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Abstract: In order to rapidly breed high-quality varieties, an increasing number of plant researchers
have identified the functions of a large number of genes, but there is a serious lack of research on
plants’ phenotypic traits. This severely hampers the breeding process and exacerbates the dual
challenges of scarce resources and resource development and utilization. Currently, research on crop
phenotyping has gradually transitioned from traditional methods to HTP technologies, highlighting
the high regard scientists have for these technologies. It is well known that different crops’ phenotypic
traits exhibit certain differences. Therefore, in rapidly acquiring phenotypic data and efficiently
extracting key information from massive datasets is precisely where HTP technologies play a crucial
role in agricultural development. The core content of this article, starting from the perspective
of crop phenomics, summarizes the current research status of HTP technology, both domestically
and internationally; the application of HTP technology in above-ground and underground parts
of crops; and its integration with precision agriculture implementation and multi-omics research.
Finally, the bottleneck and countermeasures of HTP technology in the current agricultural context are
proposed in order to provide a new method for phenotype research. HTP technologies dynamically
monitor plant growth conditions with multi-scale, comprehensive, and automated assessments. This
enables a more effective exploration of the intrinsic “genotype-phenotype-environment” relationships,
unveiling the mechanisms behind specific biological traits. In doing so, these technologies support
the improvement and evolution of superior varieties.

Keywords: plant phenotype; digital plants; high throughput; deep learning

1. Introduction

Early measurements related to crops’ phenotypic features were initially established
using traditional methods, which, while relatively straightforward, were prone to signifi-
cant errors. Moreover, these methods demanded significant human effort and time, often
influenced by subjective factors. Given the rapid development of genomics, proteomics,
metabolomics, bioinformatics, and big data computing, relying solely on traditional meth-
ods for studying plants’ phenotypic traits is no longer sufficient for extracting data from
the current vast datasets, which is detrimental to future agricultural development. In recent
years, the emergence of HTP platforms has brought forth advantages such as efficiency,
non-destructiveness, and full automation. Moreover, the phenotypic data obtained through
high-throughput techniques encompass new features that are unattainable through tra-
ditional research methods. These features include convex hull area, convex hull vertices,
compactness, grayscale values, top/side projection areas, top/side contour areas, and more.
They offer additional possibilities for exploring the “genotype-phenotype-environment”
relationships. HTP technology is expected to gradually replace traditional methods in the
near future. Therefore, in order to achieve the efficient acquisition of crop phenotype data,
it is particularly important to build a HTP technology platform.
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This paper focuses on the research of crop HTP technology. We systematically in-
troduce methods and applications related to HTP technologies, from the above-ground
to the below-ground parts of crops, while discussing practical issues and solutions. We
emphasize that the era of digital agriculture relies on analyzing crops through different
systems to rapidly obtain multi-scale crop information, enabling researchers to have a more
thorough understanding of crop growth conditions. This, in turn, facilitates the analysis of
crop productivity from various angles. Digital agriculture plays a crucial role in the future
development of agriculture, with HTP technologies serving as accelerators for breeding
and precision agriculture [1], thus accelerating the selection of better varieties.

2. Overview of Plant HTP Research

In the context of “digital plants” technology, to gain a better understanding of the
development of plant phenotypes, we collected articles on high-throughput techniques in
plant phenotyping from Web of Science. As of 2023, there are over one hundred thousand
research articles related to plant phenotyping, and the research in this field has shown
a consistent upward trend since 1999 (Figure 1a). Among the various studies on plant
phenotyping, a growing number of scholars prioritize HTP techniques. According to
statistical data, HTP research has experienced rapid growth over the past two decades and
has consistently maintained a high level of interest (Figure 1a), as evidenced by the number
of studies presenting HTP research. Crop-related research leads the way in HTP research
(Figure 1b). (The data in Figure 1 were sourced from the Web of science database, and the
keywords for the first-level inspection were “Plant phenotype”/” High throughput plant
phenotype “. The keywords for secondary retrieval were “crops”/” fruit “/” vegetable “/”
forest “/” seed “/” phenomics “/” stems “/” leaves “/” flowers “/” roots “; the search
date was set to the last 10 years.)
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Figure 1. Studies on plant phenotypes in the past 20 years. (a) Statistics on the number of published ar-
ticles on plant phenotypes and high-throughput plant phenotypes from 1999 to 2023. (b) Application
of HTP techniques in plants (left). (c) Application of HTP technology in crops (right). (d) Application
of HTP techniques to the above-ground and subsurface parts of plants.

We compiled data on the application of HTP techniques in major crops worldwide.
The data reveal that crops such as wheat, rice, and maize are more widely studied in the
field of HTP research. Following these are soybeans and cotton, while studies on crops like
sorghum, potatoes, and peanuts account for less than 3%. We speculate that the primary
reason for this phenomenon is that wheat, rice, maize, and sorghum are among the world’s
four major cereal crops, and the development of high-yield and high-quality varieties is
crucial for addressing food security issues. Research on phenotypic traits accelerates the
breeding process in these crops.

For sorghum phenotypic research, despite the tall stature of sorghum plants, existing
HTP devices are capable of meeting the real-time monitoring needs of sorghum phenotypes
throughout its entire growth period [2]. The plant architectures of dicotyledonous plants
such as soybean and cotton are more compact and intricate compared to those of mono-
cotyledonous plants. The setup of models and data accuracy for dicotyledonous plants
requires constant refinement and adjustment, significantly delaying the application of HTP
technology in dicotyledonous plants. In recent years, the application of HTP technology in
dicotyledonous plants has seen a significant increase, driven by corresponding national
policies and an increased emphasis on food security [3].

Furthermore, we also collected data on the application of HTP technology in both
above-ground and below-ground plant parts since 1999. We found that the amount
of research on above-ground parts significantly outweighs that on below-ground parts
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(Figure 1d), which aligns with the findings of Solimani F. and others [4]. Specific practical
applications and research advancements of HTP in both above-ground and below-ground
plant parts will be discussed in detail in the fourth section of this paper.

According to a survey conducted jointly by the International Plant Phenotyping
Network (IPPN), the European Plant Phenotyping Network (EPPN), and the German
Plant Phenotyping Network (DPPN), several key challenges are currently impeding the
development of plant phenomics. These challenges include field phenotyping, data man-
agement, costs, root phenotyping, abiotic stress, industry standards, technical limitations,
bioinformatics, and throughput limitations. Among these challenges, field phenotyping
is widely recognized as the most significant hurdle in plant phenotyping research and
the development of plant phenomics. This is undoubtedly linked to the complexity and
uncontrollability of field environments, which is why early HTP developments primarily
took place indoors.

Nevertheless, we believe that the development and updating of field-based HTP
platforms are essential because of their automation capabilities, enabling the real-time
monitoring of dynamic changes in plant growth in field conditions. In early 2014, the Inter-
national Crops Research Institute for the Semi-Arid Tropics (ICRISAT) officially launched
the first truly commercial high-throughput plant field phenotyping platform, the FieldScan
system, on an international scale. Currently, this platform is centered around the PlantEye
plant laser 3D scanning instrument and integrates various other sensors. It autonomously
collects plant phenotypic data around the clock in any environment, providing data of high
precision. The introduction of this system marked a significant breakthrough in overcoming
the challenge of obtaining field-based plant phenotypic data.

In general, there is increasing attention and emphasis on high-throughput plant
phenotyping research both domestically and internationally, which holds promise for
the future of agricultural development. Scientists are actively contributing to the rapid
advancement of HTP technology by continually optimizing platform designs, integrating
multiple sensors, efficiently extracting phenotypic features, enhancing data accuracy, and
updating algorithm models. These research areas will be discussed in the next section.

3. Key Technologies for Obtaining HTP Information

High-throughput plant phenotyping platforms, which come in various forms, such as
desktop, conveyor belt, autonomous, gantry, and drone-based platforms [3], are powerful
tools in the fields of plant phenomics, plant functional genomics, and modern genetic
breeding research. These platforms can be categorized into two main types based on their
applicable environments: indoor platforms and field platforms. Additionally, they carry
sensors with varying abilities to measure plant-related features, including RGB cameras,
fluorescence cameras, laser radars, hyperspectral imagers, thermal infrared imagers, and
more [5]. Previous studies have extensively applied HTP platforms to important crops such
as rice [6,7], cotton [8], wheat [9], soybeans [10], rapeseed [11], sorghum [12], maize [13],
and others.

Acquiring plant phenotypic information through HTP platforms involves three main
steps: image acquisition, feature extraction, and data processing. Based on these three
steps, we have compiled a significant body of literature and summarized it to gain a better
understanding of how to efficiently, non-destructively, and automatically acquire extensive
plant phenotypic data using HTP platforms.

3.1. Sensor Applications

The usage of sensors varies depending on the type of crop and features being measured.
We categorize the acquired images into two-dimensional and three-dimensional images. By
reviewing a substantial body of literature and summarizing information on common sensor
applications, obtained features, and image properties, we were able to compile the details
shown in Table 1. Currently, there is a relatively higher volume of research involving the
setup of various phenotyping platforms using RGB cameras mounted on carriers such as
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drones. These platforms capture crops from multiple angles, dimensions, and perspectives,
allowing for the acquisition of images at different scales. With the rapid development of
phenomics, many researchers are beginning to use multiple sensors in combination, when
economically feasible, to acquire clearer and more reliable images.

Table 1. Phenotypic information obtained using common sensors and its applications.

Imaging Technology Phenotypic Information Application Scenario References

Visible light imaging RGB images Plant height, canopy coverage,
leaf to ear ratio Field/Indoor [14–17]

Fluorescence imaging Sensitive bands Drought stress, disease
monitoring Indoor [18,19]

Three-dimensional
imaging

Depth maps, point clouds,
voxel data, grids, implicit data

Height, main stem length,
leaf area Field/Indoor [13,20–22]

Infrared imaging The continuous or discrete
spectrum of each pixel

Stress monitoring, pest
monitoring Field/Indoor [23–25]

Hyperspectral imaging Continuous or discrete Moisture monitoring, quality
monitoring, pest monitoring Field/Indoor [26–28]

Multispectral imaging Multiple bands of the
spectrum

Chlorophyll, leaf area index,
drought stress Field/Indoor [29–31]

Visible light imaging is the most widely used technology in current HTP platforms.
This is primarily because the sensors used are mainly low-cost RGB cameras that can
be employed for both 2D image and 3D date capture and analysis, resulting in images
that closely resemble human visual perception [32]. Currently, laser radars (LiDARs)
serve as the primary sensors for acquiring 3D images. Compared to visible light cameras,
LiDARs boast strong information-gathering capabilities, enabling the acquisition of more
complete and intuitive 3D images with relatively high measurement accuracy and distance
precision [33]. However, they may become inoperative in adverse weather conditions.
Fluorescence imaging is primarily used indoors since it is easily influenced by the external
light environment when gathering fluorescence parameter information. Infrared imaging
primarily captures the heat radiated outward by the target plants. In comparison to
visible light images, infrared images have lower resolutions, contrast, and signal-to-noise
ratios, resulting in blurry visual effects and a non-linear relationship with target reflectance
characteristics [34]. Nonetheless, infrared imaging excels in its ability to penetrate plant
canopies and automatically monitor the growth dynamics of plants within the canopy
under adverse conditions, with minimal sensitivity to lighting conditions [35].

In fact, both multispectral imaging and hyperspectral imaging are spectral imag-
ing technologies. Hyperspectral imaging, due to its high spectral resolution, fast speed,
lightweight, and low power consumption, can capture the brightness values of electro-
magnetic waves emitted or reflected by plants in various spectral bands, resulting in more
refined and specific spectral data. However, hyperspectral imaging technology still faces
many challenges during use, as the imaging process is significantly affected by external
lighting conditions, leading to greater uncertainty in the obtained spectra [36]. On the
other hand, multispectral imaging technology can quickly detect the spectral and radiative
information of the target, providing a continuous spectral curve for each pixel within the
imaging range using multiple channels. Therefore, it finds extensive applications in various
fields [37]. However, having too many bands often leads to issues such as high redundancy
in imaging spectral data, strong inter-band correlations, increased computational time, and
large storage space requirements.

Research has shown that the complementary use of multiple sensors can increase data
accuracy and reliability to a certain extent [38]. When integrated with wireless communica-
tion networks, it enables precise data collection within plant factories and the intelligent
control of facilities, thereby significantly improving overall efficiency. With the continuous
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advancement of image acquisition technology, we can expect to see more collaboration
among sensors in future applications of high-throughput plant phenotyping platforms.

3.2. Phenotypic Information Extraction

After obtaining the images, the next step involves image processing and the extraction
of features. This step is crucial in the process of obtaining plants’ phenotypic information,
and the quality of feature extraction directly determines the accuracy of the data. Image
processing is the primary task of feature extraction. By using advanced image segmentation
methods to remove complex backgrounds, scientists are able to preserve research objects
and prepare for relevant feature extraction.

The subsequent task of image processing involves the extraction of specific phenotypic
characteristics. The primary objective of feature extraction is to derive information with
significant biological relevance, leading to the development of specific models tailored to
the morphological structure and physiological and ecological functions of different plants.
As phenomics advances, the methods for feature extraction will become increasingly
diverse. Deep learning approaches stand out at this stage. Deep learning is a data-driven
learning approach used to construct more intricate models, including Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks
(GANs), and other model structures. CNNs have emerged as the predominant model type
for most image recognition, classification, and detection tasks [39] (Table 2). (The data in
Table 2 were sourced from the Web of science database. The keyword of the first-level
retrieval was “High throughput plant phenotype”. The keywords of secondary retrieval
were “deep learning”/” convolutional neural network “/” recurrent neural network “/”
generative adversarial network “.)

Table 2. Statistics of published articles on common deep learning algorithms.

Model Number of Study Ratio (%)

Deep learning 5967 -
CNN 3905 65.44
RNN 389 6.52
GAN 230 3.85

Others 1443 24.18
Note: CNN: Convolutional Neural Network; RNN: Recurrent Neural Network; GAN: Generative Adversarial
Network; Others: other deep learning algorithms. Percentage of each project = Number of published articles for
the project/Number of deep learning published articles × 100%.

The applications of deep learning method are widespread both domestically and
internationally, and remarkable achievements have been made, mainly focusing on the
extraction of three major features: morphology, color, and texture. For example, achieve-
ments have been made in the segmentation of crop canopy structures [40], extraction of
leaf area [41], seed counting [42–44], and monitoring of plant growth conditions [45].

In recent years, 3D reconstruction technology has been widely applied in various
fields, including gaming, filmmaking, clinical settings, autonomous driving, and virtual
reality. Among them, research on image-based 3D reconstruction methods has been rapidly
advancing due to their non-destructive nature, repeatability, low cost, practicality, and high
accuracy, which are highly valued by researchers.

Currently, the field of 3D reconstruction uses five different types of picture data:
implicit data, voxel data, grids, point clouds, and depth maps [46–48]. Each type has
its unique reconstruction methods, and researchers utilize these methods to acquire the
desired phenotypic information. In Figure 2, we present a summary of image-based 3D
reconstruction methods categorized into two types based on the reconstruction principles:
traditional multi-view geometry-based 3D reconstruction algorithms and deep learning-
based 3D reconstruction algorithms. Traditional 3D reconstruction algorithms typically
rely on low-level features in images, such as keypoints and lines. However, they may
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face challenges in areas with single textures, unclear gradient changes, and complex and
variable conditions, leading to issues such as a lack of adaptability and generalization.
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While traditional 3D reconstruction algorithms continue to play a dominant role in the
field of 3D phenotypic research, an increasing number of scientists are transitioning from
traditional methods to primarily adopting deep learning approaches. They are integrating
deep learning reconstruction algorithms with traditional 3D reconstruction algorithms,
leveraging the complementary strengths of both to provide new insights for optimizing
the performance of 3D reconstruction algorithms. For instance, Xu et al. [49] captured
multi-view images of individual wheat plants, resulting in a dataset of 1374 images. They
used the Structure from Motion (SfM) method for 3D point cloud-based wheat plant recon-
struction, employing a global calculation mode for one-time image processing to enhance
efficiency while obtaining better 3D models. Furthermore, they conducted wheat plant
point cloud surface reconstruction based on an improved Binary Partitioning Algorithm
(BPA), modifying the method for identifying seed triangles and incorporating pertinent
verification functions to enable the successful surface reconstruction of wheat point cloud
models. Goodfellow et al. [50] introduced an Generative Adversarial Network structure
consisting of a generator and a discriminator. Through adversarial training and optimiza-
tion, the network achieved remarkable 3D reconstruction image results. The ReC-MVSNet
algorithm proposed by Liu et al. [51] integrates phenotypic features into three-dimensional
point cloud reconstruction grids, improving the accuracy by 43.3% compared to traditional
MVS models.

Generally, for 3D reconstruction, deep learning methods such as CNNs, RNNs, and
GNNs are commonly applied [52]. The choice of deep learning network frameworks can
have a substantial impact on the development of 3D reconstruction, with different types
being tailored to specific reconstruction tasks.

As HTP technology has advanced, images have remained the primary data format
for plant phenotypic research. Feature extraction methods are predominantly rooted in
deep learning [4]. Leveraging its robust feature extraction and modeling capabilities,
deep learning has introduced innovative approaches for extracting crucial phenotypic
information.
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3.3. Phenotypic Big Data Processing

In contemporary society, phenotypic data are experiencing an astonishing surge in
interest. Unlike traditional data, HTP data are characterized by their diverse and complex
natures. These data are often unordered, randomly sized, and analyzed using varying
methods. In contrast to traditional data processing methods, the analysis of HTP data
imposes even more stringent requirements on data access, processing, and analysis. Con-
sequently, efficiently handling massive data has become one of the crucial tasks in the
development of HTP technology.

In the face of vast amounts of phenotype data, big data technology emerges as a
comprehensive solution for data storage and processing. It is well suited to handling and
analyzing high-capacity data, facilitating efficient data storage management, and enabling
data sharing across different systems. Common big data processing technologies include
MapReduce, Hadoop, and Spark. With the widespread adoption of HTP technology,
combined with the complexity of the external environment and the genetic diversity of
species, a significant amount of data exhibit distinct characteristics known as the 3Vs (i.e.,
volume, variety, and velocity) and the 3Hs (i.e., high dimensionality, high complexity, and
high uncertainty) [3].

Priyadharshini et al. [53] utilized the LeNet network to classify the severity of corn leaf
diseases, achieving a high model accuracy of 97.89%. Mehedi Hasan et al. [54] employed a
region-based Convolutional Neural Network (R-CNN) to accurately identify and count
wheat spikes, subsequently using the same network architecture to build four models,
all of which effectively predicted spike yield with an average detection accuracy ranging
from 88% to 94%. Li et al. used a Unet neural network to segment soybean images after
performing RGB imaging on 208 soybean materials. The segmentation impact was good,
and the values of IOU, PA, and Recall could approach 98%, 99%, and 98%, respectively [55].

At present, crop phenotyping big data technologies and equipment are undergoing
rapid development. This development is fueled by the demands of agricultural research
and production and is instrumental for advancing the crop phenotyping industry [56]. The
ongoing evolution of the phenotype feature extraction process has significantly propelled
the advancement of high-throughput plant phenotyping research. This evolution funda-
mentally addresses challenges associated with traditional techniques, such as challenges
pertaining to labor intensiveness and time consumption. Moreover, it enables the rapid
extraction of valuable information from massive phenotype data, holding immeasurable
potential for the future development of agriculture.

4. Application of Crop HTP Technology

In recent years, HTP technologies have primarily focused on various morphological,
textural, and color features of plants, with relatively less attention being paid to physiologi-
cal and biochemical indicators. Currently, the determination of plants’ physiological and
biochemical indicators still relies mainly on traditional methods. Scientists from various
fields should pay more attention to the study of physiological and biochemical mechanisms
and integrate plant morphology with physiological and biochemical characteristics. This
interdisciplinary approach will accelerate the breeding process. Research on the monitoring
of the growth and development of above-ground and below-ground parts of crops through
HTP technologies has gained increasing attention. Detailed discussions on these topics are
provided in Sections 4.1.1 and 4.1.2 of this paper.

4.1. Monitoring the Growth and Development of Crops
4.1.1. Crops’ Above-Ground Portion

The above-ground portion of plants produces assimilates through photosynthesis for
the plant’s absorption and utilization, forming the material basis for plant growth and
development. The quality of the above-ground plant canopy structure not only determines
the efficiency of solar energy utilization but also affects yield stability and cultivation tech-
niques. As a result, articles on crop canopy structures have been increasingly emphasized,
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whether in the study of individual plant morphology or population structure. In HTP
research on crops, features such as plant height, canopy structure, leaf area, and vegetation
indices have garnered significant attention from numerous researchers. Therefore, this
article primarily elaborates on the research progress regarding the use of HTP technology
for determining these four features.

In the past, the acquisition of stem phenotype information in plants primarily focused
on features such as plant height, stem diameter, internode number, and internode length.
Research has shown that plant height is a key quantitative descriptor of dynamic growth
and development differences among crop varieties. It is also considered a core phenotypic
feature in the field of crop breeding, with a significant relationship to the construction of
ideal plant architectures and crop yield components [57].

Sun et al., used a tractor-mounted laser scanner to scan cotton plant heights, achieving
an R-squared value of 0.98 [21]. The same team [22] employed high-resolution 3D ground-
based laser scanning to detect cotton main stems and nodes. This method accurately
measured cotton main stem length with an R-squared value of 0.94. In order to determine
the phenotypic attributes of a single 3D maize plant, Ao et al. [58] combined a laser radar
with the PointCNN model to obtain 3D phenotypic traits related to individual maize plants,
achieving an R2 > 0.99 between the measured and actual values of plant height.

In summary, the use of high-throughput 3D phenotyping technology for measuring
plant height has yielded high coefficients of determination. This suggests that 3D pheno-
typing technology enables the acquisition of more accurate phenotypic information, and its
establishment will play a crucial role in the future advancement of HTP technologies.

The crown structure of plants essentially encompasses the spatial arrangement of
the above-ground part of plants. Research has demonstrated that the crown structure
better reflects the true structural characteristics of crops [59] and is significantly positively
correlated with crop yield. In recent years, scientists have concentrated on the study of
crops’ crown structure using different sensors and models, primarily focusing on two
features: crown height [60] and crown coverage [61].

Casagrande et al. [16] used a drone-mounted RGB camera to capture field images and
calculated crown coverage for soybeans during the V3-R1 stage based on the ratio of green
pixels for each experimental unit. The results showed that, as the soybean growth stage
progressed, soybean yield was positively correlated with canopy photosynthesis, with a
correlation of 0.76 at the V9-R1 stage. Borra-Serrano et al. [14], addressed the challenge
of filling high-resolution objective data gaps in the growth stages of soybeans in a time-
series manner, achieving an accuracy of over 90% for soybean canopy height compared to
traditional methods.

Currently, the exploration of features related to canopy structure is ongoing. While
there are fewer features associated with canopy structure compared to individual plant
structures, their importance remains significant. There is a growing belief among scientists
that population structure better reflects the inherent growth dynamics of plants, emphasiz-
ing the need for research on canopy structure. This research plays a vital role in the pursuit
of ideal plant architectures across various crop types.

Traditionally, vegetation indices have been crucial indicators for measuring population
coverage. Conventional canopy analysis methods rely on manual, handheld measurements
taken at the observation site. While this traditional approach is suitable for small-scale
and infrequent measurements, it becomes insufficient when larger spatial areas and higher
temporal frequencies of monitoring are required.

The vegetation index measures the state of vegetation development under specific
circumstances by comparing the reflection of vegetation in visible and near-infrared bands
with the soil background. The variation in vegetation indices is controlled by the interaction
between its own genotype and the environment [62]. Alexander J. Lindsey et al. [63] used
the Normalized Difference Vegetation Index (NDVI) to assess soybean canopy senescence
and determined the observed maturity of each variety, thus calculating the maturity period
of soybeans.
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Currently, both domestic and international research is increasingly utilizing HTP
technologies for the real-time monitoring of crop vegetation indices. For instance, Guo
et al. [64] used a 3D laser sensor (Planteye F500) to identify and monitor normalized vegeta-
tion indices at multiple time points in maize under normal and saline conditions, accurately
quantifying the morphological traits of maize seedlings in different growth environments.
Christopher et al. [65] developed a vegetation spectrometer (TSWIFT) capable of contin-
uously and automatically monitoring hyperspectral reflectance, enabling the assessment
of changes in soybean structure and function at high spatiotemporal resolutions, thus
achieving HTP values.

The Leaf Area Index (LAI) is a crucial quantitative feature for describing vegetation,
being closely related to photosynthesis, respiration, and transpiration processes. In recent
decades, high-throughput techniques have been used to measure the LAI of crops such
as maize [66], cotton [67], and rapeseed [68]. Zheng et al. [69] developed a new unified
linearized vector radiative transfer model (UNL-VRTM) based on multispectral data. The
forward modeling of the model has a strong coupling between vegetation canopy and
the atmospheric environment, and the simulation process is reasonable, which means
it can support the synchronous detection of the LAI and Cab. In 2021, Feng Xiao and
colleagues introduced a new feature called the “leaf panicle ratio” to describe the new light
interception characteristics of hybrid rice based on the Leaf Area Index [17].

4.1.2. Crops’ Underground Components

The underground part of plants, i.e., the root system, absorbs mineral elements and
water from the soil to meet the needs of above-ground processes such as transpiration and
various physiological functions. A robust and well-developed root system is the founda-
tion for crop growth and high yields, and shaping the root architecture of a population
contributes to increased yields. Most plant roots are deeply embedded in the soil, making
it challenging to observe the dynamic changes in root growth in real time. Traditional root
phenotype studies often rely on monitoring above-ground growth conditions to indirectly
reflect the growth of underground parts (roots), leading to significant errors and hindering
the development of root phenotype research.

Moreover, previous root studies often involved destructive sampling, which has a
detrimental impact on the subsequent growth and development of plants, ultimately com-
promising yield. Therefore, the primary challenge in root phenotype development is how to
collect root phenotype information non-destructively. This challenge has underscored the
emergence of HTP technologies. In 2016, Jeudy et al. [70] proposed the use of RhizoTube,
a root tube for plant cultivation. Seeds are placed between an external transparent tube
and a physiological membrane, allowing for root imaging while cultivating plants. This
method enables the non-destructive collection of root phenotype information. Two years
later, Delory et al. [71] used a root box to measure plant root phenotypic traits, enabling the
non-destructive, real-time monitoring of roots under transparent conditions. However, the
limited size of root tubes and root boxes makes them unsuitable for larger plant roots. In
reality, the roots of crops grow in an opaque environment, and the interaction between roots
and the soil matrix is strong. Therefore, how to non-destructively visualize and quantify
root growth in opaque soil has become a difficult problem in root phenotype research.

Techniques for root imaging currently include visible light imaging, MRI, and X-ray
CT. Visible light cameras are often preferred due to their low cost and convenience, but
they typically yield poor root images and provide limited root phenotype information. As
a result, they are frequently used in combination with other sensors [72]. MRI and X-ray CT
technologies allow for the three-dimensional, non-destructive observation of underground
root structures, offering a more intuitive and comprehensive approach to root phenotype
research. However, not all soil matrices are suitable for MRI, as their suitability depends
on factors such as size, moisture content, nutrients, root thickness, and root area in the
soil [73]. Therefore, MRI technology has extensive requirements. On the other hand, X-ray
CT technology uses a precise collimated X-ray beam, gamma rays, ultrasonic waves, and
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highly sensitive detectors to scan sections around a certain part of the test object, providing
fast scanning times and clear images. It is commonly used in the medical field. When
studying the specific details of fine roots within a certain planting area diameter, X-ray CT
has a higher spatial resolution than MRI. However, when the area exceeds a certain size,
MRI provides greater root quantities than CT technology [74].

In summary, enhancing and breeding varieties with desirable root traits offers strong
theoretical support for increasing crop yields. However, compared to above-ground pheno-
type studies, the application of high-throughput technology to the underground part is less
common. This is mainly due to the challenges of obtaining materials, imaging difficulties,
and high costs. The study of the underground part presents significant challenges which
current HTP technologies cannot fully address, often requiring technologies such as CT
technology, MRI, and ultrasound.

4.2. Crop Yield Prediction

In the 21st century, research on plant fruits, particularly crop seeds, faces two main
challenges: increasing yield and enhancing seed quality. It is evident that simultaneously
improving both aspects is quite challenging, making exploring coordinated enhancements a
key issue for researchers. This requires the consideration of various aspects of plant growth
habits, the environment, and usage and the integration of multidisciplinary expertise to
explore the best practices for synergistically improving yield and quality.

Food security and other related concerns are benefited by accurate crop production
forecasting, which also offers significant insights into agricultural progress [75]. This is
why agricultural production forecasting research is highly regarded both domestically
and internationally. The primary characteristics utilized to determine yield in previous
research on seed phenotype were seed appearance and weight, with a focus on the harvest
time following maturity. Nevertheless, it was not possible to anticipate yield prior to
maturity, which posed significant problems to crop yield prediction and did not help to
improve output.

In today’s era of high-throughput technology, many researchers are developing vari-
ous system models and methods for the identification and prediction of various plant fruits
(seeds) before maturation, as illustrated in Table 3. The process of fruit/seed identification
and prediction mainly involves the following steps: obtaining seed images, image pro-
cessing and feature extraction, importing corresponding analysis tools, measuring using
different models for different tasks, training and evaluating the selected models, analyzing
data, and obtaining seeds’ phenotypic traits [76]. Currently, the high-throughput acqui-
sition of fruit/seed phenotypic information is concentrated on researching seed number,
purity, vitality, etc. Regarding the determination of seed maturity, researchers have also
begun to conduct studies in this area [77].

Table 3. Suitable yield monitoring models for different crops.

System Model Sensor Algorithm Application Area Accuracy (%) R2 References

YOLO-v4 RGB CNN Wheat 96.04% - [78]
YOLO-v5 RGB SM-YOLOv5 Tomato 97.8% - [79]
YOLO-v8 NIR, UV, RGB YOLO-v8n Tomato 65.08% - [80]
YOLO X - - Technological update Increased to 45.0% AP - [81]

YOLO POD RGB CBAM Soybean - 0.967 [82]

X-rayCT X ray
CT scanning system MATLAB Rice - 0.98 [83]

P2PNet-Soy RGB Unsupervised
clustering Soybean - 0.87 [84]

TasselGAN RGB DC-GAN variant Maize 72.36% - [85]
Anchor-free
ObjectBox RGB CBAM Wheat 94.5% - [86]
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4.3. Crop Growth Environment Monitoring

Previous studies have indicated that a favorable planting environment contributes
to increased yields, showcasing the effectiveness of cultivation practices. In the plant
kingdom, stress mainly manifests in two forms: biotic stress and abiotic stress. Both types
pose varying degrees of threats to the growth and development of plants, representing
major factors hindering the efficient development of agriculture. As we all know, all
biological elements that are detrimental to plant growth and development, such as diseases,
pests, and grasses, are collectively referred to as biological stress. Any abiotic condition
that negatively impacts plant growth, such as drought, flooding, salinity, nutrient shortage,
and so forth, is referred to as an abiotic stress.

In the past, the diagnosis of crop symptoms often relied on human observation, a
method that, due to its inability to facilitate prompt observations, led to the optimal
treatment window being missed. This limitation constrained the precision of crop stress
management, ultimately impacting the growth and yield formation of crops.

In the current stage, the real-time monitoring of dynamic changes in plant growth
using HTP technology allows for the identification of the optimal periods for stress man-
agement. This facilitates stress management measures and precise resource allocation,
providing robust support for the high-throughput screening and identification of supe-
rior stress-resistant varieties. Up to now, researchers have developed specific monitoring
models that can be applied to different crops, primarily focusing on rice [87], wheat [88],
and others [65,89]. Forecasting crop weather conditions in advance is beneficial for the im-
plementation of crop cultivation management and biological control. Meteorological data
collected through big data are first sorted into high-resolution data information through
Earth System Models (ESMs). Then, this information, combined with machine learning
tools, provides forecasts of weather conditions for the upcoming 15 days in the respective
regions, as well as warnings for impending extreme weather events [90]. This is crucial for
monitoring the crop growth environment.

Researchers define canopy features through image features and plant traits and then
use such features to rationally adjust conditions related to water, nutrients, air, and heat.
The team led by Thorp found that multispectral images can be used to determine crop
canopy coverage and estimate crop coefficients, thereby improving water use efficiency [91].
Naik et al. [92] utilized unmanned aerial vehicles equipped with multispectral infrared
thermal imagers to capture soybean field images. They extracted five image features,
including canopy temperature, the Normalized Difference Vegetation Index, canopy area,
canopy width, and canopy length, effectively assessing the extent of waterlogging disasters
in the population.

The application of high-throughput technologies holds an indispensable position in
precision agriculture, particularly in the crucial aspect of monitoring the plant growth envi-
ronment. Therefore, in the era of digital plants, it is not surprising that high-throughput plat-
forms are being used for the real-time monitoring of the microenvironment of plant growth.

4.4. Integration of HTP and Multi-Omics in Crops

Over the years, the inherent genetic diversity of crops has constrained the progress
of crop breeding, thereby delaying the development of new crop varieties. Relevant re-
search indicates that crop-improving omics technologies include genomics, transcriptomics,
proteomics, metabolomics, and phenomics, among others [93]. Studies combining crop
phenomics with multi-omics approaches have been well established in crop science. By
utilizing machine learning (ML) and deep learning (DL) techniques to construct predictive
models, the efficiency of crop improvement approaches such as genomic selection and
genome editing has been enhanced, playing a significant role in crop growth, yield, and
responses to abiotic stresses.

A plant phenotype (P) is the result of the genotype (G), environment (E), and their
interaction (GxE). Prediction in genomic selection models (GS) is based on the mathematical
relationship between genotype and phenotype data from the target population. Typically,
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the relationship between a single phenotypic trait and genotype can be modeled using
regression models [94].

In order to select phenotypes with outstanding target traits from among multiple
traits, various genetic models have been created to accurately predict phenotype traits.
Among them, the most typically used ones are Best Linear Unbiased Prediction (GBLUP)
and Bayesian (BN) models. Montesinos-Lopez et al. [95] found that when considering
genotype–environment interaction terms, the GBLUP method has the best genomic pre-
diction performance compared to multi-trait deep learning models (MTDLs). Cantelmo
et al. [96] used Dart-seq markers associated with the additive dominant genomic Best
Linear Unbiased prediction (GBLUP) model for genome-wide selection and obtained a
correlation of more than 0.82 between the predicted value and the actual value. Matei
et al. [97] used a Bayesian model to predict the genotypes related to soybean yield traits,
with mean allele frequency (MAF) values of 0.6591, 0.9877, and 0.0205 for the average,
maximum, and minimum, respectively, indicating high accuracy.

As is well known, the development of an excellent variety often relies on the cross-
fusion of multiple omics, thus accelerating the improvement of desirable agronomic traits
in crops. In recent years, the emergence of high-throughput multi-omics technologies
has fundamentally transformed crop breeding research, often containing rich data re-
sources. Researchers have now organized and analyzed multi-omics data through different
databases. For instance, Gui et al. [98] constructed the comprehensive ZEAMAP database
for maize multi-omics research; Yang et al. [99] built a multi-omics database for rape-
seed that includes genomics, transcriptomics, mutomics, epigenomics, phenomics, and
metabolomics datasets; Gong et al. [100] developed the GpemD8 database, which has been
successfully applied in studying excellent traits in rice populations. The integration of
omics data will provide a comprehensive explanation of the interactions between crop
traits, marking a crucial step towards enhancing the breeding of excellent varieties and
addressing food security issues [101].

In today’s era of multi-omics development, we advocate for the integration of crop
phenotypes with multi-omics, starting from “phenotype-genotype” and ultimately return-
ing to “genotype-phenotype” research. In this cyclical process, relevant predictive models
are established to accelerate the improvement of crop breeding.

5. Challenges and Strategies for Crop HTP Technology

HTP technology has achieved significant success in the field of plant phenotyping re-
search, especially in crop phenotyping studies. The combination of plant phenotyping and
breeding has promoted the rapid development of digital agriculture, increasing people’s
attention to the development of this innovative approach. In recent years, scientists have
conducted HTP analysis on subjects ranging from individual plants to populations, further
refining it to various organs, tissues, and cells, laying a solid theoretical foundation for
improving crop traits and increasing yields.

5.1. Simple of Phenotypic Information

The construction of ideal plant architectures relies heavily on extensive data sup-
port [102]. Using traditional methods to build ideal plant architectures presents unexpected
challenges, and a continued reliance on traditional approaches is not conducive to the
future of agriculture. So far, researchers in various crop research fields have employed
different system models and methods to non-destructively analyze crops from multiple
angles and perspectives, rapidly acquiring and analyzing crop phenotypic features [103],
laying a solid foundation for further modifying plant architecture and constructing ideal
plant architectures. Moreover, considering the bottlenecks regarding the future of grain
production, continuous improvements and modifications towards ideal plant architectures
will be a key focus of agricultural development strategies.

The development of crop phenomics has faced the challenge of information singularity,
which manifests in two main aspects: the limited use of sensors on one hand [5] and the
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uniformity of model construction, particularly in the field of root phenotyping, on the
other hand. Both of these factors contribute to the homogenization of phenotypic data
acquisition.

As previously mentioned, unmanned aerial vehicles (UAVs) equipped with sensors
have been widely used in plant phenotyping research. However, these UAVs have limita-
tions in terms of the number of sensors they can simultaneously carry. Most commonly,
they employ single sensors such as RGB cameras, infrared imaging, multispectral or hy-
perspectral cameras, and other sensors for remote sensing analyses of crop phenotypes,
maturity assessments, pest and disease diagnoses, growth monitoring, yield estimations,
and analyses of key phenotypic features. The use of sensors in this context is still in its
early stages. Many of these sensors tend to be expensive, which has restricted the develop-
ment of high-throughput plant phenotyping research at this stage. Scientists are actively
seeking low-cost, high-resolution sensors, but in reality, sensors that possess both of these
characteristics are challenging to find [3]. Research has shown that using multiple sensors
for plant phenotyping can improve accuracy compared to using a single RGB camera
alone [38]. Therefore, in the context of the digital plant era, the emphasis is on establishing
phenotyping platforms with multiple sensors.

In the current trend of agricultural development, in order to let artificial intelligence
algorithms solve practical problems or to develop in the direction of strong artificial
intelligence, simple model algorithms are certainly needed, and almost everywhere can be
seen to break the dimensional wall for integration, so the direction that still has the potential
for breakthroughs pertains to the super-large complex network structure; secondly, there
are certain differences in the construction of various crop models, and the lack of a unified
model structure suitable for various plants has led to a lack of communication among
researchers, which is not conducive to the development of diversified data information.
We call for the construction of multi-sensor phenotypic platforms to diversify phenotypic
information through the continuous optimization of system models.

5.2. Instability of Data Accuracy

The use of high-throughput platforms in the study of plant architecture has reached
maturity, but the significant research task of improving data accuracy continues. Pheno-
typic feature extraction is influenced by multiple factors, leading to fluctuations in data
accuracy within a certain range. Therefore, we should gradually enhance data accuracy
and stability by considering the growth environment of crops. The stability of data accu-
racy in field environments is lower compared to indoor settings, primarily because the
growth environment of plants in the field is complex and variable. As it is well known, the
more significant the changes in external environmental conditions and the more complex
the plant architecture, the more pronounced the characteristics of the “3Vs” (i.e., volume,
variety, and velocity) and “3Hs” (i.e., high dimensionality, high complexity, and high uncer-
tainty) become, which also applies to the stability of data accuracy for other phenotypic
extractions. Therefore, researchers should focus not only on improving data accuracy but
also on ensuring data stability. Improvements in data accuracy and stability are conducive
to the steady advancement of HTP technology.

Regarding enhancing data accuracy, we propose the following recommendations:
Firstly, in the event of a controlled crop growing environment (e.g., indoor growth), sup-
ply the best growing medium for the crops, guarantee uniformity in every processing
environment, and reduce errors resulting from environmental factors; second, the idea
is to maintain the typical growth and development of crops, set up numerous repeated
experiments, and gradually increase the prediction accuracy by continuously updating and
optimizing the model when the growth environment of crops is artificially uncontrollable
(such as field growth). Researchers have developed mixed phenotypic multi-trait (binary,
ordered, and continuous) models, which have achieved moderate prediction accuracy
improvements compared with univariate models (UDLs) and mixed phenotypic multi-trait
models (MTDLMPs) in continuous traits [104].
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5.3. Non-Uniformity of Data Formats

Plant databases serve as core repositories for various plant data, containing a wealth
of information. However, there is significant variation in the contents of these databases.
Based on their differences in stored data, databases can be categorized into three types: plant
phenotype databases, distributed phenotype data collection, and information management
systems for environmental data (Crop Sight) [105]. In terms of plant phenotype data, the
predominant system is the Multi-Source Multi-Scale Phenotype Information Hybrid System
(PHLS) [106], considering a diverse array of phenotype data formats, which hinders the
smooth storage and analysis of data for researchers. With the advancement of breeding
work, massive amounts of phenotype data have emerged, although not all of these data
are useful. The complexity of data information makes it challenging for individuals to
process such data immediately, potentially leading to significant data resource waste,
which is not desirable in the scientific research process. Currently, there is a growing
awareness of the essential need to efficiently extract and process relevant data information
in phenotype research.

To overcome the aforementioned challenges and aid the future development of phe-
nomics, there is an urgent need to establish a dedicated plant phenotype database. This
would serve as the foundation for a shared platform for phenotype resources, allowing for
the standardization of data information. This approach is beneficial not only for preserving
data but also for facilitating mutual learning and research among scholars. Additionally,
effective communication and collaboration among interdisciplinary researchers, as well as
sharing research outcomes, are prerequisites for establishing a unified framework for plant
models [107].

The integration of multi-omics and interdisciplinary collaboration is an essential path
for the development of various disciplines, a crucial avenue for fostering innovative talent,
and a rapid channel for breeding superior varieties. This is also indispensable for the
advancement of HTP technology. We call for interdisciplinary integration, encourage the
cultivation of interdisciplinary talents, and support the flourishing development of HTP
technology in the context of digital plants.

6. Outlook

With the development of genetic, gene expression product, and various genetic as-
sociation analysis studies, plant phenotypes have gradually attracted people’s attention
and evolved into an indispensable research area in biology. In the past decade, plant
phenotypes have been clearly defined: they are considered to be physical, physiological,
and biochemical mechanisms that reflect the structural and functional characteristics of
plant cells, tissues, organs, plants, and populations. Essentially, phenotypes represent
the three-dimensional expression of a plant’s genetic map, with regional differentiation
features and evolutionary processes [108–110].

It is projected that the global population will reach 11 billion in the next 25 years,
leading to a substantial increase in food demand. In order to ensure food security, it
is essential to utilize new technologies and methods such as HTP techniques to breed
high-yielding and high-quality crop varieties.

Currently, the development of this technology is more mature in foreign countries,
mainly in France, Germany, the Netherlands, Australia, and other countries. Comparatively,
domestic phenotypic research development is lagging behind [1], but this does not mean
that we should not attach importance to it. It is well known that innovation in methods
and the construction of technology are the core challenges to applying HTP technology
to crops. Relying solely on foreign imports is not conducive to the development of crop
phenotyping technology. Instead, we should focus on technological innovation; adhere to
the principle of emphasizing both hardware facilities and software technology; strengthen
academic exchanges at home and abroad; prioritize multidisciplinary talent cultivation; and
advocate for diversified phenotypic information, stable data accuracy, and standardized
data sharing.
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We firmly believe that in the future of agricultural development, HTP technology will
gradually replace traditional methods and take a leading role. By continuously optimizing
system models, enhancing data accuracy, and efficiently utilizing data information, we
can accelerate the acquisition of plant phenotypic information, thereby contributing to
the development of breeding and agriculture. With the development of phenomics, we
have successfully overcome the challenge of transitioning from machine learning to deep
learning. Deep learning is utilized extensively and is the subject of many different research
areas. It is essential to the study of plant phenotypic data because of its substantial
advantages in feature extraction and data processing [111]. Building on this foundation,
efforts should be intensified to explore the application of deep learning technology in
high-throughput phenotypic research, thereby addressing the technical bottlenecks we
currently face.
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