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Abstract: Soil salinization has a significant impact on agricultural production and ecology. There is an
urgent demand to establish an effective method that monitors the spatial and temporal distribution
of soil salinity. In this study, a multi-indicator soil salinity monitoring model was proposed for
monitoring soil salinity in Bachu County, Kashgar Region, Xinjiang, from 2002 to 2022. The model
was established by combining multiple predictors (spectral, salinity, and composite indices and
topographic factors) and the accuracy of the four models (Random Forest [RF], Partial Least Squares
[PLS], Classification Regression Tree [CART], and Support Vector Machine [SVM]) was compared.
The results reveal the high accuracy of the optimized prediction model, and the order of the accuracy
is observed as RF > PLS > CART > SVM. The most accurate model, RF, exhibited an R2 of 0.723, a
root mean square error (RMSE) of 2.604 g·kg−1, and a mean absolute error (MAE) of 1.95 g·kg−1 at a
0–20 cm depth. At a 20–40 cm depth, RF had an R2 value of 0.64, an RMSE of 3.62 g·kg−1, and an
MAE of 2.728 g·kg−1. Spatial changes in soil salinity were observed throughout the study period,
particularly increased salinization from 2002 to 2012 in the agricultural and mountainous areas within
the central and western regions of the country. However, salinization declined from 2012 to 2022,
with a decreasing trend in salinity observed in the top 0–20 cm of soil, followed by an increasing
trend in salinity at a 20–40 cm depth. The proposed method can effectively extract large-scale soil
salinity and provide a practical basis for simplifying the remote sensing monitoring and management
of soil salinity. This study also provides constructive suggestions for the protection of agricultural
areas and farmlands.

Keywords: Google Earth Engine; soil salinization; vertical soil salinity; machine learning; spatial and
temporal variability

1. Introduction

Soil salinization is currently a serious environmental problem faced globally [1]. It
profoundly impacts agricultural production, ecological equilibrium, and sustainable de-
velopment [2–4]. Soil salinization affects over 20% of the world’s irrigated farmland [5],
with more than half concentrated in four countries: China, India, Pakistan, and the United
States of America [6]. In China, inland areas face more severe salinization hazards than
coastal regions, particularly in locales with scarce water resources. Therefore, understand-
ing soil salinity levels is crucial for determining optimal irrigation timing, implementing
effective management practices, ensuring soil quality, fostering robust plant growth, and
conserving water resources [7]. Given this context, conducting a comprehensive exam-
ination of the spatial and temporal dynamics of salinization has emerged as a pressing
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imperative to safeguard land resources, preserve ecological equilibrium, and ensure agri-
cultural productivity.

Conventional approaches for soil salinity measurements typically involve collecting
field soil samples for laboratory analysis to determine solute concentrations. However,
such methods are time-consuming and costly [3,8–10]. In recent years, the application of
remote sensing techniques to assess soil salinity has increased [11,12] due to their short
measurement time, extensive monitoring range, and capacity to acquire multi-temporal
data. In particular, remote sensing technology offers efficient and cost-effective tools for
rapid soil salinity monitoring. Monitoring techniques can be classified into two categories,
namely, direct assessments of bare soil and indirect assessments through vegetation affected
by soil salinity [13]. Recently, scholars have determined a correlation between vegetation
growth information and soil salinity concentration via vegetation indices [14]. Furthermore,
an increasing number of studies have adopted the salinity index and its composite index
for soil salinity monitoring [15,16]. Utilizing environmental variables such as elevation,
slope, and aspect has great potential for accurately identifying salinized soils [17]. Pre-
vious research has demonstrated a correlation between these indicators and soil salinity
indices [18]. Numerous scholars have predicted soil salinity by establishing a relationship
between various indices (e.g., spectral indices) and measured soil salinity, selecting the
optimal inversion factors, and constructing inversion models through diverse satellite
remote sensing data [19,20].

The majority of previous related research relies on empirical models. However, Google
Earth Engine (GEE) offers corrected global Landsat series data combined with machine
learning algorithm interfaces. These resources enable the application of large-scale machine
learning [21–23] and deep learning [24,25] approaches that utilize extensive cloud data
and computing power. Such models enhance the capability to monitor soil salinization.
Moreover, scholars have used vegetation indices to construct models in GEE to study
soil salinization [26]. Currently, the integration of GEE and machine learning is being
employed for cropland mapping [27,28], surface temperature estimation [29], and classifica-
tion monitoring [30]. However, multivariate studies of soil salinization inversions continue
to use traditional empirical models and processing tools such as ENVI (Esri). While the
monitoring accuracy of such models is satisfactory, there remains room for streamlining
the analysis processes. The traditional process for monitoring salinity through remote
sensing is generally divided into three stages. The first stage involves preprocessing remote
sensing data. The second stage includes screening sensitive factors using correlation analy-
sis and other methods. In the third stage, optimal factors are determined, and regression
or machine learning algorithms are employed for modeling. Traditionally, this process
requires the use of multiple software tools. However, the GEE cloud computing platform
provides an all-in-one solution, facilitating machine learning algorithm-based modeling
and empirical modeling. Previous research has primarily concentrated on surface soil
model development, with limited attention focused on estimating soil salinity at various
depths using remote sensing data. Furthermore, spatial analysis of soil salinity has been
the primary focus of past studies, while temporal monitoring remains overlooked.

Hence, this study introduces a comprehensive and streamlined approach to soil salinity
monitoring. A multi-parameter remote sensing prediction model was developed for long-
term soil salinity monitoring at varying depths in Bachu, Xinjiang. This model utilized
multi-year Landsat 5, Landsat 8, and Landsat 9 imagery from 2002 to 2022, along with
measured soil salinity data at the depths of 0–20 cm and 20–40 cm. This study maximizes
the utilization of the GEE remote sensing platform, integrating ground-based soil salinity
measurements with machine learning to perform robust remote sensing monitoring of soil
salinization. The proposed approach adopts environmental factors and vegetation, spectral,
and composite indices as variables. The research objectives of this study are to (1) optimize
the predictor selection from multiple types of variables; (2) evaluate the accuracy of the
empirical and machine learning models across different soil depths; and (3) generate spatial
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and temporal distribution maps of soil salinity in topsoil and deep-soil layers in Bachu
County and analyze their spatial and temporal variations.

2. Materials and Methods
2.1. Overview of the Study Area

The study area (38.427◦–40.187◦ N and 77.227◦–79.567◦ E) is located in the south-
western part of the Xinjiang Uygur Autonomous Region, at the southern foothills of the
Tianshan Mountains and the northwestern margin of the Tarim Basin. Situated in the Asian–
European continent’s hinterland, it shares borders with Aksu Prefecture to the east; Shache
County, Mageti County, and the Hotan region to the south; Gashi County, Yephu County,
and Kizilsu and Kirghiz Autonomous Prefectures to the west; and extends to the Keping
Mountain in the north, part of the Tien Shan Mountain system. The terrain in the study
area slopes from the southwest to the northeast and contains four key geomorphological
categories, namely, deserts, mountains, flood plains, and alluvial plains. With an average
temperature of 11.9 ◦C, an annual precipitation average of 60 mm, an annual evapotranspi-
ration average of 3218.2 mm, and 2500–3000 annual sunshine hours, the area exhibits a dry
climate, high evapotranspiration rates, and significant diurnal temperature fluctuations,
classifying it as a temperate continental dry climate. Bachu County, situated in Xinjiang, is
a sizable agricultural area characterized by arid conditions, leading to significant surface
salt accumulation and water scarcity. Hence, efficient soil salinity monitoring in this region
is crucial for promoting regional water conservation and facilitating the development of
arid regions. Bachu County has large areas of saline-tolerant plants, such as poplar forests,
which can grow in saline soils and harsh climatic conditions, and therefore grow thickly in
such saline areas [31]. Soil salinization is one of the main drivers of desertification. Bachu
County is located on the northwestern edge of the Taklamakan Desert and is thus faced
with the problem of desertification, exacerbating the risk of soil salinization. Conducting
salinization testing can help identify areas with potential desertification risk in a timely
manner, thus helping to protect the ecological environment. Moreover, combining soil
spatial planning with salinization testing can optimize land use and improve the efficiency
of land resource utilization [32].

2.2. Technological Approach

This study utilizes the GEE cloud computing platform along with the machine learning
algorithms and remote sensing data provided by GEE. Thirty-one indices were extracted
and correlated with soil salinity at the measured sampling points depicted in Figure 1.
Six optimal factors were selected and incorporated into four models. The optimal model was
then employed to analyze the spatial and temporal changes in soil salinity across different
depths in Bachu County. The data processing and analysis flow is depicted in Figure 2.
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2.3. Data Sources and Processing
2.3.1. Ground-Truth Data

The ground-truth data of soil salinity used in this study were obtained from field
sampling in the spring of 2002, 2010, and 2022. In the field collection of composite soil
samples, the five-point sampling method was adopted, in which five surface soil samples
were randomly selected in each sample plot, crushed and mixed together, then one sample
was formed by removing impurities such as roots, mulch, rocks, etc., and each sample
point was collected at two depths, namely, 0~20 cm and 20~40 cm, respectively. A total
of 124 sample points were measured in the field, including soil salt content, soil pH, and
other data, of which 64 sample points were centrally distributed in the southwest and west
of Bachu County next to farmland and rivers, 36 sample points were distributed in the
northeast and south of Bachu County in the bare land, desert, and rocky and bare soil areas,
and the remaining 24 sample points were distributed in the sparsely vegetated central
and eastern areas, such as grasslands and shrublands. The land cover types of the sample
sites covered all land types in Batchelor County. The sampling sites for the 2022 field
measurement validation data were evenly distributed within the study area (Figure 1).
The measured soil salinity values of the field sampling sites were classified according to
the classification criteria of soil salinity, which resulted in 26 non-saline, 33 mildly saline,
31 moderately saline, 21 heavily saline, and 13 saline soil sample sites, and the criteria for
classifying the soil salinity grades are detailed in Table 1 [33].

Table 1. Criteria used for the classification of soil salinization.

Soil Impregnation
Class

Non-Saline
Soil

Weakly
Saline Soil

Moderately
Saline Soils

Highly
Saline Soil Saline Soil

Soil salinity (g·kg−1) <3 3–6 6–10 10–20 ≥20

2.3.2. Remote Sensing Data

Landsat 7 and Landsat 9, the latest generation of Landsat data, were selected as
the main data sources for the study; see Table 2 for details. Atmospheric correction was
performed on these datasets using the LEDAPS and LaSRC algorithms. Masking of clouds,
shadows, water, and snow was then performed based on the saturation of each pixel by the
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CFMASK (C version of the Function of Mask) method. The satellite products were obtained
through the GEE platform. The composite index was also extracted after calculation in the
GEE platform. All datasets were obtained from the same period as the sampling points
(2002, 2012, and spring 2022) [34].

Table 2. Remote sensing data sources and resolution.

Serial
Number

Pseudolaric
Acid Extract Data Resolution (m) Time Range

of Values

1 Landsat7/9
Single band, vegetation

index, salinity index,
composite index

30 April 2022, April
2012, April 2002

2 MOD16A2 Evapotranspiration 500 2022

3 CHIRPS Daily
2.0 Final Precipitation 500 2022

4 SRTM Elevation, slope,
direction of slope 30 2001

2.3.3. Spectral Indices

We extracted the raw spectral information of six bands from the Landsat 5, Landsat 8,
and Landsat 9 imagery, namely, the blue (Blue, 0.45–0.51 µm), green (Green, 0.53–0.59 µm),
red (Red, 0.64–0.67 µm), near-infrared (NIR, 0.85–0.88 µm), short-wave infrared 1 (SWIR1,
1.57–1.65 µm), and short-wave infrared 2 (SWIR2, 2.11–2.29 µm) bands.

In arid regions characterized by sparse vegetation and extensive surface fragmentation,
the selection of a suitable vegetation index significantly impacts the accuracy of vegetation
remote sensing estimations. Two key factors must be accounted for when choosing a
vegetation index: its capability to minimize soil background interference and its effective-
ness in detecting low-cover vegetation. The most commonly used vegetation index is the
normalized difference vegetation index (NDVI) [35], which responds to the health status of
vegetation and to invert soil salinity. In this study, we combined the NDVI with the dif-
ference vegetation index (DVI), which is strong in detecting low-coverage vegetation, and
the modified soil-adjusted vegetation index (MSAVI), which regulates the influence of the
soil background well, to construct the model. We also employed the enhanced normalized
difference vegetation index (ENDVI), the enhanced red vegetation index (ERVI), and the
canopy redness index (CRSI), which have been reported to have better performances in soil
salinity monitoring. Table 3 presents the calculation formulas of these indices.

Table 3. Vegetation indices used in this study and their formulas.

Index Formula Reference

NDVI
(normalized difference vegetation index)

NIR−R
NIR+R [36]

DVI
(difference vegetation index) (NIR − R) [37]

ERVI
(enhanced red vegetation index)

NIR+SWIR2
2 [38]

ENDVI
(enhanced normalized difference vegetation index)

NIR + SWIR2−R
NIR+SWIR2+R [39]

CRSI
(canopy redness index)

(
(NIR × R − G × B)/(NIR × R + G × B))0.5 [19]

MSAVI
(modified soil-adjusted vegetation index) MSAVI = (2NIR+1)−

√
(2NIR+1)2−8(NIR−R)

2
[40]

2.3.4. Salinity Indices

Salinity indices are highly correlated with soil salinization and are usually determined
from remotely sensed data. In this study, we use salinity indices to quantify the degree and
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distribution of soil salinization in Bachu County. These indices can reflect the effect of soil
salinization on the surface of Albedo, thus helping us to understand the spatial distribution
characteristics of soil salinization [41]. Table 4 reports the 11 salinity indices (SIs), namely,
SI1–SI9, NDSI, and SI-T, used in this study.

Table 4. Salinity indices used in this study and their formulas.

Index Formula Reference

SI1
√

Blue × R [42]
SI2 (Blue×R)

Green
[43]

SI3 (Green×R)
2

[44]
SI4 Blue

R [45]
SI5

√
Green × R [46]

SI6
√

Green 2 × R2 + NIR2 [47]
SI7 SWIR1−NIR

SWIR1−SWIR2 [48]
SI8 SWIR1 − SWIR2 [48]
SI9 SWIR1×SWIR2−SWIR2×SWIR2

SWIR1 [48]
NDSI R−NIR

R+NIR [49]
SI-T

(
R

NIR

)
× 100 [50]

2.3.5. Composite Indices

Previous research has demonstrated the applicability of inversion factors derived from
Albedo-MSAVI and SI1-NDVI eigenspaces for investigating soil salinity in arid regions [51].
In this study, these factors are denoted as AM and SDI, respectively. This study employed
two composite indices derived from the feature space. The indices were computed using
the SI1, NDVI, and Albedo metrics, as described in Table 4. To maintain data consistency in
the subsequent analyses, normalization of SI1, NDVI, MSAVI, and Albedo was performed
using the following equation:

nX =
X − Xmin

Xmax − Xmin
, (1)

where nX denotes the normalized value of X; X refers to the values of SI1, NDVI, MSAVI,
and Albedo, respectively; Xmax and Xmin denote the maximum and minimum values of SI1,
NDVI, MSAVI, and Albedo, respectively. Composite index formula, as shown in Table 5.

Table 5. Composite indices used in this study and their formulas.

Index Formula Reference

Albedo–MSAVI
√
(1 − Albedo)2 + MSAVI2 [52]

SDI
√

SI12 + (NDVI − 1)
2 [53]

Albedo 0.356 × Blue + 0.13 × R + 0.373 × NIR + 0.085
×SWIR1 + 0.072 × SWIR2 − 0.0018

[54]

2.3.6. Topographic Factors

Topography is important in soil formation, serving as a reflection of the interaction
between water flow and soil characteristics. Quantitative topographic factors have been
utilized in predicting soil properties [55]. In particular, elevation influences human ac-
tivity frequency. In sparsely inhabited regions at higher elevations, vegetation growth
typically thrives, boasting higher overall coverage, thereby significantly impacting soil
salinity dynamics. Similarly, slope gradient and orientation shape plant growth, indirectly
affecting soil salinity levels. Hence, utilizing the topography of Bachu County, we extracted
topographic data, specifically the SRTM digital elevation model (DEM), from the GEE
platform. Three key factors—elevation, slope, and aspect—were derived.
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2.3.7. Climatic Factors

Precipitation and evaporation exert significant influences on the rate and extent of
soil salinization [56]. Therefore, we focused on evaporation and precipitation as key
environmental variables. This study utilized the MOD16A2.061 dataset retrieved from
MODIS (Moderate Resolution Imaging Spectroradiometer) on the Terra satellite, for net
evapotranspiration data. The dataset has global coverage, an 8-day temporal resolution, and
a 500 m spatial resolution. The CHIRPS Daily 2.0 Final dataset, sourced from the Climate
Hazards Group, was used for daily global precipitation data. This dataset combines satellite
infrared observations and ground station data.

2.4. Predictive Model

This study employed four estimation models, namely, Partial Least Squares (PLS) [57],
Support Vector Machine (SVM [58]), classification and regression tree (CART [59]), and
Random Forest (RF) regression [60]. In 2022, Bachu County had 124 soil salinity sampling
sites, with a training set to test set ratio of 8:2. We randomly assigned 97 datasets to the
training set, while the remaining 27 were allocated to the test set.

PLS is a widely utilized multivariate statistical technique employed for addressing
regression problems involving high-dimensional data or multiple covariates [61]. The
primary objective of PLS is to extract information from the dataset and diminish correla-
tions between features through the linear transformation of independent and dependent
variables. SVM represents a category of generalized linear classifiers utilized for binary
data classification through supervised learning [62]. This approach identifies the optimal
classification hyperplane within a high-dimensional feature space. CART is a widely uti-
lized classification technique [63]. It falls under supervised learning, wherein a dataset
comprising samples, each with attributes and predefined categories, is provided. Through
learning, a classifier is developed to accurately classify new instances. RF is a machine learn-
ing technique designed for regression and classification tasks [64]. It comprises numerous
decision trees, with each tree trained on a distinct subsample and feature set.

2.5. Evaluation of Model Accuracy

The model accuracy was assessed using the coefficient of determination (R2), root
mean square error (RMSE), and mean absolute error (MAE). R2 measures the degree of
fit between estimated and measured values, with values closer to 1 indicating a better
fit. Similarly, a smaller RMSE indicates a better model performance. MAE represents the
average of the absolute errors between predicted and observed values. A smaller MAE
indicates lower prediction errors and better model performance.

R2 = 1 − ∑i (ŷi − yi)
2

∑i (
_
yi − yi)

2 (2)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

MAE =
1
n

n

∑
i=1

∣∣∣(yi − ŷj

)∣∣∣ (4)

where yi is the measured soil salinity value; ŷi is the soil salinity inversion value;
_
yi is the

measured mean soil salinity value; and n is the number of sample points.

3. Results and Analysis
3.1. Soil Salinity Predictors

Figures 3 and 4 display the correlation results of the six predictors with soil salinity at
depths of 0–20 cm and 20–40 cm, denoted as SSC (0–20 cm) and SSC (20–40 cm), respectively,
and to explore the relationship between the indices, we present each of the six indices in
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Figure 3, each type of index is a small graph, from a to f: single band, vegetation index,
composite index, topographic index, salinity index, and climate index, respectively. Overall,
the predictors exhibit a stronger correlation with the topsoil (0–20 cm) compared to the
subsoil (20–40 cm). This may be because the distribution of salts in the topsoil is more
susceptible to anthropogenic activities such as irrigation and fertilization, which may
lead to more significant changes in salts in topsoil and therefore higher correlation with
predictors. In contrast, deeper soils have relatively average salinity as they are less affected
by anthropogenic impacts and because deeper soils may have more salts deposited at the
bottom due to precipitation and irrigation. This consequently results in a lower correlation
with predictors.
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The RED band exhibits the highest absolute correlation values with SSC (0–20 cm) and
SSC (20–40 cm), with respective R values of 0.65 and 0.38 (Figures 3a and 4). Covariance is
observed between the single bands, with the exception of the NIR band.

The NDVI is observed to have the strongest absolute correlation with SSC (0–20 cm)
and SSC (20–40 cm), with R values of −0.67 and −0.42, respectively (Figures 3b and 4). In
addition, all six vegetation indices exhibited covariance between them (Figure 3b). Thus,
we selected the vegetation index with the lowest covariance to construct the soil salinity
estimation model and improve the prediction performance.

The SDI exhibited the strongest correlation with SSC (0–20 cm) and SSC (20–40 cm),
with R values of 0.67 and 0.38, respectively (Figures 3c and 4).

Among the environmental factors, elevation had the highest absolute correlation with
SSC (0–20 cm) and SSC (20–40 cm) within the topographic factors, with R values of −0.32
and −0.11, respectively (Figure 3d,f and Figure 4). Among the climatic factors, ET exhibits
the strongest correlation with SSC (0–20 cm) and SSC (20–40 cm), with R values of −0.47
and 0.23, respectively.

The salinity indices outperformed the two aforementioned environmental factors
(Figures 3e and 4). SI3 exhibited the highest correlation with SSC (0–20 cm) and SSC
(20–40 cm), with R values of 0.58 and 0.27, respectively. SI2 and SI3 displayed identical
correlations with SSC (0–20 cm), with R values of 0.576 and 0.583, respectively, indicating a
slightly higher correlation for SI3.

Each predictor type exhibited a higher correlation with SSC (0–20 cm) compared to
SSC (20–40 cm), and the optimal predictor for each type remained consistent across both
soil depths. Due to significant predictor covariance within each category, the selection
process prioritized the most relevant predictors to mitigate interference with model effec-
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tiveness. Based on this, NDVI, SI3, RED, ELEVATION, ET, and SDI were identified as the
optimal indicators.

3.2. Model Accuracy Validation and Selection

Based on the 2002 2012, and 2022 datasets, the simulation accuracy of the different
models was evaluated using the RMSE, MAE, and R2 metrics. Table 6 reports the results.

The RF regression model performed better at SSC (0–20 cm) (R2 = 0.723, RMSE
2.604 g·kg−1, MAE 1.95 g·kg−1) compared to SSC (20–40 cm) (R2 = 0.64, RMSE 3.62 g·kg−1,
MAE 2.728 g·kg−1). Thus, the accuracy of the soil salinity monitoring model decreases with
increasing depth. This indicates that the topsoil is more helpful for monitoring the changes
in soil salinity at the same sampling time and location. The SVM regression model also per-
formed better at SSC (0–20 cm) = (R2 = 0.459, RMSE of 3.829 g·kg−1, MAE of 3.494 g·kg−1)
compared to SSC (20–40 cm) (R2 = 0.316, RMSE of 3.94 g·kg−1, MAE of 3.501 g·kg−1). This
indicates the poor performance of the model with SVM. The model performs optimally
with CART at SSC (0–20 cm) (R2 = 0.515, RMSE of 3.818 g·kg−1, MAE of 3.254 g·kg−1) and
at SSC (20–40 cm) (R2 = 0.503, RMSE of 3.82 g·kg−1, MAE of 3.39 g·kg−1). Thus, the CART
model performs consistently, with a similar accuracy performance at different depths. The
PLS model performs optimally at SSC (0–20 cm) (R2 = 0.678, RMSE of 2.666 g·kg−1, MAE of
2.278 g·kg−1) and at SSC (20–40 cm) (R2 = 0.628, RMSE of 3.67 g·kg−1, MAE of 2.79 g·kg−1).

Table 6. Analysis of the model accuracy at different depths using different methods.

Soil Depth Model R2 RMSE/(g·kg−1) MAE/(g·kg−1)

SSC (0–20 cm)

RF 0.723 2.604 1.950
SVM 0.459 3.829 3.494

CART 0.515 3.818 3.254
PLS 0.678 2.666 2.278

SSC (20–40 cm)

RF 0.64 3.620 2.728
SVM 0.316 3.940 3.501

CART 0.503 3.820 3.390
PLS 0.628 3.670 2.790

RF is observed to surpass SVM, CART, and PLS in terms of accuracy at SSC (0–20 cm)
and SSC (20–40 cm) (Figures 5 and 6). More specifically, the predicted RF soil salinity
values provide the best fit with the measured soil salinity at both depths. Moreover, the PLS
and CART models exhibit a strong ability to estimate soil salinity, while the SVM model
performs poorly. Therefore, the RF model was chosen as the optimal monitoring model for
soil salinization at the 0–20 cm and 20–40 cm soil depths and was employed to analyze the
spatial and temporal changes in soil salinity in Bachu County for 2002, 2012, and 2022.
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Figure 6. Comparison of predicted and measured soil salinity values for the four models at the
20–40 cm depth.

3.3. Spatial and Temporal Variability of Salinization in Bachu County

Soil salinization generally affects ecologically fragile and sensitive regions in inland
arid areas. Previous research has investigated the correlation between ecological function
reserves and changes in soil salinization [65]. We identified a correlation between the spatial
distribution of soil salinization changes and the boundaries of ecological functional areas.
This relationship can be attributed to the similarity in factors used to delineate ecological
functional areas and predict soil salinization land classification. Thus, to clearly identify
changes in soil salinization, we incorporate our results into the ecological functional area
map of Bachu County. Figure 7 provides a detailed depiction of these changes.
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3.3.1. Analysis of Spatial and Temporal Variations at the 0–20 cm Depth

We employed the Random Forest model (RFM) to estimate the soil salinity content of
the study area at specific dates (April 2022, April 2012, and April 2002. The results were
then used to determine the areas of different salinity types. Figure 8 reports a general
improvement in soil salinity within the SSC (0–20 cm) depth from 2002 to 2022. The non-
saline soil area decreased by 48.666% from 12,107.73 km2 to 6215.42 km2. Conversely,
heavily salted soils decreased by 63.716% from 3735.72 km2 to 1355.45 km2, while saline
soils increased significantly from 142.36 km2 to 2068.63 km2, denoting a rise of 1352.942%.
The salinity was observed to vary across the years. This may be attributed to the increase
in rainfall from year to year and the movement of salts to deeper layers of the soil. The
increase in irrigation from human activities, the construction of drainage systems, and the
introduction of soil conservation policies may play a role in the variation in salinity.

Table 7 reveals notable changes between 2002 and 2012, where non-saline soils con-
verted to weakly saline, moderately saline, strongly saline, and saline soils, covering areas
of 178.93 km2, 2586.03 km2, 355.94 km2, and 207.64 km2, respectively. These conversions
predominantly occurred within ecological function areas, particularly in the oasis agri-
culture and desert riparian forest protection zones of the Yarkand River Plain, primarily
extending toward the Tian grasslands on the southern mountain slopes. Weakly saline soils
underwent conversions of 437.08 km2, 200.6 km2, 33.61 km2, and 40.24 km2 to non-saline,
moderately saline, strongly saline, and saline soils, respectively. The majority of these
changes occurred within the ecological function areas of oasis agriculture and desert ripar-
ian forest protection in the Yarkand River Plain, particularly targeting areas with a more
delicate ecological environment. Strongly saline soils were converted into 316.087 km2,
84.89 km2, 2308.85 km2, and 386.43 km2 of non-saline, weakly saline, moderately saline,
and saline soils, respectively. The majority of these transformations occurred within the
ecologically sensitive areas of the Kashgar delta oasis, particularly affecting agricultural
salinization, notably extending to the grasslands on the southern slopes of the Tianshan
Mountains. Saline soils were converted to non-saline soils, weakly saline soils, moderately
saline soils, and strongly saline soils with areas of 27.18 km2, 0.64 km2, 95.68 km2, and
11.89 km2, respectively. Most of these conversions occurred in the sensitive ecological
function areas of the Kashgar delta oasis for agricultural salinization and the sensitive
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ecological function areas of the desert steppe for erosion in the western part of the southern
slope of the Tianshan Mountains, with specific transfers to the more sensitive ecological
environment of the grassland area on the south slope of Tianshan Mountain. Thus, fragile
ecosystems are an influencing factor in the deepening soil salinization phenomenon. This
may be linked to the reduction in vegetation cover, loss of biodiversity, and destruction of
the soil protective layer associated with fragile ecosystems, thus increasing the risk of soil
salt accumulation.

Agriculture 2024, 14, x FOR PEER REVIEW 14 of 25 
 

 

with a more delicate ecological environment. Strongly saline soils were converted into 
316.087 km2, 84.89 km2, 2308.85 km2, and 386.43 km2 of non-saline, weakly saline, mod-
erately saline, and saline soils, respectively. The majority of these transformations oc-
curred within the ecologically sensitive areas of the Kashgar delta oasis, particularly af-
fecting agricultural salinization, notably extending to the grasslands on the southern 
slopes of the Tianshan Mountains. Saline soils were converted to non-saline soils, weakly 
saline soils, moderately saline soils, and strongly saline soils with areas of 27.18 km2, 0.64 
km2, 95.68 km2, and 11.89 km2, respectively. Most of these conversions occurred in the 
sensitive ecological function areas of the Kashgar delta oasis for agricultural salinization 
and the sensitive ecological function areas of the desert steppe for erosion in the western 
part of the southern slope of the Tianshan Mountains, with specific transfers to the more 
sensitive ecological environment of the grassland area on the south slope of Tianshan 
Mountain. Thus, fragile ecosystems are an influencing factor in the deepening soil sali-
nization phenomenon. This may be linked to the reduction in vegetation cover, loss of 
biodiversity, and destruction of the soil protective layer associated with fragile ecosys-
tems, thus increasing the risk of soil salt accumulation. 

 
Figure 8. Areas of different soil salinization types at the 0–20 cm depth for 2002–2022. 

Table 8 illustrates the transformation of non-saline soils into weakly saline soils, 
moderately saline soils, strongly saline soils, and saline soils between 2012 and 2022, 
with conversion areas of 3541.94 km2, 146.98 km2, 62.48 km2, and 141.75 km2, respective-
ly. The majority of these conversions occurred within the ecological functional area of 
the western flow desert landscape of the Taklamakan Desert, particularly toward the de-
sert boundary. Weakly saline soils were converted into 218.78 km2, 161.08 km2, 77.74 km2, 
and 13.73 km2 of non-saline soils, moderately saline soils, strongly saline soils, and saline 
soils, respectively. The majority of these conversions occurred within the ecological func-
tional areas of oasis agriculture in the Yarkand River Plain and the protection of riparian 
forests in the desert. More specifically, they were concentrated to the west of the Tarim 
Basin and the desert in the north. Moderately saline soils were converted into 789.58 
km2, 2690.16 km2, 580.86 km2, and 1228.03 km2 of non-saline soils, weakly saline soils, 
strongly saline soils, and saline soils, respectively. The majority of these conversions oc-
curred within the ecological functional areas of Yarkant River Plain Oasis Agriculture 

12,107.73

9736.91

6215.42

962.960

732.880 7741.58

1299.88
5597.38

867.780

3735.72
1255.39

1355.45

142.380 926.310
2068.63

2002 2012 2022
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

 Salted soil
 Highly saline soil
 Medium saline soil
 Weakly saline soil
 Non saline soil

A
re

a 
of

 so
il 

sa
lin

iz
at

io
n 

ty
pe

 (k
m

²)

Figure 8. Areas of different soil salinization types at the 0–20 cm depth for 2002–2022.

Table 8 illustrates the transformation of non-saline soils into weakly saline soils,
moderately saline soils, strongly saline soils, and saline soils between 2012 and 2022, with
conversion areas of 3541.94 km2, 146.98 km2, 62.48 km2, and 141.75 km2, respectively.
The majority of these conversions occurred within the ecological functional area of the
western flow desert landscape of the Taklamakan Desert, particularly toward the desert
boundary. Weakly saline soils were converted into 218.78 km2, 161.08 km2, 77.74 km2, and
13.73 km2 of non-saline soils, moderately saline soils, strongly saline soils, and saline soils,
respectively. The majority of these conversions occurred within the ecological functional
areas of oasis agriculture in the Yarkand River Plain and the protection of riparian forests
in the desert. More specifically, they were concentrated to the west of the Tarim Basin
and the desert in the north. Moderately saline soils were converted into 789.58 km2,
2690.16 km2, 580.86 km2, and 1228.03 km2 of non-saline soils, weakly saline soils, strongly
saline soils, and saline soils, respectively. The majority of these conversions occurred
within the ecological functional areas of Yarkant River Plain Oasis Agriculture and Desert
Riparian Forest Conservation, particularly in farmland adjacent to the desert. Strongly
saline soils were transformed into non-saline, weakly saline, moderately saline, and saline
soils with areas of 241.46 km2, 168.14 km2, 99.42 km2, and 470.35 km2, respectively. Most
of these conversions occurred in the sensitive ecological functioning area of agricultural
salinization in the Kashgar delta oasis, toward the farmland area boundaries close to
the desert. Saline soils underwent conversions into non-saline soils, weakly saline soils,
moderately saline soils, and strongly saline soils, covering areas of 121.84 km2, 79.79 km2,
151.54 km2, and 358.35 km2, respectively. The majority of these transformations occurred
within the sensitive ecological function areas of agricultural salinization in the Kashgar
delta oasis and the ecological function area of the western flowing desert landscape of the
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Taklamakan Desert. The results reveal that desertification contributes significantly to soil
salinization, thus exacerbating its detrimental effects.

Table 7. Transfer matrix of soil salinity types at 0–20 cm depth for 2002–2012.

Soil Salinity Class 2012 Non-Saline
Soil

2012 Weakly
Saline Soil

2012 Moderately
Saline Soils

2012 Highly
Saline Soil 2012 Salted Soil

2002 non-saline soil 8779.19 km2 178.93 km2 2586.03 km2 355.94 km2 207.64 km2

2002 weakly saline soil 437.08 km2 251.43 km2 200.60 km2 33.61 km2 40.24 km2

2002 moderately saline soil 167.78 km2 226.38 km2 445.12 km2 175.19 km2 285.40 km2

2002 highly saline soil 316.09 km2 84.89 km2 2308.85 km2 639.46 km2 386.43 km2

2002 salted soil 27.18 km2 0.64 km2 95.68 km2 11.89 km2 6.99 km2

Table 8. Transfer matrix of soil salinity types at the depth of 0–20 cm for 2012–2022.

Soil Salinity Class 2022 Non-Saline
Soil

2022 Weakly
Saline Soil

2022 Moderately
Saline Soil

2022 Highly
Saline Soil 2022 Salted Soil

2012 non-saline soil 5843.76 km2 3541.94 km2 146.98 km2 62.48 km2 141.75 km2

2012 weakly saline soil 218.78 km2 261.55 km2 161.08 km2 77.74 km2 13.73 km2

2012 moderately saline soils 789.58 km2 2690.16 km2 308.75 km2 580.86 km2 1228.03 km2

2012 highly saline soil 241.46 km2 168.14 km2 99.42 km2 276.02 km2 470.35 km2

2012 salted soil 121.84 km2 79.79 km2 151.54 km2 358.35 km2 214.78 km2

Figures 9 and 10 shows that from 2002 to 2012, the main direction of the transfer of
non-saline soils and strongly salinized soils was moderately salinized soils. Moreover, from
2012 to 2022, the main direction of the transfer of moderately salinized soils was weakly
salinized soils. This change may be affected by several factors. For example, changes in
precipitation may alter the distribution of soil salts, which consequently affects the transfer
between salinized soil types. Changes in land use and management practices may also
influence the distribution of soil salts. In addition, the upgrading of irrigation and drainage
systems due to changes in human activities, policy improvements, and tendencies may
impact soil salinity transfer. Although some areas may experience increased salinization,
the observed transfer trends generally suggest an improvement in salinity.
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3.3.2. Analysis of Spatial and Temporal Variations at the 20–40 cm Depth

Figure 11 reveals a general increase in soil salinization within the SSC (20–40 cm) depth
from 2002 to 2022, accompanied by a significant reduction in the area of non-saline soil from
10,657.31 km2 to 207.59 km2. This denotes a decline of 98.052%. Despite a notable decrease
of 54.746% in highly salinized soil from 5060 km2 to 2289.83 km2, there is a considerable
rise in saline soils by 1715.145% from 288.90 km2 to 5243.88 km2. Thus, the prediction map
depicts an overall increase in soil salinization at the SSC (20–40 cm) depth.

Table 9 shows that between 2002 and 2012, non-saline soils transformed into weakly
saline soils (136.01 km2), moderately saline soils (1377.66 km2), strongly saline soils
(1106.79 km2), and saline soils (412.99 km2), predominantly occurring in the ecological
functional areas of oasis agriculture and desert riparian forest protection in the Yarkand
River Plain. Notably, the shift toward the reservoir is observed primarily in areas of low hu-
man activity. Weakly saline soils underwent conversions totaling 1186.64 km2, 127.25 km2,
116.12 km2, and 12.19 km2 to non-saline soils, moderately saline soils, strongly saline soils,
and saline soils, respectively. The majority of these conversions occurred within the ecolog-
ical functional areas of oasis agriculture and desert riparian forest protection in the Yarkant
River Plain. Moderately saline soils were converted to 373.05 km2, 200.29 km2, 31.24 km2,
and 40.11 km2 of non-saline soils, weakly saline soils, strongly saline soils, and saline
soils, respectively. The majority of these transformations occurred within the ecological
functional areas of oasis agriculture in the Yarkand River Plain and the conservation zones
of desert riparian forests, alongside the ecological functional area of the Western Mobile
Desert Landscape in the Taklamakan Desert. Strongly saline soils underwent conversions
to non-saline soils, weakly saline soils, moderately saline soils, and saline soils, covering
areas of 529.88 km2, 349.18 km2, 2031.07 km2, and 1135.41 km2, respectively. The majority
of these transformations occurred within the environmentally delicate regions affected by
desert steppe erosion on the western part of the southern slope of the Tianshan Mountains,
particularly in the ecologically sensitive and sparsely populated steppe areas on the south-
ern slope of the Tianshan Mountains. Saline soils underwent conversions to non-saline
soils, weakly saline soils, moderately saline soils, and strongly saline soils, covering areas
of 49.47 km2, 1.26 km2, 130.19 km2, and 85.04 km2, respectively. The majority of these
transformations occurred within the agro-salinity-sensitive eco-functional zones of the
Kashmir Delta oasis, particularly targeting the agro-ecological zones with higher anthro-
pogenic activities. The results indicate that soil salinization occurs frequently in areas of
human activity and varies with the type of activity, including irrigation, land reclamation,
overgrazing, and fertilizer and pesticide use. These activities lead to the accumulation and
build-up of salts in the soil, which in turn exacerbate the degree of soil salinization.
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Table 9. Transfer matrix of soil salinity types at the 20–40 cm depth for 2002–2012.

Soil Salinity Class 2012 Non-Saline
Soil

2012 Weakly
Saline Soil

2012 Moderately
Saline Soils

2012 Highly
Saline Soil 2012 Salted Soil

2002 non-saline soil 7623.87 km2 136.01 km2 1377.66 km2 1106.79 km2 412.99 km2

2002 weakly saline soil 1186.64 km2 19.45 km2 127.25 km2 116.12 km2 12.19 km2

2002 moderately saline soils 373.05 km2 200.29 km2 136.03 km2 31.24 km2 40.11 km2

2002 highly saline soil 529.88 km2 349.18 km2 2031.07 km2 1014.47 km2 1135.41 km2

2002 salted soil 49.47 km2 1.26 km2 130.19 km2 85.04 km2 22.94 km2
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Figure 11. Areas of different soil salinization types at the 20–40 cm depth for 2002–2022.

Table 10 reveals substantial transformations of non-saline soils into weakly saline
soils (7245.48 km2), moderately saline soils (223.38 km2), strongly saline soils (353.55 km2)
and saline soils (1771.51 km2) between 2012 and 2022. These conversions predominantly
occurred within the ecological functional areas of oasis agriculture and desert riparian
forest protection in the Yarkant River Plain and the Western Taklamakan Desert Mobile
Desert Landscape Ecological Functional Area. Notably, these changes in soil often occurred
in regions with limited human intervention, such as the desert in the northern Tarim Basin.
Weakly saline soils were converted to 40.78 km2, 230.27 km2, 45.22 km2, and 5.26 km2 of
non-saline soils, moderately saline soils, strongly saline soils, and saline soils, respectively.
These exchanges predominantly occurred within the ecological functional areas of Yarkand
River Plain oasis agriculture and desert riparian forest protection. Moderately saline soils
underwent conversions of 22.93 km2, 454.41 km2, 392.75 km2, and 2462.10 km2 to non-saline
soils, weakly saline soils, strongly saline soils, and saline soils, respectively. The majority of
these changes occurred within the ecological function areas of oasis agriculture and desert
riparian forest protection in the Yarkand River Plain, as well as the sensitive ecological
function areas affected by desert steppe erosion on the western part of the southern slope of
the Tianshan Mountains. Strongly saline soils were converted into non-saline soils, weakly
saline soils, moderately saline soils, and saline soils, covering areas of 3.35 km2, 81.27 km2,
599.63 km2, and 804.23 km2, respectively. The majority of these conversions occurred
in the Kashgar delta oasis, a sensitive ecological area prone to agricultural salinization,
in areas affected by desert steppe soil erosion on the western part of the southern slope
of the Tianshan Mountains, and in the western part of the Taklamakan Desert Mobile
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Desert Landscape Ecological Functional Area. In particular, there was a notable transfer
to the grassland area on the southern slope of the Tianshan Mountains, characterized by
lower human activity levels. Saline soils underwent conversions to non-saline, weakly
saline, moderately saline, and strongly saline soils, covering areas of 5.31 km2, 118.93 km2,
638.33 km2, and 653.48 km2, respectively. The majority of these conversions occurred
in the ecologically sensitive areas of the Kashgar delta oasis, affected by agricultural
salinization, and in the ecological function area of the western mobile desert landscape
of the Taklamakan Desert. The above analysis highlights the exacerbation of salinization
hazards in mountainous and Gobi areas over time, despite minimal human activity.

Table 10. Transfer matrix of soil salinity types at the 20–40 cm depths for 2012–2022.

Soil Salinity Class 2022 Non-Saline
Soil

2022 Weakly
Saline Soil

2022 Moderately
Saline Soils

2022 Highly
Saline Soil 2022 Salted Soil

2012 non-saline soil 135.22 km2 7245.48 km2 223.38 km2 353.55 km2 1771.51 km2

2012 weakly saline soil 40.78 km2 379.57 km2 230.27 km2 45.22 km2 5.26 km2

2012 moderately saline soils 22.93 km2 454.47 km2 464.74 km2 392.75 km2 2462.10 km2

2012 highly saline soil 3.35 km2 81.27 km2 599.63 km2 844.82 km2 804.23 km2

2012 salted soil 5.31 km2 118.93 km2 638.33 km2 653.48 km2 200.79 km2

Figures 12 and 13 depicts the transfer of soil salinity types in the SSC (20–40 cm) depth,
revealing the dominant trends in soil transfer dynamics from 2002 to 2012. Non-saline soils
generally transitioned to moderately saline soils, while weakly saline soils shifted toward
non-saline soils. Moderately saline soils, in turn, transitioned to weakly saline soils. In
addition, highly saline soils mainly transformed into moderately saline soils and saline
soils, with saline soils exhibiting a primary transition to moderately saline soils. Conversely,
between 2012 and 2022, non-saline and moderately saline soils primarily transitioned to
saline soils. Similarly, highly saline soils predominantly transformed into saline soils. This
indicates that while there was a reduction in deep-soil salinity before 2012, deep-soil salinity
intensified, exacerbating overall salinization by 2022.
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3.4. Validation of Model Prediction Classification Errors

To validate the accuracy of the soil salinity model classification, we compared the
50 validation sites sampled in 2022 with the soil salinity classification map. This comparison
revealed discrepancies in soil salinity types at five sample sites when compared to the
measured salinity sample sites: The dataset comprises 10 samples from each soil type (non-
saline, weakly saline, moderately saline, highly saline, and saline soils). These 50 measured
sample points were overlaid onto the soil salinity classification map to assess the accuracy
of soil salinity categorization. Verification confirms the consistency between the model
classifications and actual soil salinity. After comparing the four models, it was observed
that the RF model exhibited the highest predictive performance in the radargrams at SSC
(0–20 cm) and SSC (20–40 cm). PLS demonstrated a slightly lower performance but still
maintained an accuracy above 50%, while CART and SVM exhibited inferior performances.
Moreover, the classifications were generally more accurate for SSC (0–20 cm) compared to
SSC (20–40 cm). The predictive maps derived at the two depths exhibited higher accuracy
in predicting non-saline and weakly saline soils and a lower accuracy in predicting saline
soils (Figure 14).
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4. Discussion

Soil salinization has become a global problem. To quickly and accurately evaluate
the impacts of soil salinization on regional ecological badlands and agricultural farming,
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this study proposes a model to monitor the changes and transfer of soil-salinized land
in Bachu County based on the GEE cloud computing platform. The proposed model
combines numerous indices and machine learning models. The measured soil salinization
is correlated with six types of indices related to soil salinization and six optimal factors are
selected. Four predictive regression models were constructed by combining the six optimal
factors. After evaluating the prediction accuracy and error of the models, the optimal model
RF was selected to predict the change of soil salinization at different depths, and the data
from three years were extracted to analyze the spatial and temporal changes of salinization
in Bachu County over the past 20 years. The SVM model is unable to adequately capture
the variability of soil salinity due to the complex relationship between the data features.
The CART model may not be able to capture the complex variability patterns of soil salinity
due to its simple partitioning rule. The PLS model may not be able to adequately fit soil
salinity due to the assumed linear relationship between the data features.

4.1. Selection of Model Indices

We selected 31 factors for correlation analysis with surface soil salinity at two depths.
To prevent multicollinearity among similar indices, one index was selected from each of the
six index types. The selected indices, NDVI, SI3, RED, ELEVATION, ET, and SDI, align with
those adopted in previous research [14]. The correlation between the six indices is optimal
at the depths of SSC (0–20 cm) and SSC (20–40 cm). Among the vegetation indices, the
NDVI has the highest correlation with soil salinity. This is likely to be attributed to the high
sensitivity of the NDVI to the physiological and ecological characteristics of vegetation,
allowing it to reflect the growth status of vegetation more accurately, including the influence
of soil salinity. SI3, on the other hand, has a higher relevance among the salinity indices as it
is obtained by multiplying the reflectance of the green and red light bands. This accurately
captures the effect of soil salinity on vegetation as the green and red light bands are usually
better reflectors of vegetation growth and soil surface cover. RED has the highest correlation
with soil salinity among single bands as soil areas containing high salinity tend to be lighter
in color, while low-salinity soils are darker. The red band is typically more sensitive to color
changes in soils and therefore better able to differentiate between soils with different salinity
levels compared to other bands. ELEVATION represents the elevation of the land surface.
Topography has an important effect on the distribution of soil salts, which may explain its
strong correlation with soil salinity. ET is a composite index of the evapotranspiration of
soil moisture and the transpiration of vegetation. It is closely related to the distribution
of soil salts, which may explain its high correlation with soil salinity. The SDI is often
used to reflect the moisture status of the soil, particularly the degree of wetness or dryness
of the surface soil. Highly saline soils may lead to the rapid evaporation of soil water,
thus making the soil more susceptible to drying, which may be less relevant than other
composite indices.

4.2. Validation of the Model Accuracy and Classification Error

The model performance accuracy was higher at the SSC (0–20 cm) depth compared to
the SSC (20–40 cm) depth. The R2 values of the four models (RF, SVM, CART, and PLS) were
0.723, 0.459, 0.515, and 0.678, respectively, with the RF regression model exhibiting the high-
est performance accuracy. This is consistent with the findings of previous research [66,67].
The model error is lower for the SSC (0–20 cm) depth in the classification map, indicating
that the topsoil prediction model performs better than the deep-soil prediction model.

The RF regression model outperformed the other models in terms of accuracy at the
two depths of SSC (0–20 cm) and SSC (20–40 cm), with R2 values of 0.723 and 0.64, re-
spectively. For SSC (0–20 cm), the RF model had an RMSE of 2.604 g·kg−1 and MAE
of 1.95 g·kg−1, while for SSC (20–40 cm), the values were RMSE = 3.62 g·kg−1 and
MAE = 2.728 g·kg−1. The RF regression model exhibited the lowest error in the classi-
fication map across the two depths in the classification model. This underscores the high
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accuracy of the RF regression model, which integrates multiple indices, for the monitoring
of soil salinization.

4.3. Analysis of Spatial and Temporal Changes in Soil Salinization and Their Influencing Factors in
Bachu County

Between 2002 and 2012, there was a notable transition from non-saline and saline
soils to moderately saline soils. This shift from non-saline soils can be attributed to im-
proper irrigation practices, leading to extensive soil salinization in cultivated areas. In
addition, the fragile ecological environment exacerbated the extent of soil salinization. The
transformation of saline soils into moderately saline soils is attributed to the increased
awareness of ecological preservation and the implementation of national policies aimed at
desertification prevention and sand stabilization. Consequently, there has been a concerted
effort to remediate salinized land along the fringes of vast desert expanses.

Substantial quantities of non-saline and moderately saline soils transitioned to weakly
saline soils between 2012 and 2022. The majority of these shifts in non-saline soils were
observed in agricultural areas and the west–central mountain ranges, indicating the influ-
ence of human activities and topography on soil salinization. Salinization has also shifted
within the same area, indicating that human intervention, such as the adoption of scientific
irrigation practices and growing environmental consciousness, has somewhat mitigated
salinization. This demonstrates that human activities can have adverse and beneficial
impacts on soil salinization.

Soil salinity varied across the two depths. SCC (0–20 cm) exhibited weaker salinization
compared to SCC (20–40 cm) due to the downward leaching of salts from the topsoil in
irrigated farmlands. In terms of accuracy at different depths, the correlation between
water-soluble salts and numerous indices (e.g., spectral indices) decreased as the sampling
depth increased. This is due to the relatively low sensitivity of the bottom layer of the
soil to spectral bands, as remotely sensed spectral information can only represent surface
information, which is in line with the results of previous research [68].

4.4. Future Prospects and Challenges

We performed spatio-temporal analysis for three periods and at two depths, making
great progress in the research field. However, this study still has some shortcomings. For
example, although the spatio-temporal analysis was combined with ecological reserves,
we did not explore the impacts of soil salinization on land use types. In addition, due to
the limited sample point data, only the area of Bachu County was studied, with a focus
on arid areas. Thus, the applicability of the model under a larger scope requires further
examination, with the inclusion of other areas. Moreover, GEE-based modeling is low-cost,
simple, and improves the monitoring speed compared with other satellite remote sensing
monitoring methods. However, its accuracy may be lower in small-scale areas compared
with accurate low-altitude remote sensing approaches. The presence of cloud cover also
limits the monitoring of the GEE remote sensing platform, while low-altitude remote
sensing platforms such as aerial vehicles or unmanned aerial vehicles (UAVs) do not have
this limitation. Moreover, we did not test the model accuracy for different years at the same
depth, nor did we test the model stability. The GEE platform also lacks several common
machine learning algorithms. For example, BP neural networks are robust predictive
regression models, yet we were unable to find related code and data on GEE.

5. Conclusions

In this study, the RF, SVM, CART, and PLS models were used to assess the accuracy
of machine learning and empirical models. These models were combined with various
indices to develop two models for estimating soil salinity at different depths. The model
accuracy was subsequently validated. Based on the results, the following conclusions
were determined:
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NDVI, SI3, RED, ELEVATION, ET, and SDI exhibited the highest correlations with
soil salinity measurements. The four models were ranked in terms of accuracy as follows:
RF > PLS > CART > SVM. Although all four models exhibited good accuracy, the RF model
was more accurate, while the PLS model was more stable at the two depths.

The accuracy of the models was affected by the soil depth, as evidenced by the
correlation between various indicators and soil salinity measurements at different depths.
Categorical error plot analysis revealed that the surface soil at the SCC (0–20 cm) depth
had a stronger correlation with the indicators, resulting in a better model performance.

The prediction model effectively captured the spatial and temporal changes in soil
salinization in Bachu County. The high-salinity areas were mainly distributed in
anthropogenic-intensive areas and mountainous areas. The salinization degree of the
surface (0–20 cm) and deep (20–40 cm) soils decreased between 2002 and 2012. During
2012–2022, soil salinization in the surface layer (0–20 cm) of sandy land decreased, while
soil salinization in the deep layer (20–40 cm) of sandy land increased.
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