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Abstract: In order to solve low recognition of corn kernel breakage degree and corn kernel mildew
degree during corn kernel harvesting, this paper proposes a real-time detection method for corn
kernel breakage and mildew based on improved YOlOv5s, which is referred to as the CST-YOLOv5s
model algorithm in this paper. The method continuously obtains images through the discrete uniform
sampling device of corn kernels and generates whole corn kernels, breakage corn kernels, and mildew
corn kernel dataset samples. We aimed at the problems of high similarity of some corn kernel features
in the acquired images and the low precision of corn kernel breakage and mildew recognition. Firstly,
the CBAM attention mechanism is added to the backbone network of YOLOv5s to finely allocate and
process the feature information, highlighting the features of corn breakage and mildew. Secondly,
the pyramid pooling structure SPPCPSC, which integrates cross-stage local networks, is adopted
to replace the SPPF in YOLOv5s. SPP and CPSC technologies are used to extract and fuse features
of different scales, improving the precision of object detection. Finally, the original prediction head
is converted into a transformer prediction head to explore the prediction potential with a multi-
head attention mechanism. The experimental results show that the CST-YOLOv5s model has a
significant improvement in the detection of corn kernel breakage and mildew. Compared with the
original YOLOv5s model, the average precision (AP) of corn kernel breakage and mildew recognition
increased by 5.2% and 7.1%, respectively, and the mean average precision (mAP) of all kinds of corn
kernel recognition is 96.1%, and the frame rate is 36.7 FPS. Compared with YOLOv4-tiny, YOLOv6n,
YOLOv7, YOLOv8s, and YOLOv9-E detection model algorithms, the CST-YOLOv5s model has better
overall performance in terms of detection accuracy and speed. This study can provide a reference for
real-time detection of breakage and mildew kernels during the harvesting process of corn kernels.

Keywords: corn kernels; breakage; mildew; YOLOv5s; CBAM; SPPCPSC; transformer

1. Introduction

Corn is the main grain crop in China, with the largest planting area and yield among
the three major grain crops, and it is an indispensable and important food resource, playing
a key role in ensuring national food security. In recent years, the country has strongly
supported and promoted the development of the intelligent agricultural equipment in-
dustry. However, due to the influence of corn varieties, moisture content, mechanized
harvesting and other factors, the intelligence level of corn grain harvesters is still low.
Real-time automatic and accurate access to corn harvesting process kernel breakage and
mildew degree is the key link of corn kernel harvester intelligence through real-time access
to corn kernel harvesting process kernel breakage and adaptive adjustment of the harvester
related operating parameters, to reduce the rate of corn kernel breakage and to provide
an intelligent decision-making basis. At the same time, obtaining the mildew of corn
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grains during corn harvest and constructing the distribution map of corn mildew degree
in regional plots can provide support for grain reserves and scientific planting precision
management. Therefore, it is particularly important to explore a method that can detect
corn grain breakage and mildew in real-time, automatically and accurately.

With the development of computer technology, image processing and machine learn-
ing methods have been widely applied in the detection of grain appearance quality [1–3].
Li et al. [4] achieved the recognition of broken corn seeds by extracting the area features
and color features of corn seeds and using the SSA-BP optimization algorithm. Cui et al. [5]
proposed a method for detecting corn seed breakage based on machine vision, extracted
16 morphological characteristics of corn seeds, and created an SVM recognition model of
corn seeds. The recognition precision of corn seed breakage reached 95%. Chen et al. [6]
proposed a rice impurity and rice kernel breakage classification and recognition method
based on machine vision technology, using Retinex algorithm to enhance the original image,
setting thresholds for the two channels of hue and saturation of the HSV color model for
image segmentation and combining with the shape features to obtain the classification and
recognition results, with the recognition rate of rice kernel breakage being 84.74%, and that
of stem impurities being 86.92%. Zhu et al. [7] developed a real-time detection algorithm
for broken corn kernels based on the OpenCV vision library, which realized the detection
and counting of broken corn. Although traditional machine learning methods have made
some progress in the detection of grain appearance quality, traditional methods rely on
manual intervention to extract and select features, and are easily affected by factors such as
lighting and complex backgrounds, resulting in poor stability of detection results.

In recent years, with the continuous development of deep learning algorithms, this
technology has also been applied by researchers to the field of grain appearance quality
detection. Fan et al. [8] developed a rice appearance quality detection device that pre-
processes images using the Watershed algorithm and Otus adaptive threshold function.
Convolutional neural networks were used to detect rice appearance varieties, with a recog-
nition precision of 92.3%. Niu et al. [9] proposed a corn seed variety detection model
E_CBAM_MobileNetV2 based on the MobileNetV2 mode, the CBAM attention mechanism
was introduced, and the recognition precision was 98.18%. Pan et al. [10] constructed
a ImCascade R-CNN deep learning model for wheat grain integrity detection, and the
average precision of wheat grain shape parameter detection was 90.2%. Wang et al. [11]
constructed an online real-time detection system for wheat Fusarium head blight grains
based on the U-Net deep learning model. The detection line completed the transmission
and rapid recognition of wheat kernel by grain, and the recognition precision reached
95.78%. Zhang et al. [12] developed an online corn single-seed detection and sorting de-
vice, and the precision of broken corn seed sorting was higher than 89%. Wu et al. [13]
developed an online monitoring system based on Mask R-CNN for grain impurity content
and breakage rate of rice, and the recognition precision of whole rice grain was 97.62%,
and the recognition precision of broken rice grain was 93.67%. LI et al. [14] constructed a
corn breakage detection algorithm based on YOlOv4-Tiny, which achieved the detection
of broken corn samples. In a relatively ideal environment, the precision of corn breakage
detection is about 93%.

In summary, scholars at home and abroad have performed a lot of research on grain
appearance quality detection by using deep learning technology; however, there is currently
limited research on real-time detection of corn kernel breakage and mildew during the
corn kernel harvesting process. In this paper, a real-time detection method of corn kernel
breakage and mildew based on improved YOLOv5s was proposed for low recognition
caused by the variety of corn kernel morphology, intense kernel movement, and complex
and changing environment during corn kernel harvesting. The main work of this paper is
as follows. Firstly, the CBAM (Convolutional Block Attention Moduleattention) mechanism
is added to the backbone network of YOLOv5s to finely allocate and process the feature
information, highlighting the features of corn breakage and mildew. Secondly, the pyra-
mid pooling structure SPPCPSC (Spatial Pyramid Pooling Fast Cross Stage Partial Concat),
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which integrates cross-stage local networks, is adopted to replace the SPPF (Spatial Pyramid
Pooling-Fast) in YOLOv5s. SPP (Spatial Pyramid Pooling) and CPSC (Cross-Scale Partial
Connections) technologies are used to extract and fuse features of different scales, improv-
ing the precision of object detection. Finally, the original prediction head is converted into a
transformer prediction head to explore the prediction potential with a multi-head attention
mechanism and realize real-time detection of corn kernel breakage and mildew under a
complex background. Compared with detection model algorithms such as YOLOv4-tiny,
YOLOv6n, YOLOv7, YOLOv8s and YOLOv9-E [15–19], the effectiveness of the improved
model was verified.

2. Materials and Methods

In this chapter, the materials and methods of corn kernel breakage and mildew detec-
tion tests are described. The corn kernel image acquisition device is described in Section 2.1.
The corn kernel sample image dataset is described in Section 2.2. In Section 2.3, the
construction of the corn kernel breakage and mildew recognition model is described.

2.1. Corn Kernel Image Acquisition Device

The quality of the original image has a significant impact on the detection result.
High-quality original images can help improve the learning and generalization abilities
of deep learning models [20]. Therefore, the research group developed a discrete uniform
sampling device of corn kernels, which is used to realize continuous sampling and single-
layer uniform distribution of mechanically harvested corn kernels and to avoid the impact
of kernel superposition and adhesion phenomenon on the detection results. The schematic
diagram of its structure is shown in Figure 1. The discrete uniform sampling device of
corn kernels is composed of a host computer, feeding hopper, control box, current limiting
plate, outer groove wheel uniform distributor, corn kernel conveyor belt, strip light source,
CCD camera and other parts. The sampled corn kernels collected by the machine will enter
the feeding hopper through the chute, and the current limiting plate will ensure that the
corn kernels will gently enter the outer groove wheel uniform distributor, and the outer
groove wheel uniform distributor will set up U-shaped holes in the circumference direction.
During the rotation of the outer groove wheel uniform distributor, the corn kernels stacked
in continuous layers will be separated into discrete states to realize the discrete single-layer
distribution of the corn, and then the discrete single-layer corn kernels will be placed by the
conveyor belt. The image is transferred to the image acquisition and detection area, and the
image is collected in real-time by a CCD camera (Hikvision, MV-CA050-10C, Hangzhou,
China, Resolution (1280 × 1024) pixels, Rate is 32 FPS), and the image is transmitted to the
host computer for detection and processing.
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2.2. Corn Kernel Sample Image Dataset

Selecting “Xianyu 335” corn kernels (with a moisture content of 28.1%) harvested
from experimental fields in Linzi District, Zibo City, Shandong University of Technology
in October 2023 as samples. The “Xianyu 335” corn variety is one of the widely planted
corn varieties in China, and its planting area in China is about 24 million hectares. Figure 2
shows the samples of machine-harvested corn kernels, which mainly contain whole corn
kernels, breakage corn kernels, mildew corn kernels and impurities. Breakage corn kernel
types were mainly classified into crown breakage, radicle breakage, cracked breakage and
crushed breakage, as shown in Figure 3. Mildew corn kernel types were mainly classified
into complete mildew, lumpy mildew and spotted mildew, as shown in Figure 4. There are
impurities in the corn kernel samples as shown in Figure 2d, because these impurities are
significantly different from whole corn kernels, breakage corn kernels, and mildew corn
kernels. This does not have a significant impact on target classification and recognition.
Therefore, this article will not consider them.
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Considering the adverse factors such as complex environment, changes in light condi-
tions and multiple noise points during corn kernel harvesting, a series of transformations
and processing such as brightness (increase by 50%, decrease by 50%) and Gaussian noise
was carried out on the acquired images in order to enhance the generalization ability and
robustness of the model and avoid the risk of overfitting. In total, 528 images were obtained
(each corn kernel set package contained an average of about 60 individual corn kernels),
and the enhanced dataset images are shown in Figure 5. The image dataset is divided into
a training set, validation set and test set according to the ratio of 8:1:1. The LabelImg tool
(LabelImg software, Version: 1.8.6, the open-source data labeling tool created by Tzutalin
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with the help of dozens of contributors, was used to annotate the original image, and the
change save format was set to PASCAL VOC mode to generate an XML annotation file,
https://github.com/HumanSignal/labelImg, accessed on 20 April 2023) was used to label
the whole, breakage and mildew corn kernels in the original images, respectively. Labe-
lImg software generates corresponding label files as XML files, which cannot be directly
recognized by the YOLOv5 algorithm. The XML file needs to be converted into a TXT file
through script code, which contains the target category, center point coordinate information,
and the length and width information of the annotation box. The image dataset is shown
in Table 1.
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Table 1. The image dataset.

Dataset Whole Corn Kernels Breakage Corn
Kernels

Mildew Corn
Kernels

Training set 13,783 5907 5904
Validation set 1494 747 726

Test set 1415 730 735
Total (sheets) 16,692 7384 7365

2.3. Recognition Model Construction

This section introduces the construction of the corn kernel breakage and mildew recog-
nition model. Aiming at the requirements of corn kernel breakage and mildew detection,
a CST-YOLOv5s recognition model algorithm is proposed based on the YOLOv5s model.
The improvement of the CST-YOLOv5 network structure is described in Section 2.3.1. The
CBAM attention mechanism is described in Section 2.3.2. The SPPCPSC pyramid pool
structure is described in Section 2.3.3. The transformer predictable header is described in
Section 2.3.4.

2.3.1. YOLOv5s Algorithm

YOLOV5 is a single-stage target detection network. YOLOV5 has a more balanced
performance in reasoning speed, lightweight, reliability, and stability, and is more suit-
able for deployment in embedded equipment [21]. According to the depth and width
of the algorithm model, it is divided into five versions, which are YOLOv5n, YOLOv5s,
YOLOv5m, YOLOv5l and YOLOv5x. This strengthens the detection accuracy, with the
corresponding time also becoming increased. The performance parameters of different
versions of the YOLOv5 series are compared in Table 2. Although the detection time
of YOLOv5n is the lowest, the number of residual structures is small, resulting in a de-
crease in the detection accuracy, and the excessive detection time of YOLOv5m, YOLOv5l,
YOLOv5x residual structure will increase the test time. In order to determine the baseline
model suitable for the detection tasks of corn kernel breakage and mildew, the YOLOv5n,
YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x models were respectively used for pre-training

https://github.com/HumanSignal/labelImg
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of the dataset in this paper (training cycle 300). The comparison of detection performance
parameters is shown in Table 2. On the premise of comprehensively balancing model
size and recognition accuracy, the detection time will be increased. Combined with the
detection accuracy, real-time performance, lightweight, field operation environment and
other factors of corn kernel breakage and mildew [22–25], this paper proposes the design
of a new recognition model algorithm CST-YOLOv5s based on YOLOv5s.

Table 2. Comparison of performance parameters of different versions of YOLOv5 series.

Model Size (Pixels) mAP0.5% mAP0.5–0.95% Paramters/×106 M Model Size/MB FPS

YOlOv5n 640 0.822 0.763 1.7 3.5 48.5
YOlOv5s 640 0.926 0.872 7.0 13.5 42.6
YOlOv5m 640 0.931 0.882 20.9 40 35.6
YOlOv5l 640 0.936 0.887 46.1 88.3 28.7
YOlOv5x 640 0.941 0.891 86.2 164 20.7

The YOLOv5s algorithm mainly includes four parts: input, backbone, neck and
head. Mosaic data enhancement is used at the input side to randomly scale, randomly
cut, and randomly arrange the original data to enrich the dataset and thus enhance the
generalization of the model. After images are sent to the neural network through the input
end, feature extraction is carried out in the backbone part to obtain three effective feature
layers. The feature pyramid network in the neck part enhances semantic information
through top-down up-sampling. In the neck part, the path aggregation network adopts
bottom-up down sampling to strengthen the positioning information. The two networks
fuse the features from different paths respectively, so as to obtain the feature map with rich
information. The Prediction Head part contains three prediction branches, which use the
extracted feature information to predict the target of different sizes and obtain the category,
confidence and location information of the predicted target [26].

Due to the variety of corn kernel morphology, intense kernel movement, and com-
plex and changing environment, in order to further improve the precision of corn kernel
breakage and mildew detection, this study improved the backbone, neck, and head of the
original YOLOv5s model. Firstly, the CBAM attention mechanism is added to the backbone
network of YOLOv5s to finely allocate and process the feature information, highlighting
the features of corn breakage and mildew, as shown in the red rectangular box in Figure 6.
Secondly, the pyramid pooling structure SPPCPSC, SPP and CPSC technologies are used
to extract and fuse features of different scales, improving the precision of object detection,
as shown in the green rectangular box in Figure 6. Finally, the original prediction head is
converted into a transformer prediction head to explore the prediction potential with a
multi-head attention mechanism, as shown in the blue rectangular box in Figure 6. The
network structure diagram of the CST-YOLOv5s model is shown in Figure 6.

2.3.2. CBAM Attention Mechanism

Due to unfavorable factors such as impurities, light-blocking shadows, and high
similarity between corn embryo surface and breakage surface in the original images of
machine-harvested corn kernels, the precision of target detection is affected. The attention
mechanism is based on the characteristics of human attention, making deep learning
networks pay more attention to the areas that need attention, which greatly helps to
improve the performance of neural networks [27]. The CBAM attention mechanism is
introduced into the backbone of YOLOv5s to enhance the backbone layer’s ability to
detect target features, which helps the model pay more attention to breakage and mildew
features [24]. CBAM is a lightweight attention mechanism module, which can effectively
integrate the information of both channel and spatial dimensions, and help the network to
obtain a large amount of location and detail information of the target area. The network
structure of the CBAM attention mechanism is shown in Figure 7. Firstly, the feature map
performs global maximum pooling and global average pooling operations in the channel
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attention module to retain context information and aggregate spatial features. Secondly, the
shared multi-layer perceptron is adopted to fuse the information of the two and generate
the feature map of channel attention by activating the function [25]. Finally, the feature
map information of channel attention is extracted using the maximum average pooling
operation, and it is concatenated and convolved to obtain the final output feature map of
the CBAM module. The calculation formula [28] is:

Mc = Sm(Mlp(Pmax(F))) + Sm(Mlp(Pavg(F))) (1)

F′ = McF (2)

Ms = Sm( f7×7(Pmax(F′); Pavg(F′))) (3)

F′′ = MsF′ (4)
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In the formula [29]: F is the input feature; F′ is the feature of F input feature after pro-
cessing by channel attention mechanism; F′′ is the feature of F′ input feature after processing
by spatial attention mechanism; Mc is the channel attention weight; Ms is the spatial atten-
tion weight; Sm is Sigmoid activation function; Mlp is a multi-layer perceptron; Pmax is the
maximum pooling; Pavg is average pooling; f 7×7 is a 7 × 7 filtering convolution operation.
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2.3.3. SPPCPSC Pyramid Pooling Structure

A spatial pyramid pool SPP is used to realize the fusion of feature maps of different
scales, construct the correlation between objects of different scales, and solve the informa-
tion description problem of regional correlation. In the process of corn kernel breakage and
mildew detection, the background of real-time image is complicated, and some features are
similar, which increases the difficulty of real-time detection and analysis. This paper pro-
poses to replace SPPF in YOLOv5 with SPPCPSC. The SPPCSPC module has four different
scales of maximum pooling: 1 × 1, 5 × 5, 9 × 9, and 13 × 13. The four different scales of
maximum pooling have four perceptual horizons to distinguish small targets from large
targets, and improve the network’s expression ability and perception ability [30]. SPPCSPC
combines feature pyramid pooling and small residual structure and uses SPP and CPSC
technology to extract and fuse features of different scales to improve the precision of target
detection. The SPPCSPC network structure diagram is shown in Figure 8.
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2.3.4. Transformer Prediction Heads

The transformer prediction head module has achieved a good application effect in
deep learning in many fields [31]. It has the advantages of strong learning long-distance
dependence, strong multi-modal fusion ability, and strong model interpretability [32]. The
overall structure of the transformer model consists of input, encoder, decoder and output.
The network structure of the transformer prediction head is shown in Figure 9.
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Figure 9. The network structure of transformer prediction head.

The encoder includes multi-head attention, residual connection and layer normaliza-
tion, and a feed-forward network. The multi-head attention mechanism is composed of
multiple self-attention mechanisms, which allows the model to focus on information from
different locations at the same time. By splitting the original input vector into multiple
heads, each head can independently learn different attention weights, thereby enhancing
the model’s ability to focus on different parts of the input sequence [33–35]. We can replace
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some CSP modules in the neck with transformer prediction head modules to achieve pre-
diction potential with a multi head attention mechanism, capture global information and
sufficient background information, and accurately locate breakage and mildew corn kernel
in high-density scenes.

3. Results and Analysis

In this chapter, the results and analysis of corn kernel breakage and mildew detection
algorithm are described. The test environment and parameter settings of corn kernel
breakage and mildew are described in Section 3.1. The performance evaluation metrics
of corn kernel breakage and mildew detection models are described in Section 3.2. The
comparison and analysis of corn kernel breakage and mildew test results are described in
Section 3.3.

3.1. Experimental Environment and Parameter Setting

This experiment was run on a Windows 11 system, equipped with an Intel Core
I7-13700KF CPU (Intel, Santa Clara, CA, USA), with a main frequency of 3.4 GHz, 32 GB
of memory, Nvidia Geforce RTX 4060 graphics card (ASUS, Taiwan, China), Unified Com-
puting Device Architecture (CUDA) version 11.3, GPU accelerated CUDNN version 8.2.0,
Python 3.8, and deep learning framework Pytorch 1.10.0. The initial learning rate is set to
0.01, the initial momentum value is 0.937, the weight attenuation coefficient is 0.0005, the
image input size is 640 pixels × 640 pixels, the batch size is 32, and the training round is set
to 300.

3.2. Evaluation Metrics

In the test of the corn kernel breakage and mildew detection model, the accuracy
(P), recall rate (R), average accuracy (AP), the mean average Precision (mAP) are used to
evaluate the accurate performance of the model algorithm. The frame rate FPS (frames per
second) is used to evaluate the model algorithm recognition speed. The specific calculation
formula [21] is as follows:

P =
TP

TN + FP
× 100% (5)

R =
TP

TP + FN
× 100% (6)

In the formula: TP is a positive sample and predicted is a positive sample; TN is a
negative sample and prediction is a negative sample; FP is a negative sample predicted to
be a positive sample; FN is a positive sample and predicts a negative sample.

AP =
∫ 1

0
P(R)dR (7)

mAP =
1
n∑n

i=1 AP(i) (8)

In the formula: AP is the area enclosed by the P-R curve, which represents the re-
lationship between precision and recall rate, mAP is the mean average accuracy of AP
of all categories, where i represents the current category and n represents the number of
categories. In this paper, n is taken as 3, that is, whole corn kernels, breakage corn kernels
and mildew corn kernels.

3.3. Experimental Comparison and Analysis

In this section, the comparison and analysis of corn kernel breakage and mildew
detection algorithm are described. The ablation experiments analysis is described in
Section 3.3.1 to verify the performance of CST-YOLOv5 proposed in this paper. The
comparative test analysis of different model algorithms is described in Section 3.3.2. The
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comparison and analysis of corn kernel breakage and mildew test results are described in
Section 3.3.3.

3.3.1. Ablation Experiments

Through a series of ablation experiments, the effectiveness of the improved method
was evaluated and verified. Based on the YOLOv5s model, the CBAM attention mechanism
was added to the backbone part, the pyramid pooling structure SPPCPSC with the cross-
stage local network was adopted, and the original prediction head was converted into a
transformer prediction head for experimentation. The experiment conducted a comparative
analysis using the same dataset, testing platform, and model parameters to evaluate the
optimization effect of each improvement method on the final algorithm. The experimental
results are shown in Table 3.

Table 3. Comparison of ablation experiments results.

Model Average Precision AP/%

P/% R/% mAP/%
Model

Size
/MBCBAM SPPCPSC Transformer

Whole
Corn

Kernels

Breakage
Corn

Kernels

Mildew
Corn

Kernels

YOLOv5s

× × × 91.2 90.9 87.6 90.6 90.5 89.9 13.5√
× × 93.4 91.8 91.6 93.5 91.9 92.3 13.7

×
√

× 93.1 94.5 90.8 93.2 94.6 92.8 25.9
× ×

√
93.3 90.4 92.1 93.4 90.5 92.0 13.6√ √

× 94.1 94.4 92.6 94.3 94.7 93.7 26√
×

√
95.8 95.1 93.5 96.0 95.4 94.8 13.7

×
√ √

95.5 95.8 92.2 95.8 96.1 94.5 25.8√ √ √
97.5 96.1 94.7 97.2 97.5 96.1 26

Note: “
√

” indicates that the current model uses this structure or method; “×” indicates that the current model is
not using this structure or method. The performance parameters of the CST-YOLOv5s algorithm model proposed
in this paper are shown in bold font.

As can be seen from Table 3, adding CBAM, SPPCPSC and transformer to the original
YOLOv5s network model can effectively improve network detection performance. On the
premise of comprehensively balancing model size and recognition accuracy, this paper
asserts that the CST-YOLOv5s (YOLOv5s + CBAM + SPPCPSC + Transformer) model has
better performance than other models, and the CST-YOLOv5s model has a significantly
improved detection effect on corn kernel breakage and mildew. Compared with the
original YOLOv5s model, the average precision (AP) of corn kernel breakage and mildew
recognition increased by 5.2% and 7.1%, respectively, and the mean average precision
(mAP) of all kinds of corn kernel recognition is 96.1%. Figure 10 shows the comparison
of average precision and recall curves of different optimization algorithm combinations,
where (a) is the comparison of average precision curves and (b) is the comparison of recall
curves. As can be seen from the figure, the CST-YOLOv5s model has higher precision than
other models in terms of average precision and recall.

This study uses the confusion matrix to evaluate the classification model perfor-
mance [36,37], which randomly selects 240 corn kernel samples for prediction, of which
100 grains are whole corn kernels, 80 are breakage corn kernels, and 60 are mildew corn
kernels. The confusion matrix after the classification is completed is shown in Figure 11.
The model’s predictive accuracy of all categories is high, and it can accurately and reliably
identify and classify various types of corn kernels.
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3.3.2. Experimental Analysis of Different Model Algorithms

In order to further verify the effectiveness of the research method for corn kernel
breakage and mildew detection, a comparative test was conducted between this research
method and other YOLO model algorithms in the same environment. The comparative
detection networks include YOLOv4-tiny, YOLOv6n, YOLOv7, YOLOv8s, and YOLOv9-E.
The results of the identification effect comparison test are shown in Table 4.
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Table 4. Comparison of experimental results of different model algorithms.

Model

Average Precision AP/%

P/% R/% mAP/% Model Size
/MB

FPSWhole
Corn

Kernels

Breakage
Corn

Kernels

Mildew
Corn

Kernels

YOLOv4-Tiny 89.3 88 85.7 87.1 87.4 87.7 27.6 34.5
YOLOv6n 88.3 87.2 84.3 86.1 86.4 86.6 17.6 39.8
YOLOv7 95.2 93.8 92.9 95.5 92.2 94 71.2 20.9
YOLOv8s 95.1 95.7 92.4 95.4 95.9 94.4 50.6 25.2

YOLOv9-E 93.1 99.1 95.6 95.9 98.3 95.9 116 6.5
CST-YOLOv5s 97.5 96.1 94.7 97.2 97.5 96.1 26 36.7

As can be seen from Table 4, the precision P, recall R, and the mean average precision
(mAP) values of the CST-YOLOv5s model proposed in the paper are 97.2%, 97.5%, and
96.1%, respectively, the model size is 26 MB, and the frame rate is 36.7 FPS. The CST-
YOLOv5s model has certain advantages over other model algorithms, indicating that the
CST-YOLOv5s model is able to extract the key information more attentively. By incor-
porating the CBAM attention mechanism, the characteristics of small size, irregularity
and mildew are more prominent. SPP and CPSC technologies are fully utilized to extract
and fuse features of different scales, reducing the interference of useless information on
recognition performance. Meanwhile, the prediction potential of a multi-head attention
mechanism is utilized to improve the precision of target detection. It can accurately identify
corn kernel breakage and mildew in the complex background of corn harvest.

3.3.3. Improved Algorithm Detection Experiment

In order to further evaluate the performance of the CST-YOLOv5s model, the corn
kernel set images were randomly selected in the test set to test the recognition effect, and
compared with the original YOLOv5s model recognition results. Figure 12 is the detection
effect map of three test sets which were randomly selected. In the first column of the corn
kernel set images to be detected in Figure 12, breakage corn kernels are marked with blue
circles and mildew corn kernels are marked with green circles. The second column in
Figure 12 shows the detection results of the original YOLOv5s model, and the third column
shows the detection results of the CST-YOLOv5s model. The detected whole corn kernels,
breakage corn kernels, and mildew corn kernels are highlighted in red, pink, and orange
rectangular boxes, respectively.

As can be seen from Figure 12, the recognition effect of the original YOLOv5s model
on corn kernels was shown. In Figure 12(a-2), some small and irregular whole corn
kernels were mistakenly identified as breakage kernels, and some spotted mildew corn
kernels were mistakenly identified as whole corn kernels. In Figure 12(b-2), there was a
serious phenomenon of missed recognition of mildew corn kernels, where the model was
mistakenly identified as not being a sample of corn kernels. Similarly, there were also some
small and irregular whole corn kernels that were mistakenly identified as breakage kernels.
In Figure 12(c-2), some mildew corn kernels were mistakenly identified as whole corn
kernels, while some small and irregular whole corn kernels were mistakenly identified
as whole kernels. Compared with the CST-YOLOv5s model proposed in this paper, the
detection effect is shown in Figure 12(a-3,b-3,c-3). It can be seen that the CST-YOLOv5s
detection model has good recognition performance for various types of corn kernels, and
there are basically no problems of missed detection or incorrect detection. The number
of various types of corn kernels in the 66 original corn kernel set images of the test set
were counted manually, in which the number of whole corn kernels was 1415, the number
of breakage corn kernels was 730, and the number of mildew corn kernels was 735. By
using the CST-YOLOv5s model proposed in this paper, the numbers of whole corn kernels,
breakage corn kernels and mildew corn kernels were 1371, 697 and 689, respectively, and
the detection and recognition precisions of whole corn kernels, breakage corn kernels and
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mildew corn kernels were 96.9%, 95.5% and 93.7%, respectively. Therefore, combined
with the above test results, a new recognition model algorithm CST-YOLOv5s based on
YOLOv5s for corn kernel breakage and mildew in this paper can meet the detection needs.
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Figure 12. Comparison of detection effects before and after YOLOv5s network improvement.
(a-1) Original image of Sample 1; (a-2) Detection results of the original YOLOv5s model for Sample 1;
(a-3) Detection results of the improved YOLOv5s for Sample 1; (b-1) Original image of Sample 2;
(b-2) Detection results of the original YOLOv5s model for Sample 2; (b-3) Detection results of the im-
proved YOLOv5s for Sample 2; (c-1) Original image of Sample 3; (c-2) Detection results of the original
YOLOv5s model for Sample 3; (c-3) Detection results of the improved YOLOv5s for Sample 3; The
first column is the original acquisition images, in which the blue circle marks the breakage corn ker-
nels and the green circle marks the mildew corn kernels; the second column and the third column are
the whole corn kernels, breakage corn kernels, and mildew corn kernels detected before and after the
model improvement, which are highlighted in red, pink, and orange rectangular boxes, respectively.
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4. Conclusions

(1) This paper takes real-time detection of corn kernel breakage and mildew during the
harvesting of corn kernels as the research content. Aiming at low recognition caused
by the variety of corn kernel morphology, intense kernel movement, and complex
and changing environment during corn kernel harvesting, this paper proposes a
new recognition model algorithm: CST-YOLOv5s based on YOLOv5s for corn ker-
nel breakage and mildew. Firstly, the CBAM attention mechanism is added to the
backbone network of YOLOv5s to finely allocate and process the feature informa-
tion, highlighting the features of corn breakage and mildew. Secondly, the pyramid
pooling structure SPPCPSC, SPP and CPSC technologies are used to extract and fuse
features of different scales, improving the precision of object detection. Finally, the
original prediction head is converted into a transformer prediction head to explore
the prediction potential with a multi-head attention mechanism.

(2) Using the same training and validation sets, multi-scale training was conducted on
different improved algorithms and model algorithms. Through ablation experiments,
it was shown that the CST-YOLOv5s model significantly improved the detection effect
of corn kernel breakage and mildew. Compared with the original YOLOv5s model, the
average precision (AP) of corn kernel breakage and mildew recognition increased by
5.2% and 7.1%, respectively, and the mean average precision (mAP) of all kinds of corn
kernel recognition is 96.1%, and the frame rate is 36.7 FPS. Compared with YOLOv4-
tiny, YOLOv6n, YOLOv7, YOLOv8s, and YOLOv9-E detection model algorithms, the
CST-YOLOv5s model has better overall performance in terms of detection accuracy
and speed. This study can provide a reference for real-time detection of breakage and
mildew kernels during the harvesting process of corn kernels.

(3) In future research, we will increase the number of corn variety samples and enrich
the dataset of breakage and mildew corn kernels. At present, we only focus on the
detection of corn kernels on one side and cannot judge the state of other surfaces. In
the later stage, we will carry out research on the recognition of the whole surface of
corn kernels to further improve the detection precision.
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