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Abstract: Recycling and reusing phosphorus in agriculture can reduce the consumption of natural
phosphorus resources, which are continuing to shrink. Phosphorus fertilizers made from renewable
raw materials (sewage sludge ash, animal bones, dried animal blood) and activated with phosphorus
solubilizing microorganisms (Bacillus megaterium, Acidithiobacillus ferrooxidans) offer an alternative to
conventional fertilizers. These products should meet consumer and environmental safety standards.
In this paper, based on field experiments conducted in northeast Poland, the effects of waste-derived
biofertilizers on selected parameters of wheat yield quality are discussed. The study focuses on the
technological properties of the grain (hectoliter weight, hardness index, Zeleny index, starch, wet
gluten, and protein content), the content of proteogenic amino acids, macro- and micronutrients, and
selected toxic elements in the grain. The quality parameters of wheat grain were not affected by the
tested biofertilizers applied in P doses up to 35.2 kg ha−1, nor by conventional fertilizers.

Keywords: nutrient recycling; secondary raw materials; waste management; microbial solubilization;
Triticum aestivum L.

1. Introduction

The urgent need to feed the world’s growing population, coupled with increasing con-
cerns about nutrient pollution of the environment and climate change, have made rational
nutrient management one of the major challenges of this century [1,2]. Food production
begins in the field, and crop productivity is highly dependent on nutrient availability [3].
The soil pool of many nutrients is usually insufficient for achieving satisfactory yields, and
additional plant nutrition from external sources is required [2]. The most commonly used
nutrient carriers are synthetic mineral fertilizers [1], although alternative nutrient sources
are increasingly being adopted [4].

One of the six key elements in plant nutrition is phosphorus (P) [5]. It plays a vital
role in all their major metabolic activities, including photosynthesis and respiration, as
well as nucleic acid, protein, starch, and membrane phospholipid synthesis [6,7]. Phos-
phorus cannot be replaced by any other element, and its deficiency severely limits crop
productivity [8,9]. Given the critical role of P in global crop production, demand for P
fertilizers is expected to increase significantly by 2050 [1,10]. Regardless of this global trend,
there are huge disparities between world regions in terms of the amount of P fertilizer
applied [11] and thus the soil P budget. P fertilization is most commonly achieved through
the application of chemical fertilizers derived from phosphate rock (PR) [1]. PR is a finite,
non-renewable and geographically restricted resource [12]. In addition, the PR economy
is currently predominantly linear, with significant P wastage and loss from mine to fork
(currently about 90%) [13], due to inefficient use of P fertilizers and high P losses to the
environment [14]. In Europe, PR reserves are almost non-existent [12], both PR and P
are critical raw materials [15], and most European countries are dependent on imported
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PR [16]. For the P economy in European countries, the significant increase in P prices
since 2020 due to pandemic, geopolitical conflicts, trade wars and rising fuel prices, and
the conflict between Russia and Ukraine, further disrupting the PR trade, is also of great
importance [17]. Closing the P cycle and using P more efficiently, particularly in agricultural
production, seems to be indispensable and inevitable not only in Europe but also at the
global level [8,14].

Increasing the use of recycled P in the fertilizer industry, as an alternative or sup-
plement to PR, is considered one of the key actions towards global P sustainability [18].
A goal for fertilizer products to contain a minimum of 20% recycled P by 2030 has been
advocated [19]. In recent years, multiple strategies have been developed to reuse P from
P-rich wastes, such as manures, abattoir residues, food processing and domestic wastes,
sewage derived biosolids and wastewaters, and the ashes of incinerated residues [4]. Great
potential for P recycling exists by applying P-rich organic wastes and manures to agricul-
tural soils [20]. In some cases, however, there is a need to recover, detoxify and modify
P from waste to make recycling safe and effective and to achieve higher levels of nutri-
ent use efficiency [4]. According to Kabbe and Rinck-Pfeiffer [21], there are more than
30 different technologies available for recovering P from waste streams, and new ones are
still emerging.

Numerous studies prove that recycling-derived P fertilizers match conventional P
fertilizers in terms of performance [22–24]. However, making these products marketable
requires legislative support [25,26]. National policies that optimize P recycling in some
European countries (e.g., mandatory P recovery from sewage sludge and slaughterhouse
waste [27]), as well as EU regulations [28] and strategies [29], can help recycled nutrient
carriers become competitive in the market.

One of the approaches that could be applied to the recycled fertilizer industry is
the use of microbial solubilization [30]. The mechanisms of this natural process in the P
cycle are fairly well understood, and numerous microbial strains (phosphorus solubilizing
microorganisms—PSMs) performing this process are known [31,32]. Studies have shown
that PSMs can be activators of insoluble P compounds in soils [33] and fertilizer feedstocks
from both primary and secondary sources [34–36]. PSMs also promote plant growth
through other biological mechanisms [37], which is an additional benefit of their use as/in
biofertilizers (definition according to Mącik et al. [38]).

The concept of incorporating living PSM cultures into waste-based formulations [39]
has led to the development of several biofertilizers from sewage sludge ash (SSA), animal
bones and blood. The substrate used was activated by Bacillus megaterium or Acidithiobacillus
ferrooxidans strains. The agronomic usefulness of these biofertilizers was tested under field
conditions. Promising results have already been reported on the yield and environmental
performance of these products [40–44]. This paper deals with the influence of waste-
derived biofertilizers on the selected quality parameters of wheat (test crop) yield, i.e.,
technological properties (hectoliter (test) weight, hardness index, Zeleny (sedimentation)
index, starch, wet gluten, and protein content), proteinogenic amino acid contents, and the
content of macro- and micronutrients and selected toxic elements. The listed technological
characteristics of grain are among the properties that determine grain destination and
suitability for processing [45,46], amino acid profile and other macro- and micronutrient
compositions are elements of the nutritional value of grain [47], while the absence/presence
of potentially toxic elements determines the safety of grain products for their consumers
(humans or livestock) [48]. The study hypothesized that the tested bioproducts would
not have a negative impact on the studied yield quality parameters when compared to
conventional P fertilizers.

2. Materials and Methods
2.1. Fertilizers and Experiments

Six biofertilizers made from waste materials and activated with PSMs were eval-
uated agronomically based on field experiments. The raw materials used for fertilizer
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production were sewage sludge ash (SSA), animal (poultry) bones, and dried animal
(porcine) blood. The PSMs used were Bacillus megaterium or Acidithiobacillus ferrooxidans
strains. The fertilizers were formulated as suspensions or granules. Table 1 presents an
overview of the biofertilizers under study, while Table S1 provides a detailed listing of their
chemical composition.

Table 1. Biofertilizers tested in the field experiments.

Symbol Raw Material Bacteria

Suspension biofertilizers

AsBm Sewage sludge ash 1 Bacillus megaterium 3

BsBm Animal bones 2 Bacillus megaterium

Granular biofertilizers

AgAf Sewage sludge ash Acidithiobacillus ferrooxidans 4

ABgAf Sewage sludge ash + animal bones Acidithiobacillus ferrooxidans
ABgBm Sewage sludge ash + animal bones Bacillus megaterium
AHgBm Sewage sludge ash + dried animal blood 2 Bacillus megaterium

1 from the ‘Łyna’ Municipal Wastewater Treatment Plant in Olsztyn, Poland; 2 from the meat industry; 3 from
the Polish Collection of Microorganisms at the Institute of Immunology and Experimental Therapy of the Polish
Academy of Sciences in Wrocław, Poland; 4 from Professor Zygmunt Sadowski, Wroclaw University of Science
and Technology (strain isolated from the tailings impoundment “Iron Bridge”, Poland) [49].

The study compared biofertilizers to conventional P fertilizers, including superphos-
phate Fosdar™40 (SP; Grupa Azoty FOSFORY Sp. z o.o. in Gdańsk, Poland), and phos-
phorite Syria (PR; Luvena in Luboń, Poland). Biofertilizer analogues without PSM, such as
ash-water solution (A + H2O), granular fertilizer from SSA and bones (ABg), and granular
fertilizer from SSA and blood (AHg), were also included in the study. Additionally, a no-P
treatment was used. The New Chemical Syntheses Institute in Puławy, Poland, produced
biofertilizers and fertilizers from waste using a formula developed by the Department of
Advanced Material Technologies at Wrocław University of Science and Technology, Poland.

Between 2014 and 2017, seven field experiments were conducted to test renewable
fertilizers on winter or spring common wheat (Triticum aestivum ssp. vulgare Mac Key).
Table 2 presents basic information on the experiments. More details on the experiment
designs and other agricultural data can be found in Table S2. All agricultural practices,
except for P treatments, were consistent within each experiment and followed the principles
of good agricultural practice.

Table 2. Basic data on the experiments performed.

Experiment Biofertilizers
Tested

Reference
Treatments P Doses, kg ha−1 P-Treatment

Number (n) Test Crop Growing
Season

I AsBm, BsBm no P, SP, PR, A + H2O 0, 21 6 (24) Spring wheat 2014
II AsBm no P, SP, PR 0, 17.6, 26.4, 35.2 10 (80) Spring wheat 2015
III AgAf, ABgAf no P, SP 0, 17.6, 26.4, 35.2 10 (40) Winter wheat 2014/2015
IV ABgBm no P, SP, ABg 0, 17.6, 26.4, 35.2 10 (40) Winter wheat 2015/2016
V AHgBm no P, SP, AHg 0, 17.6, 26.4, 35.2 10 (40) Spring wheat 2016
VI AHgBm no P, SP, AHg 0, 17.6, 26.4, 35.2 10 (40) Winter wheat 2016/2017
VII AHgBm no P, SP, AHg 0, 17.6, 26.4, 35.2 10 (40) Spring wheat 2017

2.2. Experimental Site Description

The experiments were conducted at the Production and Experimental Station “Bał-
cyny” Sp. z o.o. in Bałcyny, located in the Warmińsko-Mazurskie province of northeastern
Poland. The region has a temperate climate and glacial landforms, with the most common
soil type being Luvisols [50]. Soils meeting the requirements of the test crop were used in
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the trials. The pHKCl values of the 0–30 cm soil layer ranged from 4.98 to 6.28. The total con-
tents of C, N, P, K, and Mg were 6.48 to 8.90 g kg−1, 1.01 to 1.42 g kg−1, 0.43 to 0.61 g kg−1,
2.90 to 3.30 g kg−1, and 1.88 to 2.25 g kg−1, respectively (see Table S3 for detailed basic
soil characteristics before the start of the individual experiments). The precipitation and
thermal regimes during the experimental growing seasons differed from those typical of the
region. Seasons in experiments I–III were too dry for wheat, while seasons in experiments
IV–VII were rather too wet for this species (see Table S4 for detailed data).

2.3. Grain Sampling and Analyses

Samples of wheat grain weighing approximately 1 kg were taken from each plot after
combine harvesting. From these samples, approximately 200 g portions of grain were
weighed, cleaned of impurities and weed seeds, and forwarded for further analyses. The
technological properties of the grain were analyzed, including hectoliter (test) weight,
hardness index, Zeleny (sedimentation) index, starch, wet gluten, and protein content (in
Experiments II–VII). Additionally, proteinogenic amino acid contents (in Experiments II
and V), and contents of macronutrients, micronutrients, and selected toxic elements (in
Experiments I–V) were determined.

The technological properties of wheat grain were analyzed using a near-infrared (NIR)
grain analyzer (Infratec 1241, FOSS, Hillerød, Denmark) following the manufacturer’s
instructions.

The analysis of amino acids in grain was performed by Eurofins Steins Laborato-
rium (Vejen, Denmark; accredited according to DS-EN ISO/IEC 17025 [51], the Danish
Accreditation Fund DANAK Reg. No. 222) according to the standard methods [52] and
regulation [53]. Three different methods were used to hydrolyze the plant material for
amino acid analysis: alkaline hydrolysis for tryptophan, acid hydrolysis preceded by oxida-
tion for cysteine and methionine, and acid hydrolysis for the remaining amino acids. The
hydrolyzed amino acids were quantified via ion exchange chromatography with ultraviolet
detection (IC-UV).

Elemental analysis of grain samples was performed by the Chemical Laboratory
of Multielemental Analysis at Wrocław University of Science and Technology (Wrocław,
Poland; accredited according to PN-EN ISO/IEC 17025, Polish Center for Accreditation
Certificate No. AB 696). The Vario Macro Cube Elementar (C,H,N) analyzer (Elementar
Analysensysteme, Langenselbold, Germany) was used to analyze the C and N contents
of the grain samples, with D-phenylalanine as the standard solution. The contents of
other elements were determined using an inductively coupled plasma-optical emission
spectrometer (ICP-OES) with a pneumatic nebulizer and axial view (iCAP Duo, Thermo
Scientific, Waltham, MA, USA) [54]. The levels of detection (LoD) were 1.0, 2.5, 0.5, 0.025,
1.0, 0.5, 0.04, 0.04, 0.025, 0.025, 0.002, 0.013, 0.05, 0.015, 0.001, 0.005, and 0.01 mg kg−1 for P,
K, Ca, Mg, S, B, Cu, Fe, Mn, Mo, Ni, Zn, As, Al, Cd, Cr, and Pb, respectively.

2.4. Statistical Analysis

The effect of P fertilization on the studied grain quality traits was tested for significance
using the analysis of variance (ANOVA) or the Kruskal-Wallis test when the assumptions
of ANOVA were not met. Statistical analysis was performed for each experiment separately.
The normality of variable distribution and homogeneity of variance were verified by
applying the Shapiro-Wilk W test and Levene’s test, respectively. For statistical calculations,
values of element content below the level of detection (LoD) were replaced by the LoD.
Statistical analysis was performed with Statistica 13.3 [55]. When there were no significant
differences between fertilizer treatments, only the means, medians and standard errors
(SEs) of the variables from the entire experiment are shown in the tables.

3. Results

There was no significant effect of P fertilization (p > 0.05), whether in the form of
conventional fertilizers, recycled fertilizers, or biofertilizers, applied at different rates, on
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the technological traits of wheat grain, i.e., hectoliter weight, hardness index, Zeleny index,
starch, wet gluten, and protein content, in any of the experiments under study (II–VII)
(Table 3).

Table 3. Technological traits of wheat grain; means, medians, standard errors (SE), and p-values for
ANOVA or Kruskal-Wallis tests for all phosphorus treatments in the individual experiments 1.

Traits Statistics
Experiments

II III IV V VI VII

Hectoliter (test) weight, kg/hL mean 79.6 83.0 76.9 76.7 79.4 75.1
median 79.7 83.1 76.9 76.7 79.4 75.1

SE 0.08 0.06 0.05 0.08 0.08 0.12

p 0.771 0.816 0.851 0.842 0.991 0.719

Hardness index mean 87.4 95.0 50.9 59.0 67.4 54.0
median 81.5 96.6 51.2 58.1 67.7 54.2

SE 2.89 1.16 0.48 0.56 0.47 0.36

p 0.471 0.188 0.693 0.133 0.397 0.849

Zeleny (sedimentation) index mean 50.0 33.3 32.7 44.5 23.8 38.3
median 45.5 32.6 32.4 44.6 23.9 38.3

SE 0.48 0.49 0.36 0.34 0.25 0.42

p 0.860 0.969 0.855 0.841 0.842 0.817

Starch content, % mean 67.3 70.8 69.9 68.1 69.4 68.3
median 65.8 70.9 69.9 68.1 69.4 68.4

SE 0.32 0.09 0.08 0.06 0.06 0.06

p 0.845 0.222 0.867 0.794 0.987 0.509

Wet gluten content, % mean 33.2 26.4 24.3 28.2 21.3 26.3
median 33.4 26.3 24.2 28.3 21.4 26.3

SE 0.28 0.18 0.15 0.12 0.10 0.13

p 0.877 0.940 0.922 0.887 0.982 0.872

Protein content, % mean 14.3 11.8 11.9 13.3 10.3 12.6
median 14.2 11.7 11.9 13.3 10.3 12.6

SE 0.06 0.06 0.05 0.04 0.04 0.05

p 0.996 0.876 0.782 0.987 0.980 0.883
1 no significant differences between phosphorus treatments in the individual experiments (p > 0.05).

The content of essential and non-essential amino acids in wheat grain was not affected
by the tested phosphorus fertilization treatments in Experiments II and V (p > 0.05) (Table 4).

Table 4. Contents of amino acids in wheat grain (g kg−1 DM); means, medians, standard errors (SE),
and p-values for ANOVA or Kruskal-Wallis tests for all phosphorus treatments in the individual
experiments 1.

Essential
Amino Acids Statistics

Experiments Non-Essential
Amino Acids Statistics

Experiments

II V II V

Histidine mean 2.99 2.74 Alanine mean 4.63 4.20
median 2.99 2.75 median 4.63 4.21

SE 0.02 0.02 SE 0.03 0.03

p 0.989 0.593 p 0.982 0.667

Isoleucine mean 4.47 3.97 Arginine mean 6.21 5.69
median 4.44 6.96 median 6.20 5.72

SE 0.03 0.03 SE 0.05 0.06

p 0.990 0.921 p 0.946 0.379
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Table 4. Cont.

Essential
Amino Acids Statistics

Experiments Non-Essential
Amino Acids Statistics

Experiments

II V II V

Leucine mean 9.01 8.06 Aspartic acid mean 6.78 5.91
median 8.93 8.05 median 6.78 5.88

SE 0.06 0.07 SE 0.05 0.06

p 0.983 0.585 p 0.748 0.396

Lysine mean 3.52 3.32 Cysteine mean 2.81 2.55
median 3.52 3.28 median 2.83 2.57

SE 0.02 0.05 SE 0.02 0.02

p 0.991 0.689 p 0.796 0.352

Methionine mean 2.08 1.85 Glutamic acid mean 43.8 37.1
median 2.10 1.88 median 43.6 37.0

SE 0.02 0.02 SE 0.42 0.35

p 0.497 0.161 p 0.915 0.752

Phenylalanine mean 6.45 5.60 Glycine mean 5.63 5.09
median 6.41 5.62 median 5.60 5.10

SE 0.05 0.05 SE 0.04 0.04

p 0.985 0.377 p 0.985 0.602

Threonine mean 3.91 3.51 Proline mean 14.2 12.2
median 3.92 3.51 median 14.1 12.3

SE 0.03 0.03 SE 0.14 0.11

p 0.918 0.576 p 0.998 0.692

Tryptophan mean 1.53 1.41 Serine mean 6.61 5.77
median 1.54 1.42 median 6.59 5.77

SE 0.01 0.01 SE 0.06 0.07

p 0.437 0.617 p 0.992 0.523

Valine mean 5.62 5.14 Tyrosine mean 3.61 3.23
median 5.59 5.14 median 3.60 3.22

SE 0.03 0.04 SE 0.03 0.05

p 0.992 0.903 p 0.988 0.697
1 no significant differences between phosphorus treatments in the individual experiments (p > 0.05).

No significant changes (p > 0.05) were observed in the content of macronutrients, mi-
cronutrients and potentially toxic elements in wheat grain under the applied P fertilization
treatments in the experiments studied (I–V) (Tables 5 and 6).

Table 5. Contents of macroelements in wheat grain (g kg−1 DM); means, medians, standard errors
(SE), and p-values for ANOVA or Kruskal-Wallis tests for all phosphorus treatments in the individual
experiments 1.

Elements Statistics
Experiments

I II III IV V

P 2 mean 3.63 3.51 1.97 2.84 3.84
median 3.62 3.49 1.98 2.84 3.83

SE 0.024 0.027 0.025 0.014 0.018

p 0.291 0.141 0.359 0.795 0.995

C mean 406 409 341 416 413
median 405 406 341 416 413

SE 0.46 1.52 1.85 0.25 0.28

p 0.895 0.340 0.910 0.482 0.934
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Table 5. Cont.

Elements Statistics
Experiments

I II III IV V

N mean 22.4 22.8 19.0 18.9 21.5
median 22.3 22.6 18.7 18.7 21.5

SE 0.12 0.09 0.10 0.12 0.06

p 0.836 0.431 0.910 0.826 0.358

K mean 4.03 4.62 3.86 3.88 4.20
median 4.00 4.29 3.82 3.87 4.219

SE 0.030 0.024 0.031 0.020 0.019

p 0.395 0.791 0.386 0.985 0.988

Ca mean 0.49 0.33 0.29 0.32 0.33
median 0.49 0.32 0.27 0.31 0.33

SE 0.005 0.007 0.017 0.006 0.004

p 0.855 0.516 0.991 0.847 0.608

Mg mean 1.40 1.40 1.01 1.06 1.34
median 1.39 1.39 1.00 1.06 1.34

SE 0.011 0.009 0.008 0.004 0.006

p 0.529 0.200 0.364 0.695 0.995

S mean 1.35 1.38 1.18 1.16 1.34
median 1.34 1.38 1.16 1.16 1.35

SE 0.010 0.010 0.010 0.007 0.007

p 0.276 0.544 0.388 0.909 0.511
1 no significant differences between phosphorus treatments in the individual experiments (p > 0.05); 2 detailed
data are a part of a separate paper [42].

Table 6. Contents of microelements and potentially toxic elements in wheat grain (mg kg−1 DM);
means, medians, standard errors (SE), and p-values for ANOVA or Kruskal-Wallis tests for all
phosphorus treatments in the individual experiments 1.

Elements Statistics
Experiments

I II III IV V

B mean <LoD <LoD 0.54 0.53 0.57
median <LoD <LoD <LoD <LoD <LoD

SE 0.024 0.014 0.022

p 0.571 0.720 0.749

Cu 2 mean 2.84 3.81 2.29 3.81 4.37
median 2.79 3.80 2.29 3.81 4.12

SE 0.067 0.051 0.051 0.113 0.276

p 0.536 0.525 0.608 0.966 0.994

Fe 3 mean 39.7 56.3 59.6 32.7 40.8
median 39.2 55.2 56.9 31.7 39.4

SE 0.51 1.91 2.09 0.72 1.03

p 0.917 0.882 0.523 0.348 0.385

Mn mean 26.5 20.7 21.6 24.5 23.5
median 26.9 20.4 22.2 24.9 23.3

SE 0.51 0.26 0.36 0.25 0.18

p 0.133 0.376 0.217 0.668 0.985
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Table 6. Cont.

Elements Statistics
Experiments

I II III IV V

Mo mean 1.01 1.99 1.84 1.21 1.70
median 0.98 2.11 1.76 0.95 1.16

SE 0.127 0.138 0.180 0.217 0.244

p 0.053 0.122 0.585 0.732 0.512

Ni 2 mean 0.107 0.038 0.197 0.155 0.187
median 0.096 0.021 0.164 0.126 0.059

SE 0.024 0.005 0.022 0.014 0.043

p 0.131 0.258 0.922 0.421 0.868

Zn 2 mean 22.2 40.5 25.6 24.9 26.3
median 22.1 40.3 25.4 24.8 26.

SE 0.42 0.52 0.47 0.38 0.27

p 0.597 0.226 0.576 0.405 0.823

As 2 mean <LoD 0.058 0.061 0.056 0.100
median <LoD <LoD <LoD <LoD 0.076

SE 0.003 0.004 0.002 0.009

p 0.252 0.776 0.468 0.713

Al 3 mean 8.98 <LoD <LoD 2.69 2.51
median 8.95 <LoD <LoD 2.11 2.05

SE 0.353 0.354 0.324

p 0.721 0.170 0.590

Cd 4 mean 0.086 0.039 0.012 0.016 0.036
median 0.082 0.040 0.011 0.016 0.038

SE 0.004 0.001 0.001 0.002 0.002

p 0.489 0.452 0.638 0.085 0.463

Cr 2 mean 0.193 0.087 0.082 0.253 0.432
median 0.141 <LoD <LoD 0.168 0.292

SE 0.047 0.015 0.025 0.043 0.071

p 0.477 0.268 0.754 0.284 0.984

Pb 4 mean 0.014 0.046 0.078 0.019 0.038
median 0.012 0.027 0.041 <LoD <LoD

SE 0.001 0.005 0.010 0.004 0.007

p 0.590 0.686 0.888 0.725 0.869
1 no significant differences between phosphorus treatments in the individual experiments (p > 0.05); 2 a part of the
data is published in [43]; 3 a part of the data is published in [56]; 4 a part of the data is published in [41].

4. Discussion

Wheat grain quality is influenced by genetics, environment, and management prac-
tices, including fertilization [57]. After nitrogen (N), phosphorus (P) is the second limiting
element for plant growth, and is usually supplemented with fertilizers. The forms of P
in the applied sources and soil characteristics influence the amount of P in the soil solu-
tion [58]. The availability of P in the soil solution can lead to improved nutrient uptake by
wheat plants, especially N, which ultimately affects the levels of protein, wet gluten, starch,
macronutrients and micronutrients in the wheat grain. In addition, it can have a positive
impact on hectoliter (test) weight, wheat grain hardness, and Zeleny (sedimentation) index.
Hectoliter weight is a measure of the bulk density and soundness of grain [59], wheat
grain hardness refers to the endosperm texture and resistance to deformation that affects
grinding and milling processes [60], and Zeleny (sedimentation) index is a measure of
gluten strength and protein quality [61].
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The present study found no significant differences in the effects of recycled and conven-
tional fertilizers on wheat grain technological properties, amino acid and nutrient/element
contents, which is a satisfactory result. This finding indicates that neither the form of P
carrier nor the dose of P played a significant role in the development of these grain quality
characteristics. The studies by Gaj et al. [62] and Boukhalfa-Deraoui et al. [63] found no
significant difference in grain protein content as a function of P source used. Similarly,
Wołoszyk et al. [64] observed no effect of different waste-derived soil amendments on test
weight, protein content, and Zeleny test. In contrast, Jiao et al. [65] observed no variation in
N content in durum wheat grain depending on the type of P source (different commercial
fertilizers), while the type of P source differentiated P and K content in grain. Although the
lower solubility of P compounds in the waste feedstock has been reported elsewhere [23],
this potential drawback did not alter grain quality characteristics in the present study.

The lack of response of technological properties of the grain, particularly protein,
gluten, and starch content, to an increase in P dosage may be explained by the findings of
Agapie and Bostan [66], which suggest that unilaterally applied P does not significantly
affect the studied qualitative parameters, but is used as a support for N. Furthermore, the
results of the present study are consistent with the findings of Eppendorfer [67] that P
affects the amino acid composition of wheat grain only indirectly through its effects on N
concentration. Boukhalfa-Deraoui et al. [63] reported that the P application rates (30, 60, 90
and 120 kg P ha−1) were not significant for the protein content of the wheat grain when the
N fertilization level was fixed. In the present study, the N rate was the same for all plots
within each experiment, including those with no P treatments.

The present study found no significant differences in grain quality between the control
(no P) and P-treated plots, regardless of the dose. The results indicate that plants from the
control (no P) plots did not experience a P deficit that would contribute to yield quality
deterioration, however, P supplementation appeared to help maintain the level of quality
traits while increasing yield (Table S5). This could be attributed to the fact that P application
stimulates root development, more intensive plant uptake of other nutrients as well as their
translocation, assimilation and accumulation of assimilates in the grain [6,7,9], leading
to the observed stability in yield quality. According to current knowledge, plants use
a variety of molecular, physiological, and ecological mechanisms to maintain nutrient
homeostasis [68,69].

Other authors [66,70] have also reported no response of the protein, starch, and wet
gluten content in wheat grains, as well as the Zeleny and hardness indices, to P application
and increased rates (0–120 kg P2O5 ha−1). No significant effect of P fertilization on protein
and amino acid contents was observed by Zheng et al. [71]. Jordan-Meille et al. [72] reported
non-significant effects of P treatments (no P; 25–100 kg P ha−1y−1) on the concentration
of some macronutrients, micronutrients, and trace elements in wheat grain (long-term
experiment). On the other hand, positive responses of protein content [63,73–75], hectoliter
(test) weight [75,76], gluten content [75] to P application compared to no P treatments have
been reported by other authors, with no differences between P rates in some cases [73,74].
In other studies conducted under different environmental conditions, the application of
external P was observed to have varying effects on the amino acid [77–80] and elemental
content [81,82] of wheat grain.

Panayotova et al. [83] and Stefanova-Dobreva et al. [75] observed that the over-
application of P fertilizer (160 kg P2O5 ha−1) led to a decrease in test weight, protein,
and gluten content, particularly when N was not supplied simultaneously [83]. A reduction
in grain protein content and zinc (Zn) bioavailability in wheat due to excessive P fertilizer
application was reported by Zhang et al. [84]. In the present study, no changes in grain
quality were observed when the highest, already yield-ineffective dose of P was applied.
With constant N and K fertilization, the excess P could be deposited in the straw, taken up
by weeds, immobilized in the soil or leached into the soil profile [42].

Given the role of PSMs in increasing P availability for plant uptake [33,37], this in-
creased P availability can be expected to increase the uptake of other nutrients, particularly
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N, by the wheat plant, ultimately affecting the quality of the traits studied. However, the
present study did not find any evident effect of the PSM strains used in waste-based biofer-
tilizers on grain quality. It is noteworthy that the experiments revealed also a rather weak
response of wheat yield to these bioactivators, with more promising results only under
poorer habitat conditions (lower soil P content, worse previous crop; Tables S2, S3 and S5).
There are many reports in the literature of significant responses of certain crop/cereal qual-
ity traits to PSMs when used alone [85,86] or in combination with a P substrate [73,79,87,88].
Most reports relate to increases in seed/grain protein content under PSMs [73,79,86–91],
but increases in hectoliter weight [92,93], sedimentation value [89], starch content [90], and
some amino acids [90] and elements [88,92] have also been demonstrated. The results of
the present study, however, are consistent with those that found no effects of PSMs on
yield quality: protein content [73,92,94], gluten content [92], hectoliter weight [85,89,91,95],
grain hardness [96], and some element contents [89,92]. The effects may also depend on
the microbial strain used [73]. The limited effectiveness of applied PSMs as plant growth
promoters may be due to their low abundance when introduced with biofertilizers, poor
competitiveness with other soil microorganisms [97], and susceptibility to uncontrolled
environmental factors under varying field conditions [98].

Primary and secondary raw materials for P fertilizer production often contain poten-
tially toxic elements, and the possibility of these elements accumulating in consumable
plant parts, including grain, is a concern [99]. In the present study, the predominant feed-
stock for recycled fertilizers and the potential source of toxic elements was SSA (Table S1).
However, the application of P fertilizers, including products based on SSA, did not change
the PTE content in the wheat grain and the content remained below the permitted or recom-
mended limits for plant material intended for human and animal consumption (Table S6).
This can be attributed to the low concentration of toxic elements in the fertilizers, reason-
able fertilizer application rates and, consequently, negligible PTE input to soil and poor
translocation to wheat grain. The PSMs are claimed to affect the levels of toxic elements in
wheat grain by influencing their availability, uptake and distribution in the plant. These
microbes can immobilize heavy metals and prevent their redistribution in plants through
precipitation, binding affinity, and sorption [100–102]. Moreover, they can help reduce
the translocation and accumulation of toxic elements in wheat grain by improving overall
plant health and vigor, nutrient uptake and plant growth [103]. Such phenomena were
not observed in the present study. In previous articles by the authors [41,43,56], the issue
of PTE levels in soils and plants under the influence of certain recycled P fertilizers was
discussed in more detail, and caution was recommended for their repeated application due
to the chemical heterogeneity of secondary nutrient sources [104] and the complexity of
toxic element fate along the source-pathway-sink/receptor chain [105].

5. Conclusions

Phosphorus biofertilizers made from renewable raw materials, i.e., sewage sludge ash,
animal bones, dried animal blood and activated with Bacillus megaterium or Acidithiobacillus
ferrooxidans bacteria, similarly to conventional fertilizers, did not affect the technological
properties of wheat grain, the content of proteogenic amino acids, macro and micronutrients
or selected toxic elements in wheat grain when applied at P doses up to 35.2 kg ha−1.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture14050727/s1, Table S1: Elemental composition of
P-fertilizers used in the field experiments; Table S2: Field experiments conducted; experiment details
and basic agricultural data; Table S3: Soil characteristics before the start of the experiment; Table S4:
Precipitation and air temperature during the study period according to the Meteorological Station
in Bałcyny, Poland; Table S5: Wheat yields (t ha−1) under the influence of P treatments in the
experiments; Table S6: Reference values for potentially toxic elements (mg kg−1) in plants, according
to various sources; references [106–114] are used in the Supplementary Materials section.

https://www.mdpi.com/article/10.3390/agriculture14050727/s1
https://www.mdpi.com/article/10.3390/agriculture14050727/s1
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