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Abstract: This work aims to develop a robust model predictive control (MPC) based on the active
disturbance rejection control (ADRC) approach by using a discrete extended disturbance observer
(ESO). The proposed technique uses the ADRC approach to lump disturbances and uncertainties into
a total disturbance, which is estimated with a discrete ESO and rejected through feedback control.
Thus, the effects of the disturbances are attenuated, and a model predictive control is designed based
on a canonical model free of uncertainties and disturbances. The proposed control technique is
tested through simulation into a robotic autonomous underwater vehicle (AUV). The AUV’s dynamic
model is used to compare the performance of a classical MPC and the combined MPC-ADRC. The
evaluation results show evidence of the superiority of the MPC-ADRC over the classical MPC under
tests of reference tracking, external disturbances rejection, and model uncertainties attenuation.

Keywords: model predictive control; active disturbance rejection control; extended state observer;
autonomous underwater vehicles; underwater robotics

1. Introduction

Model predictive control (MPC) is based on the solution of an optimal control problem
(OCP) for a prediction time horizon, subject to dynamic, states, and control constraints.
The OCP attempts to find the best control sequence that produces the plant’s desired
behavior. It is solved at every sample time step, taking as initial conditions the system’s
current state. Then, the first element of the optimal control sequence is applied to the plant,
and the entire optimization process is repeated at the subsequent sampled step with a
moving horizon [1]. MPC was initially developed to meet the needs of industrial processes
with relatively slow dynamics [2]; however, the development of computation capabilities
of modern computers has impulsed the application of MPC to faster dynamic systems with
complex dynamics. This is the case of MPC applied to autonomous underwater vehicles
(AUV) [3,4], where the possibility to plan a control action according to the operation
horizon’s features allows for the development of an anticipated control action instead of
reactive control strategies.

MPC has been successfully implemented in a wide variety of applications; however, its
main drawback is that it relays on the prior knowledge of an accurate mathematical model
of the system dynamics. Variations of the classical MPC have been proposed to attenuate
the effect of model uncertainties with techniques of robust MPC for linear systems [5].
Likewise, the robust nonlinear MPC (NMPC) have been proposed with the use of extended
Kalman filters that estimate the process noise [6]. Robustness against model mismatching
or unknown disturbances in NMPC are generally considered as an inherent property [7,8].

Most robust NMPC schemes that consider model uncertainties in the design process
are based on minimizing the worst-case scenario from a set of uncertain models; however,
the application of these techniques results in a complex task due to the need to impose
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stability constraints that could lead to an unfeasible solution during the search of an optimal
control sequence [9]. In a complementary way, the adaptive model predictive control uses
parametric estimation combined with robust MPC algorithms to gradually reduce the
conservative control laws by adjusting the prediction model [10].

An alternative way to get a robust MPC is the estimation of disturbances through
disturbance observers as high-gain observers [11], sliding mode disturbance observers [12],
and nonlinear disturbance observers [13]. Although the disturbance observers in combi-
nation with predictive control have shown satisfactory results, their combination requires
accurate prediction models and the evaluation of complex dynamic constraints. Alter-
natively, this paper proposes a model predictive control based on the active disturbance
rejection control, which uses a discrete extended state observer to estimate the effects of
model uncertainties and external disturbance. Additionally, the proposed control strategy
uses a canonical dynamic model to predict the system behavior during the prediction
horizon, which results in linear dynamic constraints.

Classical model-based control approaches rely on an accurate dynamic model of the
system. However, in applications such as AUVs control, it is almost impossible to find a
precise model, due to the hydrodynamic effects and the ocean flow currents, which produce
model uncertainties and unknown external disturbances. Researchers have devoted a
huge amount of effort to solving this problem. For instance, a sliding mode control (SMC)
combined with an optimal thrust distribution on an over-actuated AUV was adopted to
improve the robustness of dynamic positioning under the effects of the ocean current and
model uncertainties [14]. The SMC has been also combined with disturbance observers
to stabilize an AUV under time-varying external disturbance [15]. However, the SMC
implementation needs to take special care of chattering in the control signals. Recently,
adaptive control techniques based on backstepping have been developed for trajectory
tracking task in AUVs [16,17]. The adaptive control approach has been also studied using
fuzzy techniques with the design of fuzzy disturbance observer [18]. The use of disturbance
observers has shown to be beneficial for the attenuation of disturbance effects. This is the
case of the motion control strategy that integrates deep reinforcement learning and the
extended state observer (ESO) to compensate for the model uncertainties into an optimal
motion control policy [19]. Although the previously-mentioned controllers have effectively
improve the closed-loop robustness of AUV motion control, there are opportunities to
enhance the design process and results of control strategies for AUV. This is the case of
combination of optimal control techniques like MPC with active disturbance rejection
control strategies [20].

The remainder of this paper is organized as follows: The Section 2 describes the
proposed control technique. Section 2.1 shows the design of the discrete extended state
observer. Section 2.2 presents our proposed model predictive control based on the active
disturbance rejection control approach. Section 2.3 finds a mathematical model for the
autonomous underwater robot. Section 3 presents and discuses simulation results. Finally,
Section 4 draws conclusions and future work.

2. Materials and Methods

The proposed control technique is a compound strategy that uses the features of
a disturbance observer and an optimal control approach to finding a control sequence
for a receding horizon that predicts the best control actions in every sampled time step.
To develop the proposed technique, this section presents first a discrete extended state
observer that estimates the system’s states and a total disturbance that lumps the external
disturbances and model uncertainties into a single signal. Then, a model predictive control
(MPC) strategy based on the active disturbance rejection control (ADRC) approach is devel-
oped for a general system with a single input and a single output. Then, an autonomous
underwater vehicle is modeled to describe the dynamics of an underactuated underwater
robot, which is based on the four DoF Seabotix LBV150 ROV. This model is transformed
to separate the controllable dynamics from the uncontrollable internal dynamics of the
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system. This results in a simplified canonical model that is used to test the proposed MPC
based on ADRC.

2.1. Discrete Extended State Observer

Let us consider a general nonlinear system, defined as

y(n)m = fm

(
ym, ẏm, · · · , y(n−1)

m

)
+ gm

(
ym, ẏm, · · · , y(n−1)

m

)
um + ϕ

(
ym, ẏm, · · · , y(n−1)

m , um

)
+ ζ, (1)

where n is the order of the system, ym is the control output, y(n)m is the n-th time deriva-
tive of ym, um is the control input, fm(·) is the known dynamic model of the system,
ϕ(·) represents the model uncertainties and unmodeled dynamics, and ζ represents the
external disturbances.

Assuming bounded uncertainties, bounded disturbances, and bounded dynamic
behavior, the signals ϕ(·), ζ, and fm(·) can be lumped into a total disturbance ξm, such as
that (1) is transformed into

y(n)m = gm

(
ym, ẏm, · · · , y(n−1)

m

)
um + ξm. (2)

Then, a local approximation around a defined operation condition allows to express
g(·) as a constant κm, which is valid in an open neighborhood around the operation point.
Then, (2) is expressed as,

y(n)m = κmum + ξm. (3)

This simplified model is used to design the extended state observer and feedback
controller under the following assumptions:

Assumption 1. The internal model of ξm can be approximated by a constant, at least during an
infinitesimal period of time.

Assumption 2. ξm and its first time derivative are bounded.

Assumption 3. The first time derivative of the total disturbance is expressed as

d
dt

ξm = ε, (4)

where ε is a small constant, such as that ε ≈ 0.

Then, based on such assumptions, the variable ξm can be used as an extended state of
the dynamic system. This allows to define an extended state vector

x := [ym ẏm ÿm · · · y(n−1)
m , ξm]

ᵀ, (5)

which produces an extended state space representation of the system as

ẏm = ẋ1 = x2,
ÿm = ẋ2 = x3,

... =
... =

...
y(n)m = ẋn = xn+1 + κu,

ξ̇m = ẋn+1 = ε.

(6)

In a compact form, the extended model is represented by a linear state space model
given by:

ẋ = Ax + Bu + E,
y = Cx,

(7)
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where A ∈ R(n+1)×(n+1), B ∈ Rn+1, C ∈ Rn+1, E ∈ Rn+1,

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

, B =


0
0
...
κ
0

, E =


0
0
...
0
ε

, Cᵀ =


1
0
...
0
0

.

Now, let us define a sampling period T and use the Euler’s method to find a discrete
approximation of the extended linear model (7). This is,

x(k + 1) = (I + TA)x(k) + TBu(k) + TE,
y(k) = Cx(k),

(8)

where k represents the discrete time variable.
Based on the discrete approximation of the simplified dynamic model (8), a discrete

extended state observer (ESO) is proposed using the Luenberger’s observer form. In this
case, the observer estimates the system states, but also the total disturbance represented
by the extended state xn+1. Since the pair (I + TA, C) is observable, the discrete ESO is
proposed as follows:

x̂(k + 1) = (I + TA)x̂(k) + TBu(k) + L(y(k)− ŷ(k)),
ŷ(k) = Cx̂(k),

(9)

where ˆ(·) denotes the estimated variable and L := [l1 l2 · · · ln]ᵀ is the vector of the
observer’s gains.

By subtracting (9) from (8), the estimation error dynamics is given by

ê(k + 1) = (I + TA− LC)ê + TE, (10)

where ê := x− x̂.
Under the assumption of a bounded and small ε, the stability of (10) depends of the

eigenvalues of (I + TA− LC). Then, the observer gains are selected in such a way that the
eigenvalues of (I + TA− LC) are inside a unitary circle of a complex z-plane, which results
in eigenvalues with modulus less than one. This ensures the convergence of the estimated
states to the real ones and an accurate estimation of the total disturbance. This estimation
will be used in the feedback control law proposed during the next section.

2.2. Robust MPC and ADRC

A model predictive control based on active disturbance rejection control is performed
by using the disturbance estimation provided by the discrete ESO. The states and dis-
turbance estimation are used into an optimal control problem (OCP) that computes an
optimal control sequence for a receding horizon. The model used to predict the system
behavior during the optimization process is a canonical structure that dismisses the model
uncertainties, external disturbances, and model nonlinearities. This solves the optimization
problem with less computation effort than the typical nonlinear MPC approaches. Since
the total disturbance is rejected through feedback control, the result is a robust model
predictive control strategy.

A general description of the control loop is shown into the Figure 1, where the con-
tinuous mathematical model represents the system dynamics, whose output y is sampled
with a sampling period T. The sampled output y(k) and control signal u(k) are used by the
discrete ESO to estimate the system states and the total disturbance, which are a source
input to solve the OCP that produces the robust MPC-ADRC control law.
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ሶ𝒙 = 𝐴𝒙 + 𝐵𝑢 + 𝐸,
𝑦 = 𝐶𝒙

Discrete
ESO

Robust 
MPC - ADRC

𝑟(𝑘) 𝑦(𝑘)𝑢(𝑘)

ෝ𝒙(𝑘)

ZOH

𝑇

Figure 1. Control loop for a robust MPC based on ADRC and a discrete ESO.

The OCP is defined to find an optimal control sequence that minimizes an objective
function, which is projected in a time horizon into the future and computed based on
a simplified model of the system. Based on the assumption that the total disturbance
estimation converges to the real disturbance, the simplified model takes a canonical form
that is used as a prediction model, which is almost free of uncertainties and disturbances.
This canonical model is given by

xs(k + 1) = Asxs(k) + Bsus(k),
ys(k) = Csxs(k),

(11)

where xs(k) := [ym(k) ẏm(k) · · · y(n−1)
m (k)]ᵀ, As ∈ Rn×n, Bs ∈ Rn, Cs ∈ Rn,

As =


1 T · · · 0
...

...
. . .

...
0 0 · · · T
0 0 · · · 1

, Bs =


0
0
...

Tκ

, Cᵀ
s =


1
0
...
0

.

In order to formulate the OCP, let us define, first, the control sequence along the pre-
diction horizon, which will be considered as a vector of search variables in the optimization
process. This is

us(k) := [us(0) us(1) · · · us(ρ) · · · us(N − 1)]ᵀ, (12)

where N is the length, in samples, of the prediction horizon, ρ ∈ Z+ is the time discrete
variable used inside the prediction horizon, which is set to zero in every sampling step and
runs until ρ = N − 1, this is ρ = {0, 1, 2, · · · , N − 1}. The prediction horizon and control
sequence are depicted into the Figure 2.

In the formulation of the optimal control problem, the cost function is defined as

JN(us(k)) =
N−1

∑
ρ=0

(
wee2

s (ρ) + wuu2
s (ρ)

)
, (13)

where es(ρ) := rs − ys(ρ) is the tracking error, rs := r(k) is the reference at time k, we and
wu are positive constant weights for the error and control signals, respectively.
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Past Future

𝑘

𝜌0 𝑁 − 1

𝑘 + 𝑁 − 1

𝑟(𝑘)

𝑦(𝑘)

𝑢𝑠
∗(𝜌)

𝑦𝑠(𝜌)

𝑡

Prediction horizon

Figure 2. Prediction horizon and optimal control sequence for time k.

The optimal control problem is subject to a set of equality and inequality constraints.
The equality constraints ensure the satisfaction of initial conditions and the dynamic
behavior of the system during the projected horizon. At the same time, the inequality
constraints ensure that the control actions are inside of the actuators’ range of the action.

Then, the OCP is formulated as:

min
us(k)

JN(us(k)) (14)

s.t.: xs(ρ) = [x̂1 x̂2 · · · x̂n]ᵀ, ρ = 0, (15)

xs(ρ + 1) = Asxs(ρ) + Bsus(ρ), ∀ρ ∈ [0, N − 1], (16)

−umax +
1
κ x̂n+1 ≤ us(ρ) ≤ umax +

1
κ x̂n+1, ρ = 0, (17)

−umax ≤ us(ρ) ≤ umax, ∀ρ ∈ [1, N − 1], (18)

where (14) is the cost function, (15) sets the initial conditions of the model to the state
values computed by the discrete ESO at time k, (16) is a dynamic constraint that ensures
the satisfaction of the system dynamics based on the canonical model (11), (17) imposes
boundaries for the control signal at the first time step of the prediction horizon, these bounds
are modified every sampled time step according to the total disturbance estimation, in such
a way that the optimal control sequence allows to inject the rejection of the estimated
disturbance. Likewise, (18) establishes the boundaries for the control actions over the
prediction horizon between ρ = 1 and ρ = N − 1.

The implementation of the dynamic constraints implies the propagation of the initial
conditions through all the prediction horizon, which results in a complex nonlinear struc-
ture that increases the computation time. In order to reduce the complexity of the dynamic
constraints, a multiple shooting approach is used to transform the dynamic propagation
into a set of equality constraints [21].

In order to implement the multiple shooting algorithm, let us define an extended set
of search variables in a vector as

w :=
[
uᵀ

s (k) xᵀs (0) xᵀs (1) · · · xᵀs (N)
]ᵀ, (19)

where w includes the control and state vectors sequences at t = k. This search vector
increases the number of search variables but simplifies the nonlinearity propagation of
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the system dynamics along the prediction horizon. Based on this approach, the system’s
dynamic constraints are included as a set of equality constraints as

hN(w) :=


xs(0)− [x̂1 x̂2 · · · x̂n]ᵀ

xs(1)− (Asxs(0) + Bsus(0))
...

xs(N)− (Asxs(N − 1) + Bsus(N − 1))

 = 0, (20)

and a set of inequality constraints defined as

gN(w) :=



us(0)− umax − 1
κ x̂n+1

us(1)− umax
us(2)− umax

...
us(N)− umax

−us(0)− umax +
1
κ x̂n+1

−us(1)− umax
−us(2)− umax

...
−us(N)− umax



≤ 0. (21)

Then, the OCP is transformed into a nonlinear programming problem (NLP) as

min
w

JN(w)

s.t.: gN(w) ≤ 0, Inequality constraints,
hN(w) = 0, Equality constraints.

The solution of the NLP results in an optimal sequence of control actions and a set
of state vectors that minimize the cost function for the prediction horizon. Based on that
solution, the control action for the current sampled time k is computed by subtracting the
total disturbance effect, which was estimated by the discrete ESO, from the first element of
the optimal control sequence found in the NLP. This allows to define a control law as

u(k) := u∗s (0)−
1
κ

x̂n+1(k). (22)

where u∗s denotes the optimal control sequence and u∗s (0) is the first element of the sequence.
In order to compute the closed-loop behavior under the effect of the control signal

proposed in (22), it is applied to the discrete model shown in (8), which results in a closed-
loop dynamics describe by

x1(k + 1) = x1(k) + Tx2(k),
x2(k + 1) = x2(k) + Tx3(k),

... =
...

xn(k + 1) = xn(k) + Tκu∗s (0) + T(xn+1(k)− x̂n+1(k)),
xn+1(k + 1) = xn+1(k) + Tε.

(23)

The stability analysis of the closed-loop dynamics is divided into two parts. The first
part considers the stability guaranteed by the selection of the ESO’s gains. The appropriate
selection of ESO’s gains allows for defining an ultimate bound to the total disturbance
estimation as

lim
k→∞

(xn+1(k)− x̂n+1(k)) = γ, (24)
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where γ is a positive constant that can be arbitrarily reduced as much as the physical
limitation in the hardware allows. The second part of the stability analysis considers the
effect of the optimal control sequence u∗s . Since this control sequence is computed from a
subset of control signals that guarantee the closed-loop stability through the convergence
of the optimization problem system, then it is possible to affirm that the closed-loop is
stable and the controlled variables converge to the vicinity of the target trajectory with an
ultimate bound.

Finally, The a summary of the implementation procedure of the MPC based on ADRC
is shown in the Algorithm 1. The following section shows the implementation of the
algorithm on an autonomous underwater robot.

Algorithm 1 MPC-ADRC implementation

Step 0: Find a simulation model.
Step 1: Design ESO.
Step 1.1: Define the order of the design dynamic model n and find an approximation of
the control input gain κ.
Step 1.2: Build the extended state model with the canonical form described in (7).
Step 1.3: Define a sampling period T according the Nyquist–Shannon sampling theorem
and find a discrete model approximation of the system dynamics as (8).
Step 1.4: Assign the observer gains L such as the eigenvalues of I + TA− LC are inside
the unite circle in the complex z-plane and build the extended state observer ESO as
shown in (9).
Step 2: MPC implementation.
Step 2.1: Define the weights we and wu and build the cost function (13).
Step 2.2: Define the equality constraints (20) and inequalities constraints (21).
Step 2.3: Define the prediction horizon length N.
Step 2.4: Implement a nonlinear programming algorithm that solves the optimization
problem at each sampling step.
Step 3: Evaluation.
Step 3.1: Build the control law as (22) and evaluate the closed-loop control using the
simulation model.
Step 3.2: Evaluate the performance and robustness of the closed-loop, if it is necessary
change observer gains L, weights we and wu, or prediction horizon length N and repeat
evaluation.

2.3. Autonomous Underwater Robot Model

In order to test the proposed robust MPC based on ADRC, an autonomous underwater
robot is used as a test platform of the control strategy. This system has dynamic features
that make it a suitable application of the robust MPC based on ADRC. First, the system
dynamics is highly nonlinear with hydrostatic and hydrodynamic effects that difficult an
accurate model identification. Second, the environment where the robot works has a high
degree of uncertainty with unpredictable ocean currents, especially in the vicinity of reefs
where the water flow is distorted by the rocks. These produce external disturbances on the
robot dynamics, which must be rejected by the control system. A third reason to apply the
proposed control strategy to the robotic AUV is the need to guarantee the satisfaction of
safety constraints to avoid the collision of the robot with obstacles in the environment and
to optimize the performance of the robot to increase its energy autonomy.

Let us consider the robotic autonomous underwater vehicle (AUV) shown in the
Figure 3, which has four thrusters: two in the rear, one in the top, and one in the port (left
side) [22]. The frames I and B shown in the figure represent the fixed inertial frame and
the body frame, respectively.
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Figure 3. Robotic autonomous underwater vehicle.

In order to find a mathematical model that describes the dynamic behavior of the
robotic AUV, the motion variables are defined according with the SNAME notation for a
submerged body through a fluid [23]. In this sense, the position of the robot is defined as
η :=

[
ηᵀ1 ηᵀ2

]ᵀ, where η1 ∈ R3 represents the position with respect to the inertial frame I
and η2 ∈ S3 represents the robot’s attitude, as well known as pose. To describe the position
of the robot, the three Cartesian coordinates are used such as that η1 := [x y z]ᵀ, where
x, y, and z represent the motion in the directions of surge, sway, and heave, respectively.
Likewise, the attitude is represented with the Euler angles as η2 := [φ θ ψ]ᵀ, where φ, θ,
and ψ represent roll, pitch, and yaw, respectively.

Then, the Newton-Euler’s method is used to analyze the motion of a submerged
rigid-body with six degrees of freedom (DoF) [24]. The mathematical model that describes
the AUV motion is given by

Mν̇ + C(ν)ν + D(ν)ν + g(η) = Γ, (25)

η̇ = J(η)ν, (26)

where ν :=
[
νᵀ

1 νᵀ
2
]ᵀ ∈ R6 denotes the linear and angular velocities with ν1 := [u v w]ᵀ

and ν2 := [p q r]ᵀ, respectively. Γ designates a vector of generalized forces and mo-
ments defined as: Γ := [ fᵀ τᵀ]ᵀ, where the body-fixed forces in x, y, and z are rep-
resented as f := [X Y Z]ᵀ and the body-fixed moments in φ, θ, and ψ are defined as
τ := [K M N]ᵀ.

Since the submerged body is exposed to hydrostatic and hydrodynamic effects,
the mass matrix includes the rigid body mass and inertial in MRB, and an added mass
term in MA, which represents the mass of fluid surrounding the robot that it must move
to deflect the resistance of the fluid. This is modeled as a virtual mass added to the rigid
body as:

M := MRB + MA, (27)

where MRB ∈ R6×6 and MA ∈ R6×6. Likewise, the Coriolis and centrifugal effects are
represented as

C(ν) := CRB + CA, (28)

where CRB ∈ R6×6 designates the effects of the rigid-body and CA ∈ R6×6 designates the
effects of the added mass. An additional factor in the description of the AUV is the viscous
damping. This is a hydrodynamic effect that produces dissipative moments and forces.
The main sources of damping are the skin friction and the interaction with waves and
internal currents. The total effects of damping are lumped into a drag matrix D(ν), which
is approximated as

D(ν) := Dq(ν) + Dl , (29)
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where Dq(ν) ∈ R6×6 and Dl ∈ R6×6 are the quadratic and linear drag matrices, respectively.
The term g(η) describes the restoring forces acting in the robot. It includes the gravita-

tional effects represented by a force W passing through the center of gravity (CG) and a
buoyancy force B passing through the center of buoyancy (CB). The restoring forces and
moments are expressed in the body-fixed frame as

g(η) =



(W − B) sin θ
−(W − B) cos θ sin φ
−(W − B) cos θ cos φ

−(ygW − ybB) cos θ cos φ + (zgW − zbB) cos θ sin φ
(zgW − zbB) sin φ + (xgW − xbB) cos θ cos φ
−(xgW − xbB) cos θ sin φ− (ygW − ybB) sin θ

, (30)

where W = mg, B = ρwg∇, m is the sum of the robot mass and the mass of water in the
ballast tanks, g is the acceleration of the gravity, ρw is the water density, ∇ is the volume of
liquid displaced by the robot, xg, yg, zg, and xb, yb, zb, are the coordinates of the CG and CB
with respect to the frame B. In an effort to simplify the dynamic interaction between these
two forces, the CG and CB are considered coincident in the origin of B; however, in general,
it is desirable to design AUV with the CB ahead of the CG to guarantee controllability and
stability in pitch.

The Jacobian matrix J(η) transforms the relative velocities expressed in B into the
inertial reference frame I . This is

η̇ = J(η)ν, (31)

⇓ (32)

ẋ
ẏ
ż
θ̇
φ̇
ψ̇

 =

[
J1(η2) 03×3
03×3 J2(η2)

]


u
v
w
p
q
r

, (33)

where J1(η2) := R(η2) ∈ SO(3) and J2(η2) ∈ R3×3 are a rotational and a transformation
matrices, respectively.

Since the underwater thrusters installed on the robot are not strictly aligned with the
body-fixed frame axis, the propulsion forces do not produce a pure vector of generalized
forces and moments in Γ. Then, it is necessary to find a mathematical expression that relates
the propulsion force vector fth with the Γ. This is

Γ := Tthfth, (34)

where Tth is known as an allocation matrix, which depends on the robot’s architecture and
the location of the thrusters. Additional details about the model can be found in [22,25].

Since the robot considered in this paper has four thrusters and can move in six DoF,
then the system is underactuated. This implies that the robot is partially controllable and
part of its dynamics is not directly affected by the propulsion of the actuators. According to
the geometrical distribution of the thrusters, the robot is underactuated in the pitch and
roll angles. Therefore, the following assumptions are adopted:

Assumption 4. It is assumed that the dynamics of the underactuated DoF are stabilized with
complementary elements such as fairwater planes.

Assumption 5. High speed and sharp turns are avoided to evade instability effects in the vertical plane.
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In order to adapt the proposed control strategy to the robotic AUV, a transformation
of the model is executed such as that the nonlinearities, model uncertainties, and external
disturbances are shown as input equivalent signals and the controllable dynamics is isolated
from the uncontrollable one. First, let us write the model as general nonlinear system

ẋr = fr(xr) + grur + ζr, (35)

where ζr represents the unmodeled dynamics and external disturbances, xr = [ηᵀ η̇ᵀ]ᵀ,
ur = fth,

fr(xr) =

[
η̇

∇J(η)η̇+ M−1(−C(ν)ν− D(ν)ν− g(η))

]
, gr(xr) =

[
0

M−1Tth

]
,

and
ν = J−1(η)η̇.

Then, the control output is defined as:

h(xr) :=


x∗ − x
y∗ − y
z∗ − z
ψ∗ − ψ

, (36)

where (·)∗ denotes the control reference.
By applying successive time derivatives to the control output until the control input is

explicit, the system dynamics takes the form

d
dt

h(xr) = ∇h(xr)ẋr, (37)

d
dt

h(xr) = ∇h(xr)fr(xr), (38)

d
dt

h(xr) = Lfr h(xr), (39)

d2

dt2 h(xr) = L2
fr

h(xr) + Lgr
Lfr h(xr)ur + Lζr

Lfr h(xr), (40)

where ∇h(xr) is the gradient of h(xr), Lfr h(xr) is the Lie derivative of h(xr) along fr(xr),
L2

fr
h(xr) is its second Lie derivative, and Lgr

Lfr h(xr) is a decoupling matrix, which is locally
invertible [26].

Based on the normal form described in (39) and (40), a simplified model is proposed
to design the control system. In this case, a canonical model is assumed as the base model
for the control design. This model is dynamically decoupled, affine to the control input,
and it includes a vector of lumped disturbances as described in its state space form:

ϕ̇ =

[
04×4 I4×4
04×4 04×4

]
ϕ+ κur + ξ, (41)

where the state vector for the actuated DoF is

ϕ :=
[

h(xr)
Lfr h(xr)

]
, (42)

the nonlinearities, model uncertainties, and external disturbances are lumped in a vector of
total disturbances as

ξ :=
[

0
L2

fr
h(xr) + LζLfr h(xr)

]
, (43)
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and the decoupling matrix Lgr
Lfr h(xr) is approximated by a diagonal matrix with control

input gains as,

Lgr
Lfr h(xr) ≈ κ :=



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
κ1 0 0 0
0 κ2 0 0
0 0 κ3 0
0 0 0 κ4


. (44)

This model represents a multiple-input multiple-output system; however, since the
dynamics of each DoF are considered decoupled, the control can be designed following the
procedures described in the Section 2.2 for each element of the following set of single-input
single-output systems[

ϕ̇i
ϕ̇i+4

]
=

[
0 1
0 0

][
ϕi

ϕi+4

]
+

[
0
κi

]
uri +

[
0
ξi

]
,

hi = [1 0]
[

ϕi
ϕi+4

]
,

∀ i = {1, 2, 3, 4}, (45)

which are canonical models to be implemented as dynamic constraints during the predic-
tion horizon.

3. Results

The proposed robust MPC based on ADRC is evaluated with three simulation scenar-
ios that test the capabilities of the controller to track references, reject external disturbances,
and attenuate the effects of model uncertainties. In order to perform such evaluations,
a simulation model is built with the parameters in Table 1, which are adapted from the
unsupervised online identification performed in [22]. An input control gain approximation,
around the equilibrium point of the rest position, is performed by measuring the open
loop gain of the controlled variables. The results of such approximation allow finding the
parameters needed for control design shown in Table 2. Then, observer gains are selected
such as that ultimately bounded behavior is achieved by the estimation error in (10). In this
way, the gains in L are computed by defining the eigenvalues λ(I + TA − LC) with a
modulus inferior to one, this is |λ(I + TA− LC)| < 1. Then, a try-and-error procedure has
been undertaken to determine a prediction horizon of N = 10 and a set of cost function’s
weights as presented in Table 3. These tuning parameters are not necessarily optimal;
however, their performance is good enough for the control purpose.

In the event of physical implementation, it is necessary to consider the elapsed time to
solve the optimal control problem. Since the solution must be completed every sampling
step before the next sampling is taken, the stopping criteria set in the optimization software
must be configured so that the computation time is the shortest possible.

Table 1. Autonomous underwater robot’s parameters.

Parameter Symbol Value Units

Mass m 8.0 kg
Inertia Ixx, Iyy, Izz 0.1589, 0.1589, 0.1589 kg·m2

Buoyancy B 79.5881 N
Linear drag Xu, Yv, Zw, −13.6040, −18.1106, −17.1828 –
Linear drag Kp, Mq, Nr, −16.4146, −16.4146, −16.4146 –
Quadratic drag X|u|u, Y|v|v, Z|w|w, −17.8534, −1.0594, −3.6482 –
Quadratic drag K|p|p, M|q|q, N|r|r, −10.3483, −10.3483, −10.3483 –
Added mass Xu̇, Yv̇, Zẇ 1.7532, 0.6636, 2.898 kg
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Table 2. Input control gain parameters.

Parameter κ1 κ2 κ3 κ4

Value 0.0967 0.0550 0.0575 0.5000

Table 3. Control tuning parameters.

Controller Observer Gains (L) Function Cost Weights (we, wu)

Control surge [0.8400 23.3600 215.0400] (10000, 0.01)
Control sway [0.8400 23.3600 215.0400] (50000, 0.01)
Control heave [0.5700 10.6275 64.7425] (10000, 0.01)
Control yaw [0.5700 10.6275 64.7425] (8000, 0.1)

The first evaluation test compares the performance and robustness of the proposed
control strategy with an MPC without the assistance of the discrete ESO. Figure 4 shows
the controlled outputs of both controllers tracking predefined trajectories. This simulation
also compares the capabilities of the controllers to reject external disturbances. At the time
t = 15 s, the controlled linear positions are perturbed with an external force of 1 N and the
yaw angle with a moment of 1 Nm.
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Figure 4. Tracking trajectory and external disturbance rejection.

Both controllers, the MPC and the MPC-ADRC, have bounded control actions with
−|umax| ≤ u ≤ |umax|, which allows comparing the robustness of each controller with a
time integral of the square error defined as

ISE =
∫ t=20

t=15
hᵀ(xr)h(xr)dt. (46)

The ISE indexes of the MPC and MPC-ADRC are shown in Table 4. These results
show evidence of better disturbance rejection of the MPC based on ADRC, with an ISE
index equivalent to 24.75% of the MPC index.

Table 4. ISE index during external disturbance rejection

MPC MPC-ADR

0.0097 0.0024
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The ESO’s estimations and control signals of the MPC based on ADRC during the first
evaluation are shown in Figure 5. The current position coordinates, disturbed by white noise,
and their estimations are shown in Figure 5a. These position estimations result in filtered
measurements, which are suitable to implement the control techniques. Figure 5b shows
the current speeds and their estimations, in this figure it is shown the convergence of the
estimated signals to the real speed values. Figure 5c shows the total disturbances estimation
with the evolution from the estimation of model uncertainties during the first 15 seconds and
the reaction to estimate the external disturbances for t ≥ 15 s. The control signals are shown
in Figure 5d, where the boundaries on the control signals are satisfied, which is evidence of
satisfaction of the inequality constraints in the optimal control problem. These control signals
show the controller’s reaction to reject the external disturbances in t ≥ 15 s.
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Figure 5. Extended state observer estimations and control signals.

The second evaluation tests the robustness of the proposed controller against model
uncertainties with simulations of parameter variations. In this evaluation, the trajectory
tracking task performed during the first evaluation is repeated 21 times with values of
the robot’s mass homogeneously distributed between 50% and 150% of its nominal value.
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Figure 6 shows the behavior of the system’s controlled output during all the simulations.
The responses of the parameter variation form a cyan envelope around the nominal re-
sponse in magenta, which is evidence of a bounded behavior around the nominal response
and also shows robustness against model uncertainties.

Figure 6. Robustness against model uncertainties. Mass variation between 50% and 150% of the
nominal value.

The final simulation executes a trajectory tracking task that imposes a spiral pattern
starting the robot at (0, 0, 0). The spiral reference is shown in Figure 7a, where the MPC
without assistance and the MPC based on ADRC perform a transient response and then the
trajectory tracking is executed. The vertical position changes at a constant speed of 0.1 m/s
and goes from 0 m to 5 m. Horizontally, the robot moves in a circle centered at (0, 0) with a
radius of 1 m. In this plane, a complete circumference is tracked every 10 s, and the robot’s
position evolves according to the top view shown in Figure 7b. To test the robustness against
external disturbances, an external force of 1 N is injected into the three-axis at t = 15 s The
behavior of the robot shows that both the MPC without assistance and the MPC based on
ADRC accomplish tracking the trajectory; however, our control strategy achieves a better
disturbance rejection, especially in the robot’s heading as shown in the yaw angle of the
Figure 7c. In order to verify the satisfaction of the robot’s physical limitation during the
test of the MPC based on ADRC, the robot’s velocity is shown in Figure 7d, where the
maximum speed is bounded under a maximum of 1.5 m/s, which is an acceptable value for
the robotic AUV. Likewise, the control signals are shown in Figure 7e, where the satisfaction
of the inequality constraints of the optimal control problem is evidenced.
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(a) Trajectory tracking of a spiral pattern
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Figure 7. Trajectory tracking with external disturbance rejection.
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4. Conclusions

A robust model predictive control was developed using the active disturbance rejection
control approach to estimate a total disturbance that lumps the nonlinearities, model
uncertainties, and external disturbances into a unified signal. This signal is estimated using
a discrete extended disturbance observer that also finds an estimation of the state vector.
Then, the proposed control strategy uses the estimated disturbance and states to find an
optimal control sequence for a receding horizon by using a simplified canonical model,
which simplifies the dynamic constraints during the solution of the optimal control problem.
The first element of the optimal control sequence and the disturbance estimation are used
to define a control law, which is imposed through feedback control action that guarantees
reference tracking, external disturbance rejection, and attenuation of model uncertainties.

To evaluate the proposed control strategy, a robotic autonomous underwater vehicle
was used as a test platform. A protocol of three evaluation scenarios was executed in
simulation to test the robustness of the proposed control. The performance of the MPC
based on ADRC is compared with an MPC without the assistance of the discrete ESO.
The evaluation tests show evidence of effective trajectory tracking and robustness against
external disturbances and parameter uncertainties. Future work will explore the physical
implementation of the proposed control strategy into an evaluation prototype of a robotic
autonomous underwater vehicle.
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