The Mtb∆sapM mutant also showed
attenuated growth in macrophages and in the lungs and spleen of guinea pigs [152,153].
Consistent with PL fusion competence and attenuation, the mutant showed increased
in vitro and in vivo immunogenicity; its immunogenicity was further increased when fbpA
was deleted, yielding an Mtb∆fbpA-∆sapM double knockout (DKO) mutant [152]. Notably,
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mice vaccinated with the DKO strain and challenged with Mtb showed better protection
(>1 log10) than mice receiving the BCG vaccine [122]. Others reported similar results
when guinea pigs were vaccinated using a triple knockout strain of Mtb (Mtb∆mms) that
lacked three phosphatases (PtpA, PtpB, and SapM) [154]. Mtb∆mms was more effective
in decreasing Mtb CFUs in the lungs of guinea pigs (3.60 log10) compared to the lungs
of guinea pigs receiving BCG vaccination (4.43 log10) [154]. These two studies suggest
that the deletion of the same gene increases the vaccine efficacy in the KO mutants, even if
the other deleted genes are functionally different, mainly because the deletion of the bioA
gene in Mtb∆mms (Mtb∆mmsb) had no additional benefit [155]. It is relevant to recall here
that a BCG sapM mutant (BCG∆sapM) transposon mutant also shows enhanced protection
as a vaccine against Mtb in BALB/c mice [156]. BCG∆sapM enriched CD11c+MHC-II
intCD40int dendritic cells (DCs) in the draining lymph nodes and was found to be safer
than the BCG in SCID mice [157]. Since sapM deletion increased the vaccine efficacy of both
Mtb- and BCG-derived mutants, it may be an essential target for more effective vaccines.

3.9. Ptp

PtpA (Rv2234) and PtpB (Rv0153c) are the only two secreted phosphotyrosine protein
phosphatases (Ptp) identified in Mtb [158]. By interacting with host signaling partners, they
can modulate the cellular pathways of the host cells [159]. The genes encoding PtpA and
PtpB have been disrupted in the chromosome of Mtb, and their roles in pathogenicity are
reported [160,161]. PtbA primarily affects phagosomal maturation by interacting with H
subunit V-ATPase, an enzyme required for phagosomal lumen acidification, and PL fusion
by dephosphorylating the vacuolar protein sorting-associated protein 33B (VPS33B), a late
endosomal molecule [67,160]. In addition, PtpA plays a critical role in suppressing innate
immune responses by interacting with ubiquitin, dephosphorylating JNK, and regulating
host genes such as GADD45A [85,158]. Similarly, PtpB has been reported to promote the
survival of Mtb H37Rv by suppressing iNOS, IL-1β, and IL-6 [77], thus suppressing innate
immune responses through ERK1/2 and Akt pathways [162] and interacting with ubiquitin
and inhibiting host cell pyroptosis [97]. Coincidentally, the ∆ptpB strain is attenuated for
growth in macrophages and guinea pigs compared to wild-type Mtb [161]. Further, an Mtb
strain with triple deletions (ptpA, ptpB, and sapM) protected against TB in a guinea pig
challenge model better than BCG. [154]. Although the individual roles of ∆ptpA or ∆ptpB
in contributing to vaccine efficacy remain unclear, the fact that they affect multiple host
processes justifies their deletion as a strategy to derive vaccines.

3.10. Zmp1

Zinc-containing metalloprotease 1, or Zmp1, is encoded by the gene Rv0198c. Masters
et al. [35] first generated a zmp1 deletion mutant in Mtb and BCG, showing that it is crucial
in preventing inflammasome activation in macrophages and phagosomal maturation.
Macrophages infected with an Mtb∆zmp1 mutant not only secreted more IL-1β but also
enhanced PL fusion, indicating that it is a key virulence factor [35]. In addition, Zmp1
causes necrotic cell death and the dissemination of Mtb [90]. Interestingly, the deletion of
zmp1 has similar effects in both Mtb and BCG fields [35]. This led Sanders et al. to evaluate
zmp1 deletion in the BCG vaccine [163,164]. Mouse bone marrow-derived dendritic cells
(DCs) infected with BCG and BCG∆zmp1 were compared for their antigen presentation to
T cells using Mtb Ag85A-specific MHC-II restricted hybridoma T cells [163]. As expected,
DCs infected with BCG∆zmp1 displayed enhanced antigen presentation, suggesting that the
BCG∆zmp1 strain is immunogenic [163]. BCG∆zmp1-vaccinated mice showed a stronger
delayed-type hypersensitivity (DTH) reaction, and splenocytes showed heightened IFN-γ
levels in response to PPD stimulation when compared to splenocytes from BCG-immunized
mice [163].

Further, BCG Pasteur lacking Zmp1 and BCG Denmark strain were compared with
wild-type BCG Denmark (Danish) for efficacy against TB in guinea pigs [164]. Both mu-
tants showed impressive protection against the Mtb challenge and reduced the lung Mtb



Vaccines 2024, 12, 530 10 of 29

burden by approximately 0.5 log10 CFU compared to BCG Denmark. This observation is
remarkable because BCG Denmark, on its own, showed about 1.8 log10 CFU reduction
compared to unvaccinated controls [164]. BCG∆zmp1 has a high safety profile in SCID
mice, particularly the Danish BCG∆zmp1, which is hyper-attenuated [164]. Although the
mechanisms underlying protection are unclear, BCG∆zmp1 strain was about to enter into a
phase I clinical trial in 2017 [21].

3.11. Eis

The enhanced intracellular survival (EIS) protein is a secretory protein of Mtb encoded
by the gene Rv2416c [165]. The name EIS is because it enhances the survival of M. smegmatis
within macrophages [166]. Paradoxically, an eis deletion mutant of Mtb (Mtb∆eis) showed
no defect in intracellular survival within macrophages but induced higher levels of proin-
flammatory cytokines [167]. Such macrophages also showed increased reactive oxygen
species (ROS) generation, autophagy, and cell death [86]. The Eis protein is an enzyme
with aminoglycoside N-acetyltransferase activity. Thus, it seems capable of modulating
or inhibiting proinflammatory responses, JNK-dependent autophagy, ROS generation,
and, to some extent, phagosome maturation by acetylating the host phosphatase protein
DUSP16/MKP-7 [73]. The inhibition of autophagy by Eis also seems to be due to the
acetylation of histone H3 (Ac-H3), which can upregulate the expression of IL-10 and, as a
consequence, activate the Akt/mTOR/p70S6K pathway [83]. Eis is the first secreted protein
of Mtb to epigenetically modify macrophages. Recently, its homolog from BCG (BCG_2432c)
was knocked out in BCG (China sub-strain), and the mutant ∆BCG_2432c was tested as a
vaccine against TB in a C57BL/6 mice [168]. Remarkably, ∆BCG_2432c-immunized mice
showed approximately a 2.0 log10 reduction in CFU in the lungs compared to mice immu-
nized with wild-type BCG (China sub-strain). This enhanced protection was likely due
to elevated levels of IFN-γ+ CD4+ TEM (effector memory T cells) and IL2+CD4+TCM
(Central memory T cells) in the lungs and spleens of ∆BCG_2432c-immunized mice. This is
the first study demonstrating a significant reduction in Mtb CFU in mice by a BCG vaccine
with a single gene deletion in the chromosome. Because of its effect in mice, the deletion of
the eis gene in Mtb appears to be a promising approach for TB vaccines.

3.12. Esx5

The products of the Esx5 system activate the inflammasome pathway in the host cells,
facilitating the death of the cells and escape of the Mtb [49,61]. This system comprises
17 genes, including five encoding PPE25, PE18, PPE26, PPE27, and PE19 proteins, all
containing strong T cell epitopes showing cross-reactivity with other non-Esx PE/PPE
proteins [63,169]. Deleting the five ppe-pe genes (from ppe25 to pe19) of the esx5 renders
the Mtb attenuated for growth in immunocompetent mice [169]. Further, C57BL/6 mice
immunized with an Mtb ∆ppe25-pe19 and challenged with H37Rv had a reduced bacterial
load in the lungs and spleen compared to BCG-vaccinated mice [169], indicating moderately
better protection. In contrast, mice and guinea pigs immunized with the ∆esx5 strain,
which has a deletion of 17 genes in the esx5 locus (Rv1782-Rv1798), showed similar levels of
protection to BCG-vaccinated mice exposed to a virulent HN878 strain of Mtb [170]. Better
protection by the ∆esx5 vaccine was noted only when administered using a prime-boost
strategy with BCG as the prime vaccination [170]. Enhanced protection correlated with
increased numbers of activated monocytes, central memory T cells (TCM), and follicular T
cells (TFH) [170], although the mechanisms behind the increased protection by prime-boost
vaccination remain unclear. In the same study, an Mtb∆esx-3 mutant, which has a deletion
of 11 genes, was also tested, but its protection seems to be lower than that of the ∆esx5
strain. The authors of this study opined that the large-scale deletion of genes in the ∆esx5
vaccine could safeguard its potential reversion to virulence. However, this may lead to the
loss of protective T cell epitopes in proteins encoded by the deleted genes. Since ∆esx5 is
highly attenuated in immunocompromised SCID mice [170], it has an interesting potential
to be developed as a vaccine for HIV-infected children who are susceptible to TB.
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Figure 3. Subversion of xenophagy/autophagy by secreted proteins of mycobacteria. M. tuberculosis
(Mtb) is well-known for inhibiting the maturation of phagosomes and their subsequent fusion with
lysosomes. Through the ESX-1 secretion system and the cell envelope lipid PDIM, Mtb perforates
the phagosome membrane and escapes to the cytosol. The first defensive step of a host is initiating
the autophagy pathway by successfully binding ubiquitin to bacteria, followed by the recruitment
of autophagy adaptors such as p62, OPTN, TAX18P1, NBR1, and TOLLIP. Subsequently, these
autophagy adaptors engross with microtubule-associated-protein-1 light chain 3 (LC3) to deliver Mtb
to autophagosomes. However, Mtb has multiple evasion strategies to escape from the host autophagic
pathway via the secretion of various protein effectors. Mtb SapM inhibits Rab7, a late endosome
marker required for autophagosomes to fuse with the lysosomes [100]. Mtb protein Eis inhibits
autophagy via suppression of c-Jun N-terminal kinase (JNK)-mediated reactive oxygen species (ROS)
signaling [86] or through the acetylation of host histone, which upregulates IL-10 and activates
the Akt/mTOR/p70S6K pathway [83]. Mtb secretes LprE to suppress autophagy by inhibiting the
expression of cathelicidin antimicrobial peptide (CAMP) via the p38 MAPK pathway [104]. Mtb
protein PE_PGRS47 suppresses autophagy by inhibiting LC3 colocalization [171]. PknG blocks Rab14
to inhibit the autophagosome maturation [103]. PE_PGRS20 and PE_PGRS47 inhibit autophagy
by interacting with RAB1A, which recruits the ULK1 (unc-51-like autophagy activating kinase 1)
complex to the pre-autophagosome [102]. PPE51 inhibits autophagy by blocking the activation of the
extracellular signal-regulated kinase 1/2 (ERK1/2) pathway [105]. ESAT-6 released by Mtb perforates
the lysosomes and autophagosomes, leading to perturbation of membranes. Damage to membrane
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releases cathepsin B in the cytosol and causes the subsequent activation of NLRP3-inflammasome and
release of matured IL-1β [172]. Secreted ESAT-6 also affects autophagy flux in dendritic cells [173].
Note: Some live attenuated Mtb or BCG vaccines described in this review lack one or more secretory
proteins mentioned above, and they are designated in this figure with rose-colored oval shapes.

3.13. UreC

Secreted urease C (Rv1850) of mycobacteria neutralizes the acidic environment of the
phagosome of the macrophages, contributing to phagosomal maturation arrest [174,175].
Although BCG lacks the RD1 locus and is attenuated, it retains several genes related to
phagosomal maturation arrest, including ureC. Consequently, BCG is sequestered within
the neutral pH phagosome [176]. To nullify this effect, Kaufmann and his colleagues
used a novel strategy of integrating the gene hly, which encodes the Listeria monocytogenes
derived listeriolysin (LLO) toxin, into the chromosome of BCG, concurrently deleting
ureC in its chromosome [177]. They proposed that BCG-secreted LLO could perforate
the phagosomal membrane and allow the bacteria into the cytosol for bacterial antigen
processing through the MHC-I pathway. The deletion of ureC, on the other hand, could
favor the vATPase-mediated acidic pH required for LLO activity. They constructed two
isogenic strains, BCG::hly and BCG::hly∆ureC, and assessed their vaccine efficacy in BALB/c
mice [177]. Both showed better protection over the parental strain, although protection by
BCG::hly∆ureC was superior [177]. This was due to the induction of apoptosis, increased
antigen processing through MHC-I, the elicitation of T cells like TCM, TFH, and Th17,
and high IgG antibody levels produced by BCG::hly∆ureC [177,178]. Further, the vaccine
had an excellent safety profile in mice, guinea pigs, newborn rabbits, and non-human
primates [179]. Currently named VPM1002, it is one of the few live mycobacterial vaccines
undergoing clinical trials in sub-Saharan Africa and India [14].

3.14. NuoG

This protein is one of the subunits of type-I NADH dehydrogenase of Mtb and BCG
and was identified by screening for anti-apoptotic genes in Mtb [36]. Mtb uses NuoG
(Rv3151) to inhibit host apoptosis by neutralizing the ROS derived from NOX2 [74]. Since
the vaccine-induced apoptosis of macrophages increases vaccine efficacy [177], nuoG gene
deletion in BCG and BCG::hly∆ureC was created to improve vaccine efficacy [101]. Both
BCG∆nuoG and BCG::hly∆ureC∆nuoG seem to enhance apoptosis in murine lymph nodes
and improve autophagy activity in macrophages [101]. Consequently, both strains showed
enhanced immunogenicity and efficacy against TB in mice challenged with Mtb H37Rv [101].
Specifically, the lung CFUs of BCG∆nuoG- and BCG::hly∆ureC∆nuoG-immunized mice
demonstrated significant protection against TB. Protection against the more virulent Mtb Be-
jing W strain was also observed in mice immunized with BCG::hly∆ureC∆nuoG after 90 and
180 days post-challenge. The microarray analysis of draining lymph nodes from vaccinated
mice showed an increased expression of genes related to GTPase activity, inflammatory
responses, cell activation, and cell proliferation [101].

Additionally, the vaccine increased CD4+ TEM cells, TFH cells, germinal center B cells,
and CD4+ TCM cells. Paradoxically, a nuoG mutant made in BCG China sub-strain had no
significant protection in the Mtb-challenged mice [168]. These data suggest the possibility
that the deletion of a gene in BCG sub-strains may give different effects, and this seems to
be important because at least five major sub-strains of BCG (Copenhagen/Danish, Russian,
Shanghai/China, Japan, Moreau) are used around the world for the primary immunization
of infants.
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Table 1. Efficacy of live Mycobacterium tuberculosis vaccines with gene(s) deleted for secreted protein(s).

Vaccine
Name Vaccine Components Secreted Protein(s)

Absent
Immunization

Route/Dose
Challenge Mtb

Strain
Challenge

Route/Dose
Animal Model

(Strain)
Efficacy in Relation

to BCG

log10
CFU/LUNGS

Reduction
Than BCG

Ref.

∆fbpA H37Rv strain with single gene
(fbpA) knockout.

FbpA or Ag85A SC/105 CFU/mouse Erdman Aerosol/2.5 log10
CFU per mouse Mouse (C57BL/6) Better than BCG ~1.5 [115]

∆glnA1 H37Rv strain with single gene
(glnA1) knockout.

Glutamine synthetase A1 SC/106 CFU/mouse Erdman Aerosol/200 CFU
per mouse Mouse (C57BL/6) Equal to BCG - [148]

∆glnA1EA2 H37Rv strain with 3 genes (glnA1,
glnE, and glnA2) knockout.

Glutamine synthetase A, E and
A2 SC/106 CFU/mouse Erdman Aerosol/200 CFU

per mouse Mouse (C57BL/6) Equal to BCG - [148]

∆19 H37Rv strain with single gene
(lpqH) knockout.

Lipoprotein LpqH SC/106 CFU/mouse H37Rv Aerosol/100 CFU
per mouse Mouse (C57BL/6) Equal to BCG - [130]

∆mms H37Rv strain with 3 genes (ptpA,
ptpB, and sapM) knockout.

Phosphatases PtpA, PtpB, and
SapM

ID/5 × 105

CFU/guinea pig H37Rv Aerosol/10–30 CFU
per guinea pig Guinea pigs Better than BCG

0.83–4 weeks
post-

challenge;
1.41–12 weeks

post-
challenge

[154]

∆bfrB H37Rv strain with single gene
(bfrB) knockout

Bacterio-ferritin B SC/106 CFU/mouse H37Rv Aerosol/100 CFU
per mouse Mouse (C57BL/6) Equal to BCG - [140]

∆bioA H37Rv strain with single gene
(bioA) knockout

BioA or 7,8-diaminopelargonic
acid synthase

ID/106 CFU/guinea
pig (single or double

dose with 6 week
interval)

Erdman Aerosol/50 CFU per
guinea pig Guinea pigs Equal to BCG - [145]

∆mmsb H37Rv strain with 4 genes (ptpA,
ptpB, sapM, and bioA) knockout.

Phosphatases PtpA, PtpB, SapM
and BioA

ID/5 × 105

CFU/guinea pig H37Rv Aerosol/10–30 CFU
per guinea pig Guinea pigs Less than BCG - [155]

mc26206∆cpsA H37Rv strain with 3 genes (leuD,
panCD, and cpsA) knockout.

CpsA SC/106 CFU/mouse H37Rv Aerosol/400 CFU
per mouse Mouse (C57BL/6) Equal to BCG - [142]

∆lprG H37Rv strain with two genes (lprG
and Rv1410c) knockout.

Lipoprotein LprG SC/~106

CFU/mouse H37Rv and Erdman

Aerosol/75 CFU per
mouse

or Aerosol/1 Median
Infectious Dose

(1MID50).

Mouse (C57BL/6,
BALB/c and
C3HeB/FeJ)

Equal or better than
BCG

0.67–0.9 (in
C3HeB/

FeJ mice);
[134,135]

SC/107 CFU/mouse H37Rv IV/2.5 × 105 CFU
per mouse Mouse (BALB/c) Equal to BCG -

SC/5 × 104 CFU/
guinea pig H37Rv

Aerosol/10–50 CFU
or 500 CFU per

guinea pig

Guinea pigs (Dunkin
Hartley)

Better than BCG in
high-dose challenge >1SO2

MT103 strain with single gene
(phoP) knockout.

All secreted proteins that are
affected by PhoP

ID/5 × 105

CFU/macaques Erdman IT/1000 CFU per
macaques

Rhesus macaques
(Macaca mulatta) Better than BCG 0.77

[180,181]

∆ppe25-pe19
H37Rv strain with 5 genes (ppe25,

pe18, ppe26, ppe27, and pe19) knock
out.

PPE25, PE18, PPE26, PPE27 and
PE19 SC/106 CFU/mouse H37Rv Aerosol/100 CFU

per mouse Mouse (C57BL/6) Better than BCG ~0.5 [169]

SC/106 CFU/mouse
Beijing/W (HN878)

or Erdman
Aerosol/50–100 CFU

per mouse Mouse (C57BL/6) Better than BCG 0.72

∆secA2 mc23112 strain with single gene
(secA2) knock out. ID/103 CFU/guinea

pig H37Rv Aerosol/10–30 CFU
per guinea pig

Guinea pigs (Dunkin
Hartley)

Better than BCG in
lymph node but not

in lungs
-

[182]

∆secA2∆lysA mc23112 strain with double gene
(secA2 and lysA) knockout.

Proteins secreted by SecA2
secretion system SC/106 CFU/mouse Erdman Aerosol/50–100 CFU

per mouse Mouse (C57BL/6) Better than BCG 0.66 [183]
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Table 1. Cont.

Vaccine
Name Vaccine Components Secreted Protein(s)

Absent
Immunization

Route/Dose
Challenge Mtb

Strain
Challenge

Route/Dose
Animal Model

(Strain)
Efficacy in Relation

to BCG

log10
CFU/LUNGS

Reduction
Than BCG

Ref.

MTBVAC
MT103 strain with double gene

(phoP and fadD26) knockout.
All secreted proteins affected by

PhoP

SC/5 × 105

CFU/mouse H37Rv IN/100 CFU per
mouse Mouse (C57BL/6) Better than BCG ~0.5

[184,185]
SC/5 × 103 − 5 ×
105 − CFU/guinea

pig
H37Rv Aerosol/10–50 CFU

per guinea pig
Guinea pigs (Dunkin

Hartley) Equal to BCG -

ID/8.2 × 105

CFU/macaques Erdman Aerosol/14–30 CFU
per macaques

Rhesus macaques
(Macaca mulatta)

Better than BCG but
not in CFU -

MTBVAC
erp-

MT103 strain with triple gene (phoP,
fadD26, and erp) knock out.

All secreted proteins which are
affected by PhoP and Erp ID/105 CFU/mouse H37Rv IT/103 CFU per

mouse Mouse (C57BL/6) Equal to BCG - [186]

IM/106 CFU/mouse
(2 dose with 6 week

interval)
HN878, and H37Rv Aerosol/40–100 CFU

per mouse Mouse (C57BL/6) Equal to BCG -
∆esx-5

H37Rv strain with 17 genes (eccB5,
eccc5, cyp143, Rv1786, ppe25, pe18,

ppe26, ppe27, pe19, esxM, esxN,
ncRv11793, Rv1794, eccD5, mycP5,

eccE5, and eccA5) knock out.

ECCB5, ECCC5, CYP143,
RV1786, PPE25, PE18, PPE26,
PPE27, PE19, ESXM, ESXN,

NCRV11793, RV1794, ECCD5,
MYCP5, ECCE5, and ECCA5

IM/104 CFU/guinea
pig Beijing 212 Aerosol/10–20 CFU

per guinea pig
Guinea pigs (Dunkin

Hartley) Equal to BCG -

[170]

∆esx-3
H37Rv strain with 11 genes (eccA3,
eccB3, eccC3, pe5, ppe4, esxG, esxH,
espG3, eccD3, mycP3, and eccE3)

knock out

ECCA3, ECCB3, ECCC3, PE5,
PPE4, ESXG, ESXH, ESPG3,

ECCD3, MYCP3, and ECCE3
IM

/104 CFU/guinea pig Beijing 212 Aerosol/10–20 CFU
per guinea pig

Guinea pigs (Dunkin
Hartley) Not mentioned - [170]

Note: subcutaneous (SC); intradermal (ID); intramuscular (IM); intravenous (IV); intranasal (IN); intratracheal (IT). Efficacy was determined based on lung CFU load in comparison with
the wild-type BCG strain at least at one-time point. Log10 CFU was not mentioned for some of the studies for which we stated the approximate values based on bar graphs.
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3.15. SecA2

As discussed above, Mtb possesses two secretory transport systems: the primary SecA1
(Rv3241c) and the accessory SecA2 (Rv1821). The latter is predicted to be a unique system
in Mtb to transport a small subset of Mtb proteins related to its pathogenicity. Consistent
with this prediction, an secA2 deletion mutant in Mtb H37Rv revealed its role in pathogenic-
ity [187]. An secA2 mutant showed diminished SodA expression and relatively attenuated
growth in immunocompetent and SCID mice and in mouse macrophages derived from
Phox(−/−) and Nos2(−/−) mice [188]. Further, macrophages infected with this strain
induced relatively higher levels of TNF-α, IL-2, IFN-γ, and reactive nitrogen intermediates
(RNI) than macrophages infected with Mtb H37Rv, suggesting an immunosuppressive role
for SecA2 [188].

Interestingly, the secA2 mutant enhanced apoptosis in macrophages and the priming
of antigen-specific CD8+ T cells in mice [182], which led to its evaluation as a vaccine in
mice and guinea pigs. C57BL/6 mice and guinea pigs immunized with a ∆secA2 strain
and challenged with HN878 and H37Rv showed a better reduction in CFUs against TB
compared to BCG [182]. The lung CFUs of ∆secA2-immunized mice were 0.72 log10 lower
than those lung CFUs of mice vaccinated with BCG. This reduction in CFUs was also
accompanied by a decrease in histopathological scores for the lungs in ∆secA2-immunized
mice [182]. Interestingly, it was proposed that ∆secA2 mutant effects were due to SodA, the
only enzyme affected by secA2 deletion at that time. However, current literature reveals
that SecA2 is responsible for transporting several host effector proteins released by Mtb,
including SapM, Ndk, PknG, LdpC, and others [46]. Thus, secA2 deletion is likely to
decrease the expression of multiple proteins.

Nonetheless, an Mtb mutant lacking both SecA2 and LysA proteins showed in-
creased protection against TB in mice compared to BCG [183]. Despite the efficacy of
the ∆secA2/∆lysA mutant, it has not advanced as a vaccine candidate, which is slightl
surprising. In addition, secA2 deletion in BCG had no impact on its immunogenicity [183],
suggesting that secA2 may differently affect the genes of Mtb and BCG.

3.16. PhoP

PhoP is a sensor component of the PhoP–PhoR two-component regulatory system and
an important virulence factor [189], regulating approximately 2% of the genes in the Mtb
genome [190]. The loss of virulence in Mtb H37Ra (avirulent strain) is partly related to a
point mutation in the phoP gene (Rv0757) [191]. Although PhoP is not a secretory protein,
evidence indicates that it indirectly controls the translocation of the secreted proteins ESAT-
6 and CFP-10 of the ESX1 secretion system [192]. It appears that the translocation of ESAT-6
and CFP-10 to the bacterium’s surface requires the products of espACD genes located
within the ESX1 system, whose expression is controlled by phoP [193]. Thus, the deletion
of the phoP gene could affect the expression of the espACD genes and, consequently, the
translocation of ESAT-6 and CFP-10 [194,195]. The absence of phoP results in the secretion
of CFP-10 independently of ESAT-6, eliciting immune responses to CFP-10 in both mice and
non-human primates upon MTBVAC exposure [184,196]. A ∆phoP vaccine SO2 developed
from a clinical strain of Mtb MT103 belongs to this category [180]. The SO2 vaccine was
severely attenuated in SCID mice and conferred superior protection against TB compared
to BCG in mice, guinea pigs, and non-human primates [180]. Later, to meet the stipulations
of the Geneva Consensus [197], the SO2 vaccine was genetically modified as a marker-less
double mutant with deletions in phoP and fadD26, and this new construct was named the
MTBVAC vaccine [185]. Compared to BCG, MTBVAC showed enhanced safety, increased
immunogenicity, and efficacy in animal models such as mice, guinea pigs, and non-human
primates [184,185,196,198]. The MTBVAC vaccine protects macaques better than BCG by
reducing disease pathology measured by in vivo imaging using CT scans, macroscopic
pathological lesions examined at necropsy, and studying the frequency and severity of
pulmonary granulomas [184]. The immune signatures after MTBVAC vaccination also
included higher levels of Th1 cytokines response, especially poly- (IFN-γ+TNF-α+IL2+)
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and multi-(IFN-γ+TNF-α+) functional CD4+ T cells. After rigorous preclinical studies,
the MTBVAC vaccine entered a clinical trial in Africa [199]. MTBVAC is an example of
a vaccine developed through the rational deletion of genes in Mtb for eventual human
application.

3.17. Mpt

Two homologous secreted proteins, namely Mpt70 (Rv2875) and Mpt 83 (Rv2873),
were found to be highly immunogenic in humans and mice [200]. The genes encoding
these proteins are conserved in both Mtb and BCG. A recent study evaluated a mutant in
which these two genes and esxS, espC, and espA of the ESX system in BCG create a five-gene
knockout ∆BCG-TK [201]. Interestingly, ∆BCG-TK showed vaccine efficacy similar to that
of wild-type BCG in mice, and one can propose a contradictory observation that knocking
out genes encoding secretory proteins may not affect vaccine efficacy. However, as noted
above, with ∆lprG and ∆cpsA mutants, the genetic background of BCG or Mtb used to
create a mutant may decide the vaccine’s immunogenicity.

3.18. Erp

Mtb encodes a 28 kDa secretory protein named exported repeated protein (Erp; Rv3810)
that contains 11 proline–glycine–leucine–threonine–serine (PGLTS) repeats [202]. Mycobac-
terial erp mutants are attenuated in macrophages, zebrafish embryos, mice, and leopard
frogs [203,204]. Erp is found to interact with another gene called Rv2212, an adenylyl
cyclase. Through this interaction, Erp enhances Rv2212-mediated cyclic AMP (cAMP)
production, which seems to lower the intracellular survival of Mtb ∆erp. We note here that
the deletion of the erp gene in the MTBVAC strain (MTBVAC erp (-) further attenuated its
growth in SCID mice compared to MTBVAC and BCG. Although MTBVAC∆erp generates
protection similar to BCG, because of its higher safety profile, MTBVAC erp (-) has been
recommended for the vaccination of immune-suppressed populations, such as people with
HIV, where BCG causes disseminated disease, also known as BCGosis [186].

3.19. BCG_1419c

BCG_1419c is a cyclic dimeric GMP (c-di-GMP) phosphodiesterase (PDE) protein with
phosphodiesterase activity [205]. This protein is encoded by gene BCG_1419c in the BCG
Pasteur strain and by the gene Rv1357c in Mtb H37Rv and it was reported to degrade bis-
(30–50)-c-di-GMP, which is linked to biofilm formation and virulence [205]. BCG_1419c is
not a secretory protein. However, similar to the phoP mutant, which affects the secretion of
ESAT-6 and CFP10, the BCG∆BCG1419c mutant vaccine increases the expression of secreted
proteins like Tuf, GroEL1, DnaK, and GroES, while showing reduced levels of GroEL2
and AhcY/SahH [206]. Remarkably, the BCG∆BCG1419c vaccine strain demonstrates a
better control of both active and chronic TB in murine and guinea pig models compared
to saline control [207–213]. However, it does not provide better protection for animals in
terms of reducing lung CFU compared to BCG. Interestingly, in chronic type 2 diabetes
(T2D), murine model BCG∆BCG1419c effectively reduces pneumonia in comparison to
BCG-vaccinated mice [213].
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Table 2. Efficacy of live BCG vaccines with gene(s) deleted for secreted protein(s).

Vaccine Name Vaccine Components Secreted Protein(s)
Absent

Immunization
Route/Dose

Challenge Mtb
Strain

Challenge
Route/Dose Animal Model (Strain) Efficacy in

Relation to BCG
log10 CFU/LUNGS

Reduction Than
BCG

Ref.

VPM1002
(∆ureC::hly)

BCG Pasteur strain with single
gene (ureC) knockout, which
expresses listeriolysin (hly).

Urease C IV/106 CFU/mouse H37Rv or Beijing/W Aerosol/30 or 200
CFU per mouse Mouse (BALB/c) Better than BCG ~0.5–2 [177]

sapM::T BCG 1721 strain with single gene
(sapM) knockout. SapM phosphatase SC/105 CFU/mouse H37Rv

IV/5 × 104 CFU per
mouse

(or)
IT/ 2 × 105 CFU per

mouse

Mouse (BALB/c) Better than BCG ~0.5 (Luminescence) [156]

∆zmp1
BCG Pasteur or Denmark strain

with single gene (zmp1)
knockout.

Zmp1 or Zinc
containing

metalloprotease 1
SC/5 × 104 CFU/

guinea pig H37Rv Aerosol/10–50 CFU
per guinea pig

Guinea pigs (Dunkin
Hartley) Better than BCG ~0.91 [164]

BCG:∆85B BCG Pasteur strain with single
gene (fbpB) knockout. FbpB/Ag85B SC/5 × 105

CFU/mouse H37Rv Aerosol/100 CFU
per mouse Mouse (C57BL/6) Equal to BCG - [118]

∆nuoG BCG Pasteur strain with single
gene (nuoG) knockout.

NuoG
type-I NADH

dehydrogenase
subunit G

SC/106 CFU/mouse H37Rv Aerosol/100–200
CFU per mouse Mouse (C57BL/6) Better than BCG ~0.5 [101]

∆ureC::hly
∆nuoG

BCG Pasteur strain with double
gene (ureC, nuoG) knockout,

which expresses listeriolysin.
UreC and NuoG SC/106 CFU/mouse H37Rv or Beijing/W Aerosol/100–200

CFU per mouse Mouse (C57BL/6) Better than BCG ~0.8–2 [101]

∆BCG TK
(triple

knock-out)

BCG Danish strain with five gene
(esxS, mpt70, mpt83, espC and

espA) knockout

EsxS, Mpt70, Mpt83,
EspC, and EspA

SC/5 × 104

CFU/guinea pig M. bovis AF2122/97 Aerosol/10–20 CFU
per guinea pig

Guinea pigs (Dunkin
Hartley) Equal to BCG - [201]

∆BCG2432c BCG China strain with eis gene
(BCG2432c) knockout

EIS or Enhanced
Intracellular Survival

protein
SC/106 CFU/mouse H37Rv IN/100 CFU per

mouse Mouse (C57BL/6) Better than BCG ~1–2 [168]

∆BCG3174 BCG China strain with nuoG
gene knockout (BCG3174) NuoG SC/106 CFU/mouse H37Rv Intranasal/100 CFU

per mouse Mouse (C57BL/6) Equal to BCG - [168]

∆BCG 1419c
BCG Pasteur strain with single

gene (c-di-GMP phosphodiesterase)
knockout.

All secreted proteins
affected by
(c-di-GMP

phosphodiesterase).

SC/8 × 103 or 2.5 ×
102 or 5 × 104 or 106

or ~105 or 107

CFU/mouse

H37Rv or M2 or
HN878

IT/2.5 × 105 or 103

or ~170 CFU per
mouse or

Aerosol/100–200
CFU per mouse.

Mouse (BALB/c, B6D2F1,
C57BL/6, I/StSnEgYCit)

Equal to BCG or
Better than BCG in
chronic infection

model

~0.8 (chronic
infection model)

[207–
213]

ID/103 CFU per
guinea pig H37Rv Aerosol/10–20 CFU

per guinea pig Guinea pigs Equal to BCG -

Note: subcutaneous (SC); intradermal (ID); intramuscular (IM); intravenous (IV); intranasal (IN); intratracheal (IT). Efficacy was determined based on lung CFU load in comparison with
the wild-type BCG strain at least at one time point. Log10 CFU was not mentioned for some of the studies for which we stated the approximate values based on bar graphs.
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4. Status of Mycobacterial Vaccines Deficient in Secreted Protein(s)

It is apparent from these studies that BCG is a ‘natural’ vaccine arising out of the
deletion of genes encoding secretory proteins, as it lacks the Region of Difference 1 (RD1)
that encodes several secretory proteins, including the immunodominant antigens ESAT-6
and CFP-10 [54]. Studies discussed above specifically targeted genes that played a role dur-
ing pathogenesis for developing vaccines. Surprisingly, only a few Mtb-derived vaccines
showed higher efficacy than BCG, and most were comparable to BCG. In contrast, many
BCG mutants with deletions of secretory genes showed increased efficacy compared to the
wild type. We recall here that Mtb- or BCG-derived vaccines that showed higher efficacy
than BCG had deletions in fpbA, sapM, zmp1, ureC, nuoG, secA2, and eis genes. Intriguingly,
except for the fbpA-encoded product, other genes modulated PL fusion, autophagy, apopto-
sis, and inflammasomes in the antigen-presenting cells (APCs) [34–36,61,83,214]. Although
the disruption of fbpA in Mtb also led to increased PL fusion in APCs, the underlying
mechanism remains unclear [215].

Because PL fusion, autophagy, apoptosis, and inflammasome activation ensure the
efficient processing and presentation of vaccine antigens to the T cells by the APCs [216–218],
it is apparent that the deletion of these genes enhanced the efficacy of the mutants against
tuberculosis, justifying the strategy of secretory protein gene knockout. However, we need
to recognize the caveat that these deletions of proteins that contain potent T and B cell
epitopes like ESAT6 and CFP10 may lead to reduced immunogenicity. In addition, an
in vitro phenotype may not always lead to increased immunogenicity. An example is Mtb
lacking cpsA; although Mtb∆cpsA enhanced autophagy in APCs, an increase in vaccine
efficacy was not observed [142]. In this regard, deletion strategies should focus on those
that interfere with PL fusion and autophagy (SapM, Zmp, PtpA, and PtpB).

It also appears that gene knockouts in BCG and Mtb will likely have different conse-
quences because of the genetic background of the attenuated vaccine vs. virulent pathogen.
Because BCG has an excellent safety record, the deletion of sapM, zmp1, and eis is likely to
improve immunogenicity, since BCG contains multiple immunogenic genes, an Antigen85
complex, and others listed above. Intriguingly, eis deletion in BCG markedly reduced the
Mtb load in the lungs of nasally challenged mice [168]. Further, the double deletion of
ureC and nuoG synergistically enhanced the efficacy of BCG [101], suggesting that highly
effective BCG mutants can be produced through multiple deletions of genes selected based
on their functions. Herein, we again emphasize the need to exercise caution in selecting the
parent platform, since the ∆nuoG BCG Pasteur strain was effective against TB [101] but not
the ∆nuoG BCG China sub-strain [168].

Similar to BCG vaccine manipulations, using the Mtb platform to derive vaccines
deleting secretory products appears encouraging. The ∆secA-∆lysA and ∆fbpA-sapM and
mutants were more effective than BCG [116,152,183] and are potential booster vaccines for
BCG-vaccinated infants. Among these, the ∆secA-lysA strain has an excellent safety profile
in mice [183] compared to ∆fbpA-sapM, qualifying it for clinical trials. Our unpublished
observations indicate that the safety profile of the ∆fbpA-sapM mutant in mice is lower than
that of BCG and may need additional gene deletions. Although ∆lprG derived from Mtb
also seems to be a strong candidate vaccine, its superior efficacy over BCG is apparent only
in TB-susceptible C3HeB/FeJ mice but not in the TB-resistant C57/BL6 mice [134].

5. Future Directions and Conclusions

A significant impediment to developing vaccines against TB is the lack of reliable
immune correlates of protection [219–222]. Studies with mice, guinea pigs, and rabbits
revealed that CD4+ T cells secreting IFN-γ, TNF-γ, and IL-1β and CD8+ T cells secreting
granulysin and perforin play a critical role in defending Mtb infection [223,224]. Recent
studies show that TH17 T cells secreting IL-17 are also a protective parameter [225].

All new TB vaccines aim to enhance T cell-dependent immune responses in the
host. Interestingly, the role of innate immunity in designing more efficacious vaccines has
received less attention [226]. An intriguing example is the induction of trained immunity
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by the BCG vaccine, which activates dectin signaling, generating protection against TB
through epigenetic modifications of macrophages, neutrophils, and DCs [227]. Although
BCG-induced trained immunity seems more effective against nontuberculous infections,
it remains unclear to what extent trained immunity affects adaptive immunity during
tuberculosis vaccination. It has been reported that BCG-induced protection wanes by year
5 in children, and TB continues to occur despite vaccination [228].

In this context, we noted that deleting multiple secretory proteins led to enhanced
autophagy and inflammasome activation that delivered vaccines to lysosomes for better
immune responses (our unpublished work). Autophagy and inflammasome pathways
are major innate immunity pathways triggered by multiple mechanisms of mycobacteria,
including TLR, NLR, and C-type lectin (also known as dectins) signaling. Intriguingly,
dectin-dependent trained immunity induced by BCG cell wall components is regulated by
autophagy [229]. There is, therefore, a pressing need to investigate whether new-generation
tuberculosis vaccines can be genetically manipulated to activate both innate (autophagy
and inflammasome) and adaptive T cell-dependent arms of immunity. For example, Mtb
was reported to secrete a lysine acetyltransferase that epigenetically modified the ability of
macrophages to secrete anti-inflammatory cytokines like IL-10.

Moreover, the acetylation of histones associated with the genes regulating autophagy
regulates the induction of autophagy [230]. A lysine acetyltransferase mutant of Mtb
may induce robust autophagy and show better protection. Further, Mtb-derived methyl
transferases hyermethylate the DNA of tuberculosis patients, reducing their immune
responses [231]. We propose that deletion mutants of Mtb that lack acetylase, methylase, or
both may serve as promising vaccine candidates.

An attractive alternative approach to enhance innate immunity is to integrate ‘adjuvant’
active molecules such as TLR agonists into candidate vaccines to overcome immune-
suppressing proteins. We recently fused a TLR2-activating CFP-10-derived peptide C5 with
Ag85B and expressed it in BCG through a plasmid. The recombinant BCG85BC5 vaccine
enhanced protection against TB and induced significant levels of T-effector and T-central
memory cell response in mice [108]. We propose that integrating adjuvant constructs
like this into ∆sapM or ∆zmp1 mutants will markedly improve protection associated with
long-term memory.

Finally, recent reports indicate that the humoral immune response against Mtb may
also play a significant role in protection against TB [101,184]. In this direction, we propose
that deletion mutants can be made to express antibody-inducing peptide epitopes.
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