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Abstract: To achieve the efficient and precise control of autonomous underwater vehicles (AUVs)
in dynamic ocean environments, this paper proposes an innovative Gaussian-Process-based Model
Predictive Control (GP-MPC) method. This method combines the advantages of Gaussian process
regression in modeling uncertainties in nonlinear systems, and MPC’s constraint optimization
and real-time control abilities. To validate the effectiveness of the proposed GP-MPC method, its
performance is first evaluated for trajectory tracking control tasks through numerical simulations
based on a 6-degrees-of-freedom, fully actuated, AUV dynamics model. Subsequently, for 3D
scenarios involving static and dynamic obstacles, an AUV horizontal plane decoupled motion
model is constructed to verify the method’s obstacle avoidance capability. Extensive simulation
studies demonstrate that the proposed GP-MPC method can effectively manage the nonlinear motion
constraints faced by AUVs, significantly enhancing their intelligent obstacle avoidance performance
in complex dynamic environments. By effectively handling model uncertainties and satisfying motion
constraints, the GP-MPC method provides an innovative and efficient solution for the design of AUV
control systems, substantially improving the control performance of AUVs.

Keywords: autonomous underwater vehicle (AUV); model predictive control (MPC); Gaussian
process; obstacle avoidance

1. Introduction

As technological capabilities have rapidly progressed, enabling the deeper exploration
of the ocean realm, autonomous underwater vehicles (AUVs) have proven to be indispens-
able tools in unlocking the mysteries of the deep. These unmanned, cable-free underwater
vehicles are equipped with the requisite instrumentation, including sonar, a Doppler Veloc-
ity Log (DVL), and an Inertial Measurement Unit (IMU), and rely on embedded control
computers and autonomous control software to execute pre-defined navigation tasks. Due
to their exceptional underwater performance, adaptability, and mission-execution capabil-
ities, AUVs have become vital assets in various applications, including marine resource
exploration and development (Hong et al., 2021 [1]; Zhang et al., 2015 [2]), marine informa-
tion monitoring (Sagala et al., 2011 [3]; Wang et al., 2021 [4]; Cong et al., 2023 [5]), marine
reconnaissance (Tang et al., 2023 [6]), and rescue missions (Kirkwood, 2007 [7]; Thomas
et al., 2021 [8]). These abilities have elevated AUVs to a prominent research focus in the field
of ocean engineering globally (Curtin et al., 2005 [9]). As the demand for AUV applications
expands, these vehicles are being tasked with increasingly varied and complex roles. This
evolution necessitates enhanced motion control systems that allow AUVs to fulfill human
demands more effectively. However, achieving the precise control of AUVs is a formidable
and vital challenge, attributed to factors like strong coupling, nonlinearity, and operational
constraints (Xia et al., 2022 [10]; Gong et al., 2022 [11]; Wang et al., 2013 [12]).
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Model Predictive Control (MPC) is an advanced control strategy capable of addressing
the input and state constraints of a system in real-time, which emanate from its inherent
physical and safety limitations. These constraints arise from the physical characteristics
and safety limitations of the system and are widely present in all systems (Zhang et al.,
2019 [13]). Contrary to traditional optimal control strategies that necessitate comprehensive
optimization across the entire temporal domain, MPC enhances computational efficiency
by focusing on localized optimizations within a predefined future timeframe. This method
not only reduces computational complexity but also endows the control system with a
predictive capability, allowing it to infer future dynamics based on current and impending
control inputs.

Model Predictive Control (MPC) exhibits a distinct advantage in handling tasks that
demand precise navigation and obstacle circumvention under various constraints, a feature
that is well-evidenced in trajectory tracking and obstacle avoidance applications (Khodayari
et al., 2015 [14]; Qiao et al., 2017 [15]; Peng et al., 2019 [16]) and obstacle avoidance (Cho
et al., 2019 [17]; Trym et al., 2020 [18]; Zhang et al., 2022 [19]). Within the specialized
context of AUVs, Bao et al. (2022 [20]) have pioneered an integrated control approach
by amalgamating optimized MPC with Nonlinear Tilted Sliding Mode Control (NTSMC)
and an adaptive Radial Basis Function Neural Network (RBF NN) compensator. This
innovative method is designed to enhance the accuracy of dynamic trajectory tracking.
This dual-loop system effectively mitigates constraints and external disturbances, ensuring
both stability and robust performance, validated through Lyapunov stability analysis and
extensive simulation under varied marine conditions.

Moreover, Oh and Sun explored the application of linear MPC in conjunction with
line-of-sight (LOS) guidance for path-following control, utilizing quadratic programming
to derive the control input, a method proven to be effective in simulations involving
underactuated surface vessels (2010 [21]). Gao et al. (2016 [22]) presented a nonlinear
MPC-based adaptive dynamic positioning control for fully driven underwater vehicles,
enhancing system robustness and velocity tracking accuracy through neural network
integration, with the efficacy demonstrated using the horizontal plane model of a Remotely
Operated Vehicle (ROV).

However, the intensive computational demand of MPC can potentially affect the
real-time performance of control systems. To address this, Wang et al. (2022) proposed a
self-adaptive predictive control methodology utilizing least squares and Lagrange functions
to decrease computational strain while improving system robustness and interference
mitigation. Zhang et al. (2019 [13]) streamlined the MPC optimization process into a
convex quadratic problem, facilitating online resolution and proving its trajectory tracking
capability under external disturbances. However, the computational intensity of MPC
can affect real-time control system performance, a challenge addressed by Wang et al.
(2022 [23]) through a self-adaptive predictive control method using Lagrange functions
and least squares algorithms, improving system robustness and reducing computational
demands.

Further innovations include that of Song et al. (2017 [24]), who combined probabilistic
policy search with MPC for enhanced decision-making in control systems, demonstrating
success in agile drone navigation. Piotr et al. (2011 [25]) designed a ship course-keeping
algorithm based on a knowledge base, which utilizes a set of input and output signals to
obtain ship dynamics equations, thus avoiding the problems that arise when designing clas-
sical control algorithms for complex nonlinear ship models. Yao et al. (2018 [26]) improved
MPC efficiency by adapting the weighting matrix based on error magnitude, enhancing
control precision as verified in pool experiments. Uchihori et al. (2021 [27]) proposed an
MPC-based AUV docking control system, employing a linear parameter variation (LPV)
model and a time-varying Kalman filter to manage power flow disturbances.

Additionally, Maciejowski et al. (2013 [28]) introduced a fault-tolerant control method
for Unmanned Aerial Vehicles (UAVs) combining the Gaussian process and MPC, with
successful simulation outcomes. Hewing et al. (2017 [29]) developed an adaptive control
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approach for autonomous miniature race cars, leveraging the Gaussian process and chance-
constrained formulations to account for model uncertainties. Collectively, these studies
contribute significant insights and methodological advancements to the field of MPC,
particularly in enhancing the control systems of AUVs and related autonomous platforms.

Appropriate modeling plays a crucial role in achieving high-precision control (Li et al.,
2021 [30]). Gaussian process regression effectively addresses model uncertainty in nonlinear
data fitting by estimating probability distributions, mitigating the influence of system noise.
Leveraging this ability, this study employs a Gaussian-Process-based Model Predictive
Control (GP-MPC) approach to control AUVs, aiming to guide the AUVs in achieving
precise trajectory tracking within a three-dimensional spatial domain. The proposed
method can be applied to Level 2 autonomous vehicles, which are partially automated
(Khosrow-Pour et al., 2020 [31]). In addition to trajectory tracking tasks, we evaluate
the AUV’s planar model for its proficiency in evading obstacles in static and dynamic
environments. This method integrates a non-parametric Gaussian process model with
MPC, constructing a robust controller with predictive capabilities. It is designed to address
various challenges posed by the complex marine environment, such as model uncertainties,
external disturbances, and constraints, thereby providing a theoretical foundation and
technical support for achieving the high-precision motion control of AUVs.

The remaining sections of this paper are organized as follows: Section 2 details the proce-
dure for establishing the kinematics and dynamics model of the AUV, while Section 3 presents
the formulation of the Gaussian-process-based MPC controller for the AUV. Additionally,
Section 4 elucidates the simulation of both trajectory tracking and obstacle avoidance tasks,
demonstrating and analyzing the performance of the proposed GP-MPC approach. Finally,
Section 5 provides concluding remarks and discussions regarding the research findings and
potential future directions. Through this organization, the present study aims to develop
an advanced control framework for AUVs, enhancing their navigation accuracy and robust-
ness in complex environments, while exploring the potential applicability of the proposed
methodology in the broader domain of autonomous system control.

2. Modeling of AUV

In the process of modeling and controlling AUVs, the establishment of coordinate
systems, formulation of kinematic models, and development of dynamic models serve
as pivotal elements that form the fundamental underpinning of achieving high-precision
control in underwater environments. The accurate establishment of coordinate systems aids
in comprehending and describing the AUV’s position and orientation in three-dimensional
space. Kinematic models reveal the motion characteristics of the AUV, including velocity,
direction, and attitude. Dynamic models further deepen our understanding of AUV be-
havior by accounting for various external forces and disturbances. This section delves into
the modeling efforts across these three critical domains, providing the essential theoretical
foundation for an in-depth exploration of AUV behavior.

2.1. Coordinate System Establishment

To accurately depict the spatial position and attitude of the AUV, it is imperative to
establish appropriate coordinate systems. In this regard, this paper presents the establish-
ment of two coordinate systems: the ground coordinate system, referred to as {G}, and
the body coordinate system, denoted as {B}. In order to effectively determine the angular
relationship between the {G} and {B} systems, the auxiliary north–east–down coordinate
system ({NED}) is selected to represent the angular correlation between the {G} and {B}
systems. The Euler angles, representing the angle between the corresponding axes of
the {NED} system and the {B} system, are employed to describe the AUV’s attitude. It is
important to note that the choice of rotation order for the Euler angles can yield varying
coordinate system conversion relations.

The relationship among the three above-mentioned coordinate systems is depicted in
Figure 1. The ground coordinate system establishes a reference point, denoted as O on the
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Earth’s surface, serving as the coordinate origin, with the coordinate axes being stationary
relative to the ground. Specifically, the x-axis aligns with the north pole, the y-axis aligns
with the east direction, and the z-axis points downwards, normal to the Earth’s surface. The
body coordinate system is typically established with the center of buoyancy of the AUV
as the origin. The xb-axis points forward, along the AUV’s longitudinal axis, the yb-axis
points towards the starboard of the AUV, and the zb-axis is perpendicular to the Ob − xbyb
plane and points downward. The north–east–down coordinate system can be visualized as
a ground coordinate system that moves in tandem with the AUV. Its origin remains fixed
on the AUV and generally coincides with the origin of the body coordinate system. The
orientation of the coordinate axes aligns with that of the ground coordinate system.
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2.2. Kinematic Model Formulation

Building upon the previously established coordinate systems, the development of a
kinematic model is crucial to comprehensively understand the motion characteristics of
the AUV. According to the coordinate systems relationship outlined in Section 2.1, the {B}
system can also be derived by sequentially rotating the zn, yn, and xn axes of the {NED}
system in turn. By calculating the three corresponding rotation angles, which represent
the yaw ψ, pitch θ, and roll ϕ, respectively, the transformation relationship between the {B}
system and the {NED} system can be established.

For the sake of simplicity and to facilitate the development of the model in the sub-
sequent sections, let η1 = [x, y, z]T represent the position vector of the AUV in the {G}
system, and η2 = [ϕ, θ, ψ]T represent the orientation vector of the AUV in the {G} system.
Here, x, y, and z represent the three Cartesian coordinates, while ϕ, θ, and ψ represent
the three components of the AUV’s attitude, respectively. Furthermore, let v1 = [u, v, w]T

and v2 = [p, q, r]T describe the linear velocity vector and angular velocity vector of the
AUV in the {B} system. Specifically, u, v, and w correspond to the translational velocity
components along the xb,yb, and zb axis, while p, q, and r represent the three rotational
velocity components, respectively. Using these notations, the AUV kinematic equations
can be expressed as follows:

.
η = J(η2)v (1)

J(η2) =

[
R3×3 O

O T3×3

]
(2)

where η and v represent the compact form of the AUV state and velocity, which can be
expressed as follows:

η =
[
ηT

1 , ηT
2

]T
(3)

v =
[
vT

1 , vT
2

]T
(4)
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In Equation (2), matrix R3×3 represents the translational velocity rotation matrix from
the {B} system to the {G} system, while matrix T3×3 denotes the rotational velocity rotation
matrix from system {B} to system {G}. In addition, O represents the zero matrix. These two
matrices, R3×3 and T3×3, can be defined as follows:

R3×3 =

 cos ψcos θ −sin ψcos ϕ + cos ψsin θsin ϕ
sin ψcos θ
−sin θ

cos ψcos ϕ + sin ϕsin θsin ψ
cos θsin ϕ

sin ψsin ϕ + cos ψ
−cos ψsin ϕ + sin θsin ψcos ϕ

cos θcos ϕ

 (5)

T3×3 =

1 sin ϕtan θ cos ϕtan θ
0 cos ϕ −sin ϕ

0 sin ϕ
cos θ

cos ϕ
cos θ

 (6)

According to Equation (6), when angle θ = ±π/2, using Euler angles to describe the
AUV’s attitude results in singularity in matrix T3×3 (Do and Pan, 2009 [32]). This singularity
situation can render the kinematic equations unsolvable. Therefore, when formulating the
control strategy, it becomes crucial to impose constraints on the AUV’s state to ensure that
the pitch angle does not reach these critical values. Based on the preceding discussion, the
development of the kinematic model plays a pivotal role in accurately characterizing the
motion dynamics of the AUV. This provides us with a detailed understanding of how the
AUV’s position and attitude change over time, offering critical insights into its behavior
and capabilities.

2.3. Dynamic Model Development

Expanding upon the preceding kinematic modeling, the dynamic modeling of the
AUV emerges as paramount for comprehensively capturing its motion characteristics. This
includes the intricate interplay of external forces and allows for the formulation of effective
control strategies. By considering the interplay between external generalized forces and
AUV motion, the dynamic equations of the AUV can be derived using the Newton–Euler
method, as demonstrated by Fossen (Fossen, 2011 [33]):

M
.
ν + C(v)v + D(v)v + g(η) = τ (7)

In Equation (7), matrix M represents a positive definite matrix comprising the inertial
properties resulting from the rigid body and additional mass. Matrix C(v) accounts for the
Coriolis and centripetal matrix. g(η) represents the vector of the restoring force, arising
from both gravity and buoyancy. D(v) represents the hydrodynamic damping matrix,
encompassing the linear and quadratic drag effects. τ denotes the generalized external
thrust forces and moments.

In the pursuit of three-dimensional trajectory tracking, the AUV is assumed to be of
the fully driven type to facilitate subsequent simulations. However, when executing the
obstacle avoidance task in the horizontal plane, the underactuated model is chosen. To
accomplish this, the AUV’s six-degree-of-freedom model, as derived from the RUMUS
mathematical model (Prestero et al., 2001 [34]), will be utilized in the following simulation
experiments. By decoupling the model, the primary focus is on obtaining the horizontal
plane model. To streamline computations in subsequent analyses, a transformation is
applied to represent the horizontal plane in a more succinct format:

(m − X .
u)

.
u = Xu|u|u|u|+ (Xvr + m)vr + Xrrr2 + Tprop
= f11u + f12v + f13r + Tprop

(8)

(m − Y .
v)

.
v − Y.

r
.
r = Yv|v|v|v|+ Yr|r|r|r|+ (Yur − m)ur + Yuvuv + Yδu2δ

= f21u + f22v + f23r + Yδu2δ
(9)
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(Izz − N.
r)

.
r − N .

v
.
v = Nv|v|v|v|+ Nr|r|r|r|+ Nurur + Nuvuv + Nδu2δ

= f31u + f32v + f33r + Nδu2δ
(10)

where Tprop represents the thrust along the xb-axis, and δ represents the rudder angle.
X(·), Y(·), and N(·) in the above formulas are the hydrodynamic coefficients of AUV. By
consolidating these three equations into a compact matrix form, as follows:

M
.
νh = fνh + Lu (11)

With

M3×3 =

(m − X .
u) 0 0

0 (m − Y .
v) −Y.

r
0 −N .

v (Izz − N.
r)

 (12)

v3×1
h = [u, v, r]T (13)

f3×3 =

 f11 f12 f13
f21 f22 f23
f31 f32 f33

 (14)

L3×2 =

1 0
0 Yδu2

0 Nδu2

 (15)

u2×1 =
[
Tprop, δ

]T (16)

And the kinematics equation of the horizontal plane model can be expressed as
follows:

.
ηh = R(ψ)

.
νh (17)

where

R3×3(ψ) =

cos ψ −sin ψ 0
sin ψ cos ψ 0

0 0 1

 (18)

η3×1
h = [x, y, ψ]T (19)

In summary, the ‘Modeling of AUV’ section presents a comprehensive foundation
for understanding and controlling AUVs in underwater environments. The establishment
of coordinate systems, the formulation of kinematic models, and the development of
dynamic models collectively constitute the backbone of our pursuit of precise AUV control.
Accurate coordination systems provide a fundamental framework for interpreting the
AUV’s position and orientation in three-dimensional space. Kinematic models reveal its
motion characteristics, encompassing velocity, direction, and attitude. Dynamic models
further deepen our comprehension of AUV behavior by incorporating external forces and
disturbances. With this robust theoretical foundation in place, we are now poised to delve
into the ‘Gaussian-process-based MPC’ section, which will explore the practical application
of this theoretical knowledge in enhancing AUV control.

3. Gaussian-Process-Based MPC
3.1. MPC for AUV Control

Model predictive control, as a method for resolving local optimal solutions, has demon-
strated its efficacy in addressing constraints arising from the structure of the AUV itself
and the surrounding environment during underwater operations. The MPC method solves
an online optimization problem at each sampling interval based on current measurements.
The first element of the resulting control sequence is then applied to the controlled system,
and this process is repeated at subsequent time steps with the optimization problem con-
tinuously being updated using fresh measurements. To utilize MPC for controlling AUV
motion, it is essential to discretize both the kinematic and dynamic models. Furthermore,
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when employing Gaussian-process-based MPC to analyze the efficacy of AUV control in
3D space trajectory tracking tasks, an approach involving the use of AUV acceleration as
the input u′ ∈ R6 is adopted to alleviate the computational burden. The models can be
reconstructed as follows:

.
v = u′ (20)

.
η = J(η)v (21)

where v represents the linear velocity and η represents the position and orientation of the
AUV. Under the assumption of a sampling period T, the aforementioned equations can be
discretized in the following form:

v(k + 1)− v(k)
T

= u′(k) (22)

η(k + 1)− η(k)
T

= J(η(k))v(k) (23)

Set x(k) = [v(k), η(k)]T ∈ R12 to present the status input variable of the MPC at
moment instant k. In that way, the input variable at time instant k + 1 can be represented
as follows:

x(k + 1) =
[

v(k + 1)
η(k + 1)

]
=

[
Tu′(k) + v(k)
TJ(η(k))v(k) + η(k)

]
=

[
v(k)
TJ(η(k))v(k) + η(k)

]
+

[
Tu′(k)
O

]
=

[
I O
TJ(η(k)) I

][
v(k)
η(k)

]
+

[
TI
O

]
u′(k)

=

[
I O
TJ(η(k)) I

]
x(k) +

[
TI
O

]
u′(k)

(24)

Taking the Cartesian coordinates (x, y, z, ϕ, θ, ψ) of AUV as the controlled output
variable y(k) ∈ R6, Equation (24) can be rewritten in the following concise form:

x(k + 1) = a(k)x(k) + b(k)u′(k) (25)

y(k) = c(k)x(k) (26)

With

a(k) =
[

I6×6 O6×6

TJ(η(k)) I6×6

]
(27)

b(k) =
[

TI6×6

O6×6

]
(28)

c(k) =
[
O6×6 I6×6] (29)

where (k + i|k) represents the predicted state vector at time k + i based on the information
available at time k.

Based on the state prediction model outlined in Equations (25) and (26), the control
system’s state sequence for the next p steps can be calculated upon providing the input
u′. Here, p represents the prediction horizon, which determines the length of future
predictions and influences the control performance. Increasing the value of p allows the
AUV to predict future states over a longer duration, potentially enhancing the control
performance. However, it is important to note that this also leads to a substantial increase
in the required computing resources. Therefore, choosing an appropriate value for p is
crucial. In order to facilitate the subsequent calculation, the input sequence, predicted
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state sequence, and output sequence are compressed into vectors Xp(k), U(k), and Yp(k),
respectively, as expressed below:

Xp(k + 1|k) =


x(k + 1|k)
x(k + 2|k)

...
x(k + p|k)

 (30)

U(k) =


u′(k|k)

u′(k + 1|k)
...

u′(k + p − 1|k)

 (31)

Yp(k) =


y(k + 1|k)
y(k + 2|k)

...
y(k + p|k)

 (32)

The three matrices mentioned above can be obtained through the following deriva-
tion process:

x(k + 1|k) = ax(k|k) + bu′(k|k)
x(k + 2|k) = ax(k + 1|k) + bu′(k + 1|k)

= a2x(k|k) + abu′(k|k) + bu′(k + 1|k)
...

x(k + p|k) = apx(k|k) +
p−1
∑

i=0
ap−1−ibu′(k + i|k)

(33)

The derivation process mentioned above can be expressed in a compact matrix form
as follows:

Xp(k) = A(k)x(k|k) + B(k)U(k) (34)

Yp(k) = C(k)Xp(k) (35)

where

A(k) =


a

a2

...
ap



B(k) =


b 0

ab b
· · · 0

0
... ...

. . .
...

ap−1b ap−2b · · · b



C(k) =


c 0
0 c

· · · 0
0

... ...
. . .

...

0 0 · · · c



(36)

To attain the required acceleration for trajectory tracking tasks with a fully driven
AUV, the generalized force τ(k) can be computed using the dynamic inversion method,
utilizing the input variables x(k − 1) and u′(k). The introduction of τ(k) is necessary to
obtain the required control input for the AUV to follow the desired trajectory.

τ(k) = Mu′(k) + C(v(k − 1))v(k − 1)
+D(v(k − 1))v(k − 1) + g(η(k − 1))

(37)



J. Mar. Sci. Eng. 2024, 12, 676 9 of 26

To conduct obstacle avoidance research on the underactuated AUV horizontal plane
model, the following state prediction model is derived by employing the same derivation
method as previously mentioned, with the propeller propulsion Tprop and rudder angle δ
selected as the input u ∈ R2:

x(k + 1) = a(k)x(k) + b(k)u(k) (38)

y(k) = c(k)x(k) (39)

With

a(k) =
[

M−1f(k)T + I3×3 O3×3

R(ψ(k))T I3×3

]
(40)

b(k) =
[

M−1L(k)T
O3×2

]
(41)

c(k) =
[
O3×3 I3×3] (42)

The matrices f, L, R, and J are functions of the state of the AUV, which can be found
in Section 2. When employing the MPC method to predict p steps ahead, it is necessary
to compute the state of the previous step at each iteration and recalculate these coefficient
matrices, resulting in an increased computational burden. When investigating obstacle
avoidance motion in three-dimensional space, we extend the horizontal plane model by
introducing motion along the z-axis direction and rotational motion around the y-axis.
This additional degree of freedom allows the AUV to navigate and avoid obstacles in a
three-dimensional underwater environment. By employing the same methodology, a state
prediction model can also be derived for the obstacle avoidance of underactuated AUVs in
three-dimensional space.

3.2. Constraints of AUV Operation

Building upon the prior establishment of the AUV’s motion dynamics, which serves
as the foundation for comprehending its behavior, it becomes imperative to account for the
constraints that shape its operation. These constraints can be broadly categorized into two
main components: constraints pertaining to the AUV’s posture and control inputs, and
constraints imposed by external obstacles. The constraints associated with the AUV’s state
vector, denoted as Xp(k) and its input vector U(k), can be expressed as follows:

Xmin ≤ Xp(k) ≤ XmaxUmin ≤ U(k) ≤ Umax (43)

where Umin and Xmin denote the predefined lower bounds, while Umax and Xmax represent
the predefined upper bounds. Obstacles are typically represented as ellipses, and to ensure
collision avoidance, the relevant constraints must be adhered to during the computation
process, as expressed in Equation (44). Furthermore, in scenarios involving dynamic
obstacles, the centers of these obstacles will change over time.(

x(k)− xobs(k)
l

)2
+

(
y(k)− yobs(k)

h

)2
≥ 1 (44)

Since the state vector Xp(k) can be expressed as a function of the input vector U(k), to
simplify constraint handling in subsequent simulations, the aforementioned constraints are
reformulated as follows:

B(k)U(k) ≤ Xmax − A(k)x(k|k)
−B(k)U(k) ≤ −Xmin + A(k)x(k|k)

U(k) ≤ Umax
−U(k) ≤ −Umin

1 −
(

x(k)−xobs(k)
l

)2
−

(
y(k)−yobs(k)

h

)2
≤ 0

(45)
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While providing the status information of all obstacles, the AUV can effectively select
appropriate action sequences for optimal obstacle avoidance. However, the extensive
processing of such detailed information can impose significant computational demands,
often rendering it impractical. To address this challenge, a common approach is to focus on
local planning by observing the obstacle nearest to the AUV. In the context of this paper’s
obstacle avoidance simulations, considering the underactuated nature of the AUV, two
parameters, angle and distance (angle and dir), are utilized to determine which obstacle
to observe based on the AUV’s attitude. Specifically, the AUV selects the obstacle with an
angle falling within the (−angle, angle) range from its forward direction and the one that
is closest in terms of proximity. Furthermore, when the distance between an obstacle and
the AUV is less than dir, the AUV will prioritize avoiding that specific obstacle.

3.3. Cost Function for Control Performance Evaluation

Building on the foundation established through our understanding of AUV motion
dynamics and operational constraints, we now direct our attention to a critical aspect of
AUV control: the evaluation of its performance. For the AUV to effectively pursue precise
trajectory tracking and adept obstacle avoidance, the formulation of a well-defined cost
function becomes paramount in assessing control performance. This cost function, denoted
as L, serves as the guiding principle for navigating the intricate challenges inherent to
underwater operations. It provides a quantitative means to evaluate the AUV’s control
performance, ensuring that it not only meets the requirements but excels in executing its
designated missions. With the cost function at the forefront, we will explore its formulation
and its pivotal role in driving the AUV towards optimal navigation and obstacle avoidance
strategies. The cost function, denoted as Loss, is formulated as follows:

L=
p
∑

i=1

((
x(k + i|k)− xre f

)T
Q
(

x(k + i|k)− xre f

)T

+u(k + i − 1|k)TRu(k + i − 1|k) + ∆uTS∆u
) (46)

In this formulation, yre f represents the target trajectory, and ∆u denotes the change in
the control input u. The matrices Q, R, and S are configured as diagonal matrices, thereby
introducing weighting factors that are crucial to the cost function. In this cost function, the
first term primarily controls the distance between the AUV and the target position, while
the second and third terms regulate the output force and power change of the AUV to
reduce energy consumption and mitigate challenges to actuator performance caused by
rapid action changes. These weighting factors determine the relative significance accorded
to each term within the function and can be finetuned to align with specific objectives
and requirements. The optimization objective is centered on the minimization of this cost
function at every sampling instant. For trajectory tracking assignments, yre f manifests
as a time-varying sequence, and the cost function is evaluated using yre f (k + i|k). By
minimizing the cost function, the control system can effectively track the desired trajectory
while achieving an optimal performance.

Through the meticulous process of minimizing this cost function, the control system
is empowered to meticulously track the desired trajectory, all while striving for optimal
performance. This critical function serves as the linchpin of our approach, offering a
quantitative means to evaluate and refine the control strategies employed. It provides
the guiding metrics by which the effectiveness of our AUV control methods is measured,
allowing us to navigate the intricate interplay between trajectory tracking and obstacle
avoidance with precision and confidence. Consequently, the careful formulation of this
cost function stands as a cornerstone of our research, ensuring that our AUV’s underwater
operations achieve the highest standards of performance.
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3.4. Gaussian Process for Uncertainty Modeling

In the pursuit of precision and the optimal AUV control performance, the significance
of a carefully formulated cost function cannot be overstated. This function acts as the
guiding beacon, enabling the AUV to meticulously follow its desired trajectory, thereby
showcasing the effectiveness of our control strategies. However, the complexity of AUV
motion, combined with the uncertainties prevalent in the underwater environment, often
poses challenges in obtaining precise parameter values. As we strive for the high-precision
control of AUVs in three-dimensional spaces, it becomes imperative to effectively grapple
with these uncertainties. One promising approach to address this challenge is the utilization
of Gaussian process regression, a powerful tool for modeling uncertainties.

Gaussian process regression provides a practical solution to navigate the intricacies
of the AUV’s motion model. It does so by introducing the concept of uncertainty into
predictions and facilitating the derivation of probability distributions when fitting nonlinear
data. This innovative approach liberates us from the constraints of fixed model parameters,
enabling us to embrace the inherent uncertainties within our models. This adaptive
capability empowers us to make well-informed decisions even when dealing with changing
conditions and inaccurate model parameters, ultimately enhancing the AUV’s performance
in trajectory tracking and obstacle avoidance tasks.

The upcoming section will offer a comprehensive exploration of the practical appli-
cation of this powerful technique in enhancing AUV control. We will delve into how
Gaussian process regression can be leveraged to model uncertainties, estimate probability
distributions, and ultimately enhance the AUV’s performance in trajectory tracking and
obstacle avoidance tasks. This methodology not only reinforces the robustness of AUV
control but also opens the door to greater adaptability in dynamic underwater environ-
ments. Gaussian processes, an extension of the multivariate Gaussian distribution, are a key
concept in probability theory and mathematical statistics. It is essential to note that a finite
dimensional subset of a Gaussian process adheres to a multivariate Gaussian distribution.
A Gaussian process is uniquely characterized by a mean function and a covariance function,
where the covariance function is often referred to as the kernel function. The mean function
sets the overall position of the sample, while the covariance function, or kernel function,
encodes the distance relationships between distinct input points.

In this simulation, the squared exponential covariance function will be employed for
calculations. As such, for n-dimensional data points x and x′, the exponents for the squared
exponential covariance between these points can be expressed as follows:

kSE
(
x, x′

)
= σ2exp

(
−1

2
(
x − x′

)Tm−1(x − x′
))

(47)

where σ and m represent the hyper-parameters, and m can be expressed as a diagonal
matrix m = diag

(
↕2

1, . . . , ↕2
n
)
, with ↕2

1, . . . , ↕2
n being the length scales for each dimension.

During the simulation process, the mean function and kernel function can be obtained by
collecting samples from the AUV’s state space for offline learning. Let Y = [y1, . . . , ym]

T

and X = [x1, . . . , xm]
T represent the dependent and independent variables of the collected

data, respectively. The Gaussian process can be established in the following form:

Y = f (X) = N (µ, K)

With

N (µ, K) = (2π)−
n
2 |K|−

1
2 exp

(
−1

2
(x − µ)TK(x − µ)

)
(48)

where the kernel matrix, denoted as Ki,j, is calculated using the squared exponential kernel
kSE

(
xi, xj

)
. The optimal values of the hyperparameters σ and M in kSE can be determined

by maximizing the marginal log-likelihood, which is expressed as follows:
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logN (µ, K) = log (2π)−
n
2 |K|−

1
2 exp

(
− 1

2 (x − µ)TK(x − µ)
)

= − 1
2 (x − µ)TK(x − µ)− 1

2 log |K| − n
2 log 2π

(49)

To forecast data, the following procedure is employed:

Y = N (µ, Σ) (50)[
Y
Y′

]
= N

([
µ
µ′

]
,
[

K(X, X) + σ2
nI K(X, X′)

K(X′, X) K(X′, X′) + σ2
nI

])
(51)

Here, Y′ follows a Gaussian distribution, where Y′∣∣
Y,X,X′ = N

(
m′∣∣Σ′). The unknown

variables can be determined using the following equations:

m′ = K
(
X′, X

)T
(

K(X, X) + σ2
nI
)−1

(Y − µ) + µ′ (52)

Σ′ = K
(
X′, X′)+ σ2

nI − K
(
X′, X

)T
(

K(X, X) + σ2
nI
)−1

K
(
X, X′) (53)

Among these equations, σ2
n represents Gaussian noise, X′ signifies the predicted input

value, and Y′ indicates the predicted output distribution.
Within the context of this research, the GP model is utilized to estimate the mathemati-

cal model within a specific operational range of the AUV. When integrated with MPC, the
input for the next iteration becomes the mean value of the predicted Gaussian distribution.
The optimization objective is defined as follows:

L =
p
∑

i=1

((
x̂(k + i|k)− xre f

)T
Q
(

x̂(k + i|k)− yre f

)T

+u(k + i − 1|k)TRu(k + i − 1|k) + ∆uTS∆u
) (54)

with p(x(k + i)|x(k + i − 1)) ∼ N
(
m′, Σ′). The initial GP model N (µ, Σ) can be obtained

by fitting samples within the set working range. In the subsequent simulation, the CasADi
toolkit will be used for optimization. Based on the introduction provided in the previous
section, we employ Gaussian processes to learn the AUV model data containing noise.
Leveraging this model, we aim to enhance the predictive capabilities of the MPC algorithm,
optimizing the accuracy and reliability of our predictions. The relevant process is shown in
Figure 2.
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In conclusion, Gaussian Process Regression provides a powerful tool to model un-
certainties and enhance AUV control. By incorporating the concept of uncertainty into
our models, we can effectively address the challenges posed by the complex motion of
AUVs and the uncertain underwater environments. The adaptability of Gaussian Process
Regression empowers us to make well-informed decisions and enhance the robustness
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of AUV control, opening new avenues for optimal navigation and obstacle avoidance
strategies in dynamic underwater environments.

4. Numerical Simulations and Analysis

Building on the theoretical foundation, the subsequent section is dedicated to nu-
merical simulations and subsequent analyses aimed at substantiating the efficacy of the
proposed method. The primary objective of these simulations is to evaluate the practical
viability and effectiveness of the Gaussian-process-based MPC approach in achieving pre-
cise motion control and obstacle avoidance for AUVs. A meticulous examination of the
obtained results will yield valuable insights, further validating the method’s suitability
across various underwater environments. Such rigorous scrutiny is essential for establish-
ing the method’s suitability and drawing scientifically sound conclusions regarding its
performance in various scenarios.

Given the complexities of the underwater environment and the operational demands
placed on AUVs, the attainment of robust motion control capabilities and effective obstacle
avoidance capabilities remains of paramount importance. In this section, we rigorously
assess the effectiveness of the proposed method in facilitating AUV obstacle avoidance
through comprehensive simulations. The initial part of the analysis entails the realization
of trajectory tracking via 6-DOF AUV control, providing a validation of the feasibility
and control accuracy of the Gaussian-process-based MPC approach. Subsequently, in the
second and third parts, the method’s obstacle avoidance prowess is investigated in both
static and dynamic obstacles, employing the underactuated AUV horizontal plane model.
Finally, the fourth part explores obstacle avoidance simulations for the underactuated AUV
model in a three-dimensional space.

During the subsequent simulation experiments, Gaussian noise characterized by a
variance of σ2 = 10−5 is intentionally introduced into the dataset. To provide a compre-
hensive context, Table 1 furnishes us with precise values concerning the AUV’s inertia
and hydrodynamic parameters. These parameters play a pivotal role in our endeavor to
meticulously model and govern the intricate motion dynamics of the AUV, ensuring our
simulations remain rooted in reality.

Table 1. Specific values of the AUV’s inertia and hydrodynamic parameters.

Parameters Value Parameters Value

m 30.48 kg X .
u −0.93 kg

Izz 3.45 kg·m2 Y .
v −35.5 kg

Yδ 9.64 kg/(m·rad) Y.
r 1.93 kg·m/rad

Nδ −6.15 kg/rad N .
r −4.88 kg·m2/rad

Xvr 35.5 kg/rad N .
v 1.93 kg·m

Xrr −1.93 kg·m/rad Xu|u| −1.62 kg/m
Yur 5.22 kg/rad Yv|v| −1310 kg/m
Yuv −28.6 kg/m Yr|r| 0.632 kg·m/rad2

Nur −2 kg·m/rad Nv|v| −3.18 kg
Nuv −24 kg Nr|r| −94 kg·m2/rad2

The incorporation of Gaussian noise, paired with the vital parameters from Table 1,
sets the stage for our extensive investigation, encompassing several key facets of AUV
control and obstacle avoidance. Our comprehensive analysis spans trajectory tracking,
the avoidance of static obstacles on the horizontal plane, the handling of dynamic ob-
stacles in the same plane, and finally, the challenging domain of obstacle avoidance in
three-dimensional space. Each of these segments aims to scrutinize and validate the
Gaussian-process-based MPC approach under various conditions, further bolstering our
understanding of its practicality and effectiveness in the underwater realm.
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4.1. Trajectory Tracking Analysis

Trajectory tracking constitutes a critical component of AUV control systems, enabling
precise navigation along predefined paths or trajectories within the challenging underwater
environment. Achieving accurate trajectory tracking is vital for mission success, as it
ensures the AUV can effectively execute its intended tasks while efficiently adapting
to environmental conditions and circumventing obstacles. In this section, our focus is
specifically directed towards trajectory tracking within the context of AUV control. Our
primary objective is to scrutinize the practicality and control precision of the Gaussian-
process-based MPC approach in the realm of trajectory tracking. We endeavor to evaluate
the performance of the proposed method concerning the attainment of precise trajectory
tracking under varying operational scenarios.

The simulation results will provide valuable insights into the effectiveness and robust-
ness of the Gaussian-process-based MPC approach, contributing to the advancement of
AUV motion control methodologies and bolstering the overall trajectory tracking capabili-
ties of AUVs.

In this trajectory tracking simulation task, the acceleration is utilized as the six-
dimensional input u′ to control the motion of the 6-DOF AUV. The sampling period T is
set to 0.1 s, and the prediction step p is 20. These parameters determine the frequency at
which control actions are updated and the number of future steps that factor into trajectory
prediction. To maintain a structured and controlled environment during simulations, the
constraint space for the input u′ and state x of the AUV is defined as follows:

u′
min =

[
0,− 25π

180 ,− 25π
180 ,−0.05,− 30π

180 ,− 30π
180

]T

u′
max =

[
4.4, 25π

180 , 25π
180 , 0.05, 30π

180 , 30π
180

]T (55a)

xmin =
[
0,−0.5,−0.5,− 20π

180 ,− 30π
180 ,− 30π

180 , −INF,−INF,−INF,−INF,− 80π
180 ,−INF

]T

xmax =
[
1.55, 0.5, 0.5, 20π

180 , 30π
180 , 30π

180 , INF, INF, INF, INF, 80π
180 , INF

]T (55b)

where INF indicates that no constraints have been applied to this dimension. To initiate the
simulation, the weight matrices associated with the cost function are established as follows:

Q = diag
(
10−6, 10−6, 10−6, 10−6, 10−6, 10−6, 10, 10, 10, 10−2, 10−2, 10

)
R = diag

(
10−3, 10−3, 10−3, 10−3, 10−3, 10−3)

S = diag
(
10−2, 10−2, 10−2, 10−2, 10−2, 10−2) (56)

For the target trajectory in this simulation, we opted for a well-established trajectory
known as the “spiral trajectory”. This trajectory that was used is defined as follows:

yref =

10cos t
5 + 15

10sin t
5 + 15

0.08t + 5

 (57)

The reference trajectory, denoted as yref, represents the target positions and orientations
for an AUV along the x, y, and z directions. Each component of yref corresponds to a specific
dimension, defining the desired state for the AUV’s motion. In cases where no explicit
reference value is specified for a particular direction, the default value is assigned as zero,
indicating the absence of a specific target in that dimension. Moreover, the initial state of
the AUV is defined as x0 = [0, 0, 0, 0, 0, 0, 35, 0, 0, 0, 0, π/2]T and the input values are set as
u0 = [0, 0, 0, 0, 0, 0]T.

The trajectory tracking task was performed using the proposed algorithm, which
leveraged available data and control inputs to guide the AUV’s motion, ensuring the
precise tracking of the desired trajectory. The simulation results, depicted in Figure 3,
unequivocally demonstrate the algorithm’s effectiveness in achieving accurate trajectory
tracking. The red curve in Figure 3 represents the target trajectory, while the black dashed
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curve illustrates the actual motion trajectory of the AUV with Gaussian-process-based
MPC, and the green dotted curve represents the MPC method. The remarkable alignment
between these two curves demonstrates the algorithm’s ability to steer the AUV precisely
along the intended path.
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5
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To delve deeper into the results, Figure 4 presents a comprehensive view of the tracking
outcomes and errors in the x, y, and z directions over time during the simulation. Figure 4a
displays the target and simulated trajectories. Here, the red, blue, and green curves signify
the target trajectory in the x, y, and z directions, respectively. The trajectories in the x,
y, and z directions of Gaussian-process-based MPC trajectories are represented by the
red, blue, and green curves, respectively. The yellow, pink and purple dashed curves
represent the trajectories of the MPC method. From Figure 4, it is evident that the MPC
and Gaussian-process-based MPC can effectively approach the target trajectory when their
initial positions differ, and subsequently form a stable tracking effect. It can be observed
from the approach curve during the first 20 s shown in subgraph (a) and the error curve
of subgraph (b) that Gaussian-process-based MPC can approach the target curve more
stably and quickly. After 20 s, the average tracking error of Gaussian-process-based MPC is
0.099 m, while that of MPC is 0.227 m. Overall, the results demonstrate the effectiveness
and accuracy of this algorithm in maintaining good trajectory tracking performance.
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The sinusoidal trajectory presents a complex and dynamic motion pattern, and this
type of trajectory can be defined as follows:

yref =

15cos t
5

0.3t
0.3t

 (58)

The initial state of the AUV is defined as x0 = [0, 0, 0, 0, 0, 0, 30, 15,−15, 0, 0, 0]T.
Figures 5 and 6, respectively, show the spatial trajectory tracking results and the differences
in the x, y, and z components. After 50 s, the average tracking error of Gaussian-process-
based MPC is 0.367 m, while that of MPC is 0.577 m. Overall, the sinusoidal trajectory
tracking presents substantial challenges for the AUV due to variations in curvature and
speed. Compared to the spiral curve, the tracking error of each control method increases,
but can remain within a lower range after stabilization.
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In summary, the algorithm has successfully demonstrated its ability to enable the
AUV to meticulously track the desired trajectory, as is evident from the close alignment
between the actual and desired trajectories. Furthermore, the analysis of tracking errors
further confirms the algorithm’s capacity to mitigate the initial discrepancies and sustain
an accurate tracking throughout the simulation. These findings highlight the algorithm’s
potential to enhance trajectory control and facilitate the dependable motion of AUVs in
real-world scenarios.

4.2. Avoidance of Static Obstacles on the Horizontal Plane

To validate the Gaussian-process-based MPC’s ability to handle external constraints,
a series of obstacle avoidance experiments for the AUV were meticulously designed and
simulated. In this comprehensive assessment of the control method’s performance, ob-
stacles were strategically positioned within the positional space. It is important to note
that, during the simulation, the AUV dynamically selects obstacles for state observation
based on predefined obstacle selection rules, while disregarding others. This approach
optimizes the AUV’s interactions with obstacles, enabling an in-depth study of its obstacle
avoidance capabilities. The simulation encompasses gradual modifications to the size and
position of the obstacles to comprehensively test the AUV’s ability to navigate around them.
The selected shape for the obstacles is the conventional elliptical form, and their specific
parameters are presented in Table 2.

Table 2. Coordinate and scale parameters of obstacles on the horizontal plane.

Obstacles Coordinate Parameters/(x, y) Scale Parameter/(l, h)

Obs. 1 (17.0, 16.0) (0.5, 1.0)
Obs. 2 (14.0, 12.0) (0.5, 1.0)
Obs. 3 (39.0, 35.5) (1.0, 2.0)
Obs. 4 (14.0, 12.0) (1.0, 2.0)
Obs. 5 (25.0, 25.0) (1.0, 2.0)
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The first column of Table 2 denotes the obstacle number, the second column provides
the Cartesian coordinates of each obstacle, and the third column specifies the size of each
obstacle. The expected state for obstacle avoidance is denoted as yre f = [49, 40, 0]T. The

initial state and input values of the AUV are set as x0 = [1.5, 0, 0, 0, 0, 0]T and u0 = [0, 0]T,
respectively. Additionally, the obstacle selection parameters are set as angle = π/2 and
dir = 3 m. The simulation is conducted with a sampling period T = 0.1 s and the prediction
step p = 15.

In the simulation experiments, specific constraints were imposed on the input
u =

[
Tprop, δ

]T and state space x = [u, v, r, x, y, ψ]T of the AUV to ensure safe and con-
trolled motion. The constraints were rigorously defined as follows:

umin =
[
0,− 30π

180
]T

umax =
[
4.4, 30π

180
]T (59a)

xmin =
[
0,−0.9,− 25π

180 ,−INF,−INF,−INF
]T

xmax =
[
2, 0.9, 25π

180 , INF, INF, INF
]T (59b)

The weight matrices of the Loss function are defined as follows:

Q = diag
(
10−6, 10−6, 10−6, 10, 10, 10−1)

R = diag
(
10−3, 10−3)

S = diag
(
10−6, 10−6) (60)

Figure 7 provides a comprehensive illustration of the simulation results, showcasing
the remarkable obstacle avoidance capabilities of the AUV. The figure is thoughtfully
divided into several subgraphs, with each offering unique insights into the AUV’s motion
trajectories as it adeptly navigates around various obstacles. Figure 7a depicts the motion
trajectory of the AUV while avoiding Obs. 1. This subgraph highlights the AUV’s ability to
navigate around a single obstacle. Figure 7b illustrates the AUV’s trajectory while avoiding
Obs. 2 and Obs. 3 simultaneously. The positioning of Obs. 2 at the intersection of two
curves from Figure 7a allows for a rigorous evaluation of the AUV’s obstacle avoidance
capabilities when encountering multiple obstacles. Figure 7c,d present the trajectories of
the AUV while avoiding Obs. 3, Obs. 4, and Obs. 5. Throughout the simulation process,
the parameters of the obstacles are intelligently configured based on insights gained from
prior obstacle avoidance simulations. Notably, in Figure 7b, Obs. 2 is astutely positioned at
the convergence point of the trajectories from Figure 7a. This deliberate arrangement is
designed to challenge the AUV’s obstacle avoidance prowess by creating an environment
where it encounters multiple obstacles simultaneously.

In Figure 7, the red ellipses represent the obstacles that need to be avoided, while the
black curves represent the reference trajectory in the absence of obstacles. The magenta
dash-dotted curves and blue dashed curves elegantly signify the AUV’s avoidance of one
obstacle and two obstacles, respectively. Meanwhile, the green dotted curves and the cyan
dashed curve represent the AUV’s impressive ability to avoid three obstacles, each with
distinct values of dir. These findings are a testament to the AUV’s exceptional obstacle
avoidance performance, with each subgraph showcasing its agility and precision in various
challenging scenarios.

Figure 8 illustrates the translational velocities u and v, the rotational velocity r, the
Euler angle ψ, and the input u = [T, δ]T associated with each obstacle avoidance result. The
key insights conveyed by the various curves, represented by distinct line types and colors
in this figure, align with the interpretations presented in Figure 7.

From the obstacle avoidance results of the two and three obstacles presented in
Figure 7b,c, and the corresponding input data displayed in Figure 8, a clear pattern emerges.
During the AUV obstacle avoidance task, the effective strategy revolves around setting the
rudder angle to its maximum value as the AUV approaches an obstacle. This proactive
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measure ensures a safe distance is maintained from the obstacle during avoidance. Once
the obstacle avoidance task is successfully accomplished, the AUV smoothly transitions
back towards the reference trajectory in the absence of obstacles.
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each static obstacle avoidance result.

Subsequently, it becomes apparent that different obstacle avoidance results can be
achieved by adjusting the observation minimum distance dir, as illustrated in Figure 7d.
When dir is set to 3 m, the obstacle avoidance trajectory passes through Obs. 5 from the
front. An in-depth analysis of this trajectory reveals a key behavior—the AUV endeavors
to realign itself with the reference curve once it escapes the influence range of the first
obstacle. This realignment is most notable between the second and third obstacles, where
the AUV’s path closely aligns with the black reference trajectory. However, due to the
short distance between the first and second obstacles, the AUV chooses to maintain a safe
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distance rather than immediately approach the reference trajectory to satisfy the obstacle
avoidance requirements.

On the other hand, when dir is adjusted to 3.5 m, while the AUV remains focused on
the first obstacle, this extends over a more prolonged duration, allowing it to approach the
reference trajectory with a lower yaw angle after successfully circumventing the obstacle.
This observation is distinctly supported by Figure 8d, where the minimum value of ψ is
0.1556 rad between 10 and 20 s. As the AUV shifts its focus towards the second obstacle, the
controller efficiently adjusts the AUV’s trajectory based on its current state, enabling it to
pass below Obs. 5 with precision. These findings serve as a testament to the versatility and
adaptability of the proposed method. By strategically adjusting the observation minimum
distance dir, the AUV can navigate complex environments with agility and ensure the safe
avoidance of obstacles while maintaining trajectory accuracy.

4.3. Avoidance of Dynamic Obstacles on Horizontal Plane

While static obstacle avoidance remains a pivotal aspect of AUV control, it is im-
perative to recognize the equal significance of dynamic obstacle avoidance in real-world
applications. In the previous sections, we delved into our approach for static obstacle
avoidance. Now, we shift our focus to dynamic obstacle scenarios, building upon our
prior insights. To investigate the obstacle avoidance capabilities of the proposed method
in an environment containing dynamic obstacles, a new series of simulation tests has
been formulated, extending from the insights gained through the previous examination
of static obstacles. To further bolster the maneuverability of the AUV, an expansion was
made to the range of controllable rudder angles. It is imperative to underscore that the
constraints governing the state space remain unaltered, preserving the experimental setup’s
consistency. However, certain adjustments were introduced to the input constraints, which
are delineated as follows:

umin =
[
0,− 35π

180
]T

umax =
[
4.4, 35π

180
]T (61)

In the context of dynamic obstacle avoidance, the obstacles selected for simulation in
Section 4.2 are denoted as Obs. 3, Obs. 4, and Obs. 5. The coordinate and size parameters
of these obstacles remain consistent with the previous simulations, with the introduction
of velocity parameters as an additional factor, as outlined in Table 3. The incorporation of
dynamic obstacles serves the purpose of simulating real-world scenarios more faithfully,
where obstacles are not stationary but in motion. To simulate the movement of dynamic
obstacles, a criterion is established whereby an observed obstacle initiates its motion when
the distance between the AUV and the obstacle falls below a prescribed threshold, referred
to as esp. The motion of the obstacle ceases once the AUV successfully navigates past it. By
implementing this approach, a dynamic and interactive environment is created, wherein
the obstacles respond dynamically to the presence and actions of the AUV. For subsequent
simulation tests, the values of esp = 7 m and dir = 3.1 m are chosen as parameter settings.
These values are thoughtfully chosen to establish a suitable distance threshold for initiating
and terminating obstacle motion, while maintaining a safe distance during the avoidance
process. The primary objective of these simulations is to evaluate the effectiveness and
adaptability of the proposed method in addressing real-world scenarios where obstacles
are in motion.

Table 3. Speed parameters of obstacles.

Obstacles
Speed/(u, v)

Situation 1 Situation 2

Obs. 3 (−0.5, 0.5) (0, −0.5)
Obs. 4 (0, 0.5) (0, 0.5)
Obs. 5 (−0.5, 0.5) (−0.5, 0.5)
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The trajectories of AUV obstacle avoidance under the influence of two types of dy-
namic obstacles are depicted in Figure 9. In this figure, the red solid ellipses represent
the initial position of each dynamic obstacle, while the dashed ellipses denote its position
after the movement has ceased. The green dotted curves and cyan dashed curve illustrate
the AUV’s avoidance of the three static obstacles discussed in Section 4.2. Furthermore,
the magenta dash-dotted curves and blue dashed curves represent the AUV’s avoidance
trajectories when confronted with dynamic obstacles in their respective situations.
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Figure 10 provides a comprehensive visualization of the translational velocities u and v,
rotational velocity r, Euler angle ψ, and input u = [T, δ]T for each obstacle avoidance result.
An analysis of the motion trajectories in both situations reveals that the AUV follows a
similar trajectory while avoiding the first two obstacles. The curves between 10 s and 30 s in
each subgraph of Figure 10 demonstrate the similarities in velocity, state, and input patterns
during this phase. However, a noteworthy distinction emerges in the approach adopted
by the AUV when confronted with the last obstacle, which exhibits a different movement
direction. This disparity is clearly evident in Figure 10d. Specifically, for situation 2, two
distinct peaks of ψ can be observed, measuring 1.723 rad and 1.709 rad, respectively.

These simulation results highlight the adaptability of the proposed obstacle avoidance
approach when dealing with dynamic obstacles. The AUV consistently performs well
in avoiding the first two obstacles, with minimal deviations in trajectory, velocity, state,
and input. However, the distinct movement direction of the final obstacle necessitates a
unique obstacle avoidance strategy, resulting in variations in the AUV’s trajectory and ψ
values. These results emphasize the effectiveness of the proposed method in dynamically
navigating environments, successfully avoiding obstacles while maintaining control over
the AUV’s motion.

4.4. Obstacle Avoidance in Three-Dimensional Space

Given the paramount importance of precise and secure navigation in underwater
environments, particularly in mission-critical tasks such as pipeline inspection, underwater
construction, and environmental monitoring, the demand for three-dimensional obstacle
avoidance capabilities becomes increasingly apparent. To further enhance the obstacle
avoidance capabilities of underactuated AUVs powered by fins and rudders, this section
aims to extend the investigation into the effectiveness of the proposed method in the realm
of three-dimensional space. Navigating obstacles in three dimensions presents distinctive
challenges and offers substantial real-world applications. By expanding the scope of
our research to encompass three-dimensional scenarios, valuable insights can be gained
into the AUV’s ability to navigate complex underwater environments while avoiding
obstacles. Furthermore, conducting research on three-dimensional obstacle avoidance is
crucial for enhancing the safety and operational efficiency of autonomous underwater
systems. Numerous critical underwater missions require precise and reliable navigation
in three-dimensional space, such as the inspection of pipelines, underwater construction
endeavors, and rigorous environmental monitoring. By enabling AUVs to autonomously
navigate and avoid obstacles in three dimensions, the proposed method has the potential
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to significantly improve the success and accuracy of such missions, while concurrently
curtailing the risk of collisions or harm to delicate underwater structures.
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Figure 10. The translational velocity u, v, rotational velocity r, Euler angle ψ, and input u = [T, δ]T

for each dynamic obstacle avoidance result.

In this study, we delve into the realm of three-dimensional space to scrutinize the
efficacy of obstacle avoidance using an underactuated AUV outfitted with both fins δs

and rudders δr, and the input becomes u =
[
Tprop, δr, δs

]T. The target coordinates to be
reached are set as goal = [49, 40, 40]T. The AUV’s initial speed is prescribed as 1.5 m/s,
and the input is initialized as u0 = [0, 0, 0]T. The sampling period is set as T = 0.2 s,
and a prediction step of p = 10 is employed to forecast the AUV’s forthcoming trajectory.
The coordinate and scale parameters of obstacles are shown in Table 4. The first ternary
array represents the coordinate of the obstacles in the spatial coordinate system, while the
second array represents the scale in the x, y, and z directions. In order to guarantee the
effectiveness and safety of the AUV’s motion, the input constraints are modified as follows:

umin =
[
0,− 35π

180 ,− 30π
180

]T

umax =
[
4.4, 35π

180 , 30π
180

]T (62)

Table 4. Coordinate and scale parameters of obstacles in 3D space.

Figure 8a
(Position), (Scale)

Figure 8b
(Position), (Scale)

Figure 8c
(Position), (Scale)

Figure 8d
(Position), (Scale)

Obs. 1 (14, 9.5, 13.5)
(1.1, 1, 1)

(14, 9.5, 9)
(0.5, 1, 1)

(8.5, 5, 5)
(1, 1, 1)

(8.5, 5, 5)
(1, 1, 1)

Obs. 2 (39, 35, 35)
(1, 2, 2)

(39, 31, 35)
(1, 2, 2)

(43, 38, 38)
(1, 2, 2)

(43, 38, 36)
(1, 2, 2)

Obs. 3 (25, 22, 22)
(2, 2, 3)

(25, 22, 22)
(2, 2, 3)

(32, 26, 32)
(2, 2, 2)

(32, 26, 28)
(2, 2, 2)

Obs. 4 \
\

\
\

(20, 12.5, 18)
(2, 2, 2)

(20, 15, 17)
(2, 2, 3)
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The efficacy of the proposed method in achieving three-dimensional obstacle avoid-
ance for the AUV is substantiated by the results illustrated in Figures 11 and 12. In Figure 11,
the AUV obstacle avoidance paths are depicted for four distinct scenarios. The black solid
line represents the path without any obstacles, while the magenta dash-dotted curve, blue
dashed curve, red dotted curve, and greed curve represent the AUV’s obstacle avoidance
trajectories in their respective scenarios. Correspondingly, Figure 12 provides insight into
the AUV’s state and input under these four scenarios, maintaining the same representation
as in Figure 11. Analyzing the simulation results, it is evident that the proposed method
remarkably enables the AUV to adeptly navigate three-dimensional space while avoid-
ing obstacles. Additionally, the AUV’s state variables and input parameters consistently
adhere to the specified constraint range throughout the obstacle avoidance maneuvers.
It is essential to note that, owing to the disparity between the center of gravity and cen-
ter of buoyancy in the zb direction, maintaining the AUV’s stability during movement
necessitates significant adjustments in the fin angle during the control process.
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The results from these simulations validate the efficacy of the proposed method in
enabling three-dimensional obstacle avoidance for the AUVs. The AUV adeptly maneuvers
around obstacles while strictly adhering to the constraints governing its state and input.
This research serves as a valuable contribution to the field of autonomous underwater
systems, shedding light on effective three-dimensional obstacle avoidance strategies and
elevating the overall competency and safety of AUVs operating in intricate underwater
environments.

5. Conclusions

This study presents a comprehensive exploration of the control performance of the
Gaussian-process-based model predictive control (GP-MPC) technique concerning trajec-
tory tracking and obstacle avoidance in AUVs. The research commences with the estab-
lishment of the kinematic and dynamic equations governing AUV motion, providing a
fundamental framework for subsequent developments. The state prediction equation, incor-
porating the GP-MPC methodology, is then formulated, accounting for both self-constraints
and obstacle avoidance considerations while integrating an optimization function. Ex-
tensive simulations are conducted to comprehensively evaluate the performance of the
proposed approach in terms of trajectory tracking and static as well as dynamic obstacle
avoidance. The results validate the efficacy of the GP-MPC method in facilitating AUVs to
navigate adeptly within their own constraints and effectively circumvent external obstacles.
This facilitates precise and efficient obstacle avoidance control, which is crucial for ensuring
AUV safety and mission success in complex underwater environments. Moreover, the
study extends to the exploration of three-dimensional obstacle avoidance, providing valu-
able insights into the algorithm’s resilience and performance within intricate underwater
environments. The research outcomes not only contribute significantly to advancing AUV
capabilities and safety, but also hold substantial potential for the evolution of autonomous
underwater systems. Future research endeavors may concentrate on further refining the
algorithm and delving into its practical applications, with the aim of enhancing the overall
dependability and efficacy of AUV obstacle avoidance strategies in real-world scenarios.

In future research, the in-depth integration of Gaussian Process Model Predictive
Control (GP-MPC) with other advanced artificial intelligence techniques will become an
important exploration direction, aiming to significantly enhance the intelligence level and
overall performance of control systems. Such integration will not only help strengthen the
adaptability and robustness of the system but also improve the accuracy and efficiency of
decision-making. In addition, it is crucial to investigate how to better handle multi-objective
optimization problems and constraints using the GP-MPC method. In practical applications,
control systems often need to make decisions while satisfying multiple objectives and
constraints, posing higher demands on optimization algorithms. Therefore, we need to
delve deeper into multi-objective optimization theory, explore effective constraint handling
methods, and integrate them with the GP-MPC algorithm to achieve a more intelligent and
efficient control system design.
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Abbreviations

3D 3-Dimensional
AUVs Autonomous Underwater Vehicles
DOF Degree-Of-Freedom
DVL Doppler Velocity Log
GP Gaussian Process
IMU Inertial Measurement Unit
LOS Line-Of-Sight
LPV Linear Parameter Variation
MPC Model Predictive Control
NED North-East-Down
NTSMC Nonlinear Tilted Sliding Mode Control
RBF-NN Radial Basis Function Neural Network
REMUS Remote Environmental Monitoring Units
ROV Remotely Operated Vehicles
UAVs Unmanned Aerial Vehicles

References
1. Hong, L.; Fang, R.; Cai, X.; Wang, X. Numerical investigation on hydrodynamic performance of a portable AUV. J. Mar. Sci. Eng.

2021, 9, 812. [CrossRef]
2. Zhang, F.; Marani, G.; Smith, R.N.; Choi, H.T. Future trends in marine robotics [TC Spotlight]. IEEE Robot. Autom. Mag. 2015, 22,

14–122. [CrossRef]
3. Sagala, F.; Bambang, R.T. Development of sea glider autonomous underwater vehicle platform for marine exploration and

monitoring. Indian J. Geo-Mar. Sci. 2011, 40, 287–295.
4. Wang, H.; Su, B. Event-triggered formation control of AUVs with fixed-time RBF disturbance observer. Appl. Ocean. Res. 2021,

112, 102638. [CrossRef]
5. Cong, Z.; Ma, T.; Li, Y.; Yuan, M.; Ling, Y.; Du, H.; Qi, C.; Li, Z.; Xu, S.; Zhang, Q. A Storage-Saving Quadtree-Based Multibeam

Bathymetry Map Representation Method. J. Mar. Sci. Eng. 2023, 11, 709. [CrossRef]
6. Tang, Y.; Wang, L.; Jin, S.; Zhao, J.; Huang, C.; Yu, Y. AUV-Based Side-Scan Sonar Real-Time Method for Underwater-Target

Detection. J. Mar. Sci. Eng. 2023, 11, 690. [CrossRef]
7. Kirkwood, W.J. Development of the DORADO mapping vehicle for multibeam, subbottom, and sidescan science missions. J. Field

Robot. 2007, 24, 487–495. [CrossRef]
8. Thomas, C.; Simetti, E.; Casalino, G. A unifying task priority approach for autonomous underwater vehicles integrating homing

and docking maneuvers. J. Mar. Sci. Eng. 2021, 9, 162. [CrossRef]
9. Curtin, T.B.; Crimmins, D.M.; Curcio, J.; Benjamin, M.; Roper, C. Autonomous underwater vehicles: Trends and transformations.

Mar. Technol. Soc. J. 2005, 39, 65–75. [CrossRef]
10. Xia, Y.; Xu, K.; Huang, Z.; Wang, W.; Xu, G.; Li, Y. Adaptive energy-efficient tracking control of a X rudder AUV with actuator

dynamics and rolling restriction. Appl. Ocean. Res. 2022, 118, 102994. [CrossRef]
11. Gong, P.; Yan, Z.; Zhang, W.; Tang, J. Trajectory tracking control for autonomous underwater vehicles based on dual closed-loop

of MPC with uncertain dynamics. Ocean. Eng. 2022, 265, 112697. [CrossRef]
12. Wang, H.; Chen, B.; Lin, C. Direct adaptive neural tracking control for a class of stochastic pure-feedback nonlinear systems with

unknown dead-zone. Int. J. Adapt. Control. Signal Process. 2013, 27, 302–322. [CrossRef]
13. Zhang, Y.; Liu, X.; Luo, M.; Yang, C. MPC-based 3-D trajectory tracking for an autonomous underwater vehicle with constraints

in complex ocean environments. Ocean. Eng. 2019, 189, 106309. [CrossRef]
14. Khodayari, M.H.; Balochian, S. Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude

via self-adaptive fuzzy PID controller. J. Mar. Sci. Technol. 2015, 20, 559–578. [CrossRef]
15. Qiao, L.; Yi, B.; Wu, D.; Zhang, W. Design of three exponentially convergent robust controllers for the trajectory tracking of

autonomous underwater vehicles. Ocean. Eng. 2017, 134, 157–172. [CrossRef]
16. Peng, Z.; Wang, J.; Wang, J. Constrained control of autonomous underwater vehicles based on command optimization and

disturbance estimation. IEEE Trans. Ind. Electron. 2018, 66, 3627–3635. [CrossRef]
17. Cho, Y.; Han, J.; Kim, J.; Lee, P.; Park, S.B. Experimental validation of a velocity obstacle based collision avoidance algorithm for

unmanned surface vehicles. IFAC-PapersOnLine 2019, 52, 329–334. [CrossRef]
18. Trym, T.; Brekke, E.F.; Johansen, T.A. On collision risk assessment for autonomous ships using scenario-based MPC. IFAC-

PapersOnLine 2020, 53, 14509–14516. [CrossRef]
19. Zhang, M.; Hao, S.; Wu, D.; Chen, M.L.; Yuan, Z.M. Time-optimal obstacle avoidance of autonomous ship based on nonlinear

model predictive control. Ocean. Eng. 2022, 266, 112591. [CrossRef]
20. Bao, H.; Zhu, H.; Li, X.; Liu, J. APSO-MPC and NTSMC Cascade Control of Fully-Actuated Autonomous Underwater Vehicle

Trajectory Tracking Based on RBF-NN Compensator. J. Mar. Sci. Eng. 2022, 10, 1867. [CrossRef]

https://doi.org/10.3390/jmse9080812
https://doi.org/10.1109/MRA.2014.2385561
https://doi.org/10.1016/j.apor.2021.102638
https://doi.org/10.3390/jmse11040709
https://doi.org/10.3390/jmse11040690
https://doi.org/10.1002/rob.20191
https://doi.org/10.3390/jmse9020162
https://doi.org/10.4031/002533205787442521
https://doi.org/10.1016/j.apor.2021.102994
https://doi.org/10.1016/j.oceaneng.2022.112697
https://doi.org/10.1002/acs.2300
https://doi.org/10.1016/j.oceaneng.2019.106309
https://doi.org/10.1007/s00773-015-0312-7
https://doi.org/10.1016/j.oceaneng.2017.02.006
https://doi.org/10.1109/TIE.2018.2856180
https://doi.org/10.1016/j.ifacol.2019.12.328
https://doi.org/10.1016/j.ifacol.2020.12.1454
https://doi.org/10.1016/j.oceaneng.2022.112591
https://doi.org/10.3390/jmse10121867


J. Mar. Sci. Eng. 2024, 12, 676 26 of 26

21. Oh, S.R.; Sun, J. Path following of underactuated marine surface vessels using line-of-sight based model predictive control. Ocean.
Eng. 2010, 37, 289–295. [CrossRef]

22. Gao, J.; Liu, C.; Proctor, A. Nonlinear model predictive dynamic positioning control of an underwater vehicle with an onboard
USBL system. J. Mar. Sci. Technol. 2016, 21, 57–69. [CrossRef]

23. Wang, W.; Yan, J.; Wang, H.; Ge, H.; Zhu, Z.; Yang, G. Adaptive MPC trajectory tracking for AUV based on Laguerre function.
Ocean. Eng. 2022, 261, 111870. [CrossRef]

24. Song, Y.; Scaramuzza, D. Policy search for model predictive control with application to agile drone flight. IEEE Trans. Robot. 2022,
38, 2114–2130. [CrossRef]

25. Piotr, B.; Zwierzewicz, Z. Ship course-keeping algorithm based on knowledge base. Intell. Autom. Soft Comput. 2011, 17, 149–163.
26. Yao, F.; Yang, C.; Liu, X.; Zhang, M. Experimental evaluation on depth control using improved model predictive control for

autonomous underwater vehicle (AUVs). Sensors 2018, 18, 2321. [CrossRef]
27. Uchihori, H.; Cavanini, L.; Tasaki, M.; Majecki, P.; Yashiro, Y.; Grimble, M.J.; Yamamoto, I.; van der Molen, G.M.; Morinaga, A.;

Eguchi, K. Linear parameter-varying model predictive control of AUV for docking scenarios. Appl. Sci. 2021, 11, 4368. [CrossRef]
28. Maciejowski, J.M.; Yang, X. Fault tolerant control using Gaussian processes and model predictive control. In Proceedings of the

2013 Conference on Control and Fault-Tolerant Systems (SysTol), Nice, France, 9–11 October 2013; IEEE: Piscataway, NJ, USA,
2013; pp. 1–12.

29. Hewing, L.; Liniger, A.; Zeilinger, M.N. Cautious NMPC with Gaussian process dynamics for autonomous miniature race cars. In
Proceedings of the 2018 European Control Conference (ECC), Limassol, Cyprus, 12–15 June 2018; IEEE: Piscataway, NJ, USA,
2018; pp. 1341–1348.

30. Li, D.; Du, L. Auv trajectory tracking models and control strategies: A review. J. Mar. Sci. Eng. 2021, 9, 1020. [CrossRef]
31. Mehdi Khosrow-Pour, D.B.A. Advances in Information Quality and Management. In Encyclopedia of Information Science and

Technology, 5th ed.; IGI Global: Hershey, PA, USA, 2020; Volume 1, Chapter 1; pp. 1–11.
32. Do, K.D.; Pan, J. Control of Ships and Underwater Vehicles: Design for Underactuated and Nonlinear Marine Systems; Springer: London,

UK, 2009.
33. Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: Hoboken, NJ, USA, 2011.
34. Prestero, T.T.J. Verification of a Six-Degree of Freedom Simulation Model for the REMUS Autonomous Underwater Vehicle. Ph.D.

Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2001.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.oceaneng.2009.10.004
https://doi.org/10.1007/s00773-015-0332-3
https://doi.org/10.1016/j.oceaneng.2022.111870
https://doi.org/10.1109/TRO.2022.3141602
https://doi.org/10.3390/s18072321
https://doi.org/10.3390/app11104368
https://doi.org/10.3390/jmse9091020

	Introduction 
	Modeling of AUV 
	Coordinate System Establishment 
	Kinematic Model Formulation 
	Dynamic Model Development 

	Gaussian-Process-Based MPC 
	MPC for AUV Control 
	Constraints of AUV Operation 
	Cost Function for Control Performance Evaluation 
	Gaussian Process for Uncertainty Modeling 

	Numerical Simulations and Analysis 
	Trajectory Tracking Analysis 
	Avoidance of Static Obstacles on the Horizontal Plane 
	Avoidance of Dynamic Obstacles on Horizontal Plane 
	Obstacle Avoidance in Three-Dimensional Space 

	Conclusions 
	References

