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Abstract: As seafarers are involved in Maritime Autonomous Surface Ships (MASS), except for those
in the fourth level of autonomy, the decision making of autonomous berthing should be carried
out and be understood by human beings. This paper proposes a fuzzy logic-based human-like
decision-making method for ultra-large ship berthing, which considers locations, ship particulars
and the natural environment, and these factors are treated as the input variables. The IF–THEN rules
are then established after the fuzzification of the input variables and are used for fuzzy inference to
derive the decision of ship handling. It can be implemented in the decision-making system for safe
navigation or be included in the process of autonomous berthing. The pilotage data are collected with
nautical instruments and a distance measurement system during the berthing process, which are used
to validate the proposed model and calculate the speed and turn errors. The overall and individual
error of the decision-making model is in a reasonable and small range, which indicates that the
model has good accuracy. The results of this research offer theoretical and practical insights into the
development of a human-like decision-making method for autonomous navigation in port waters and
maritime safety management in the shipping industry. The model can be further applied to develop
a more widely applicable decision-making system for autonomous navigation in confined waters.

Keywords: decision making; fuzzy logic; ship berthing; water transportation

1. Introduction

With the development of artificial intelligence, intelligent ships have developed rapidly
in recent years. In Norway, the Norwegian University of Science and Technology (NTNU)
has completed operational trial sailings of the urban autonomous passenger ferry with
the functions of a remotely control ship and autonomous navigation in 2022 [1]. Another
intelligent ship in Norway, Oslo Fjord, is designed to sail completely unmanned and
will contribute to lower transportation costs [2]. In Denmark, the tug Nellie Bly, using a
system developed by Sea Machines Robotics of Boston, has completed the world’s first
1000 nautical mile autonomous voyage with the use of computer vision and autonomous
technology to circumnavigate Denmark and gather essential data on waterways in 2021 [3].
In Japan, a coastal ferry completed the test of fully autonomous ship navigation systems in
northern Kyushu in 2021, with autonomous port berthing and unberthing [4]. Rolls-Royce
is expanding its ship automation systems with new products, which offer different levels
of intelligent crew support, autonomous navigation, and remote command capabilities.

According to the International Regulations for Preventing Collision at Sea (COLREGS),
when sailing from departure to destination, a ship’s journey may be underway, at anchor,
made fast to the shore, or aground. As running aground is a type of accident, many
studies have been carried out to prevent such an accident, and autonomous navigation is
a type of solution. Therefore, many studies focused on the automation of the other three
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statuses including navigation, anchoring, and mooring. For ship anchoring, Yue et al. [5]
proposed a two-stage ship detection network capable of generating anchors. Gao and
Makino [6] analyzed the situations of anchored ships based on historical ship navigation
data and discussed ship evacuations offshore during stormy weather. For ship mooring,
Villa-Caro et al. [7] illustrated that mooring systems face more challenging conditions
in terms of waves, wind, and drift currents and emphasized the need for equipment
evolution to align with new port devices. For autonomous navigation, Lyu and Yin [8]
and Ozturk et al. [9] introduced a real-time and deterministic path planning method
for autonomous ships navigating in complex and dynamic environments. Liu et al. [10]
and Wang et al. [11] developed an intelligent decision-making model based on human
thinking patterns, COLREGs, and seamanship, considering collision risk, rule compliance,
yaw angle, and drift distance. Hahn et al. [12] proposed methods to enhance the level
of automation in ship handling, particularly focusing on conventional vessels during
maneuvering operations towards autonomous operations.

Ship berthing is a common scenario, and numerous studies have investigated au-
tonomous berthing [13–15]. Previous studies can be broadly categorized into ship motion
control and decision making for ship berthing [16,17]. In ship motion control, some studies
utilize berthing data to develop simulation modules based on neural networks [18–20].
Maki et al. [21] and Miyauchi et al. [22] employed the covariance matrix adaptation evo-
lution strategy, which emulates biological evolution principles to tackle continuous op-
timization problems during the berthing process. Shimizu et al. [23] utilized machine
learning techniques, including reinforcement learning and supervised learning, to develop
a berthing model that accounts for port geometries and wind disturbances. Wang et al. [24]
proposed a precise piloting and berthing method utilizing an LSTM-based trajectory pre-
diction model and an MPC-based trajectory tracking algorithm. In decision-making during
the berthing process, Nguyen and Im [25] developed a model that considers ship posi-
tion, course, and speed to control the ship, aiding in determining ship handling decisions
during berthing.

In previous studies, the majority utilized simulation data from ship motion models for
verification [26,27], rarely incorporating real pilotage data or considering human thoughts.
Nonetheless, even the most accurate model’s prediction of a ship’s behavior still deviates
from reality [28]. As per the International Maritime Organization (IMO) definition of
Maritime Autonomous Surface Ships (MASS), seafarers are involved in a ship’s navigation
up to the third level of autonomy. Hence, the decision-making model should be based on
human reasoning and comprehensible to humans [29].

This research establishes a fuzzy logic-based decision-making model for ultra-large
ship berthing by analyzing the berthing scenario, defining interfering factors, and utilizing
fuzzy numbers provided by domain experts to determine human turning and speed
decisions. Using the SEAiq Pilot software 5.0.11, real pilotage data including distance,
ship speed, and ship course can be collected. Subsequently, the Delphi method [30,31]
was utilized for comprehensively determining the fuzzy numbers of different linguistic
terms combined with varying weights of each domain expert. Finally, the fuzzy logic-based
decision-making model integrates location, ship, and environmental factors to determine
rudder and telegraph decisions in real time during the berthing process [32].

The paper is structured as follows. Section 2 introduces the three-layer berthing
decision-making model based on fuzzy logic. It analyzes the berthing condition to iden-
tify the influencing factors including location, ship particulars, and natural environment.
Section 3 presents a case study of ultra-large ship berthing at Rizhao Port. This study
validates the decision-making model using real ship pilotage data and quantifies both
individual and overall errors. The conclusions are provided in Section 4.
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2. Methodology for Decision-Making Model
2.1. Establish the Fuzzy Logic-Based Decision-Making Model

In 1965, Zadeh [33] introduced the concept of a fuzzy subset within a set. In 1973,
Kauffmann [34] proposed the concept of fuzzy graphs and developed their structure. Since
then, the theory of fuzzy sets has emerged as a vibrant area of research across various
disciplines, encompassing uncertainty management [35], social sciences, and financial
analysis [36]. At present, fuzzy logic is widely used in risk analysis [37–41] and decision
making [42–44] for maritime transportation. This method utilizes a degree of truth to
express vagueness and uncertain variables, which is especially useful for the decision
making of ship berthing because the berthing process is influence by multiple factors [31],
and the quantification of these factors are often uncertain, imprecise, or vague. Moreover,
the advantage of this method is to combine pilotage data and expert experience when
establishing the decision-making model, which is the same with the decision-making
process of the pilot.

Establishing a decision-making model often involves several steps in the fuzzy infer-
ence system: the fuzzification of input factors, the establishment of fuzzy rules and a fuzzy
inference engine, and the defuzzification of outputs. Figure 1 illustrates the established
three-layer framework of the fuzzy inference system for ship berthing, comprising the
input layer, fuzzy inference layer, and output layer.
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Figure 1. Fuzzy inference system.

The first layer comprises the input layer. The input factors can be divided into
two categories, which are location factors and environment factors. The rationale for
selecting these factors will be provided in Section 2.2. It involves fuzzifying the input
factors using linguistic variables and then conducting the inference process by applying
established rules derived from the pilotage data and experts’ knowledge. The third layer
consists of the output layer, where the decision-making results regarding turn and speed
are defuzzified to obtain crisp values. Note that the heading and ship speed are influenced
by the engine telegraph and rudder angle. Consequently, the decision model is divided
into two parts: the turn decision model and the speed decision model. The framework of
the decision model is shown in Figure 2.
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2.2. Identify the Influencing Factors by Analyzing Ship Berthing Condition

The berthing process can be divided into three stages. There are many berths alongside
the wharf, and the target berth may not the first berth. To simplify the modeling process,
we define the edge of the wharf as the origin of the coordinate system. The X-coordinate
represents the distance along the front line of the wharf, while the Y-coordinate represents
the vertical distance from the origin. A typical ship berthing condition is shown in Figure 3,
and it can be seen that the decision making for ship berthing is influenced by multiple
factors, which can be divided into two categories.
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One category is location factors, including Dx, Dy, and Dx1. The location factors are
determined by the real-time position of the ship, which can be derived under a distance
measurement system [45]. For different berths, the values of Dx and Dy can be adjusted
based on the relative position between the ship and the berth.

(1) Dx: The lateral distance of the ship from the origin. The ship should not be close to the
wharf because a short distance will cause collisions between the ship and the wharf.
If the value of Dx is large, the time to start turning should be earlier, and the helm
order should be larger than usual to avoid the danger of colliding.

(2) Dy: The vertical distance between the ship and the origin. When the ship approaches
the berth, the ship should adjust its position and speed. Dy is a key parameter to
determine the timing for adjusting the position and speed. If the value of Dy is large,
the time to start turning should be later than usual, and the helm order should change
smoothly to improve the safety of ship berthing.

(3) Dx1: The lateral distance of the ship from the target berth. This factor determines the
timing of berthing. If the value of Dx1 is large, the ship speed should decrease slowly
during the berthing process to improve the efficiency and economy of ships and ports.

The other category is environment and ship factors, including α, ship speed, ship
displacement, ship length, and leeway and drift angle [46–48].

(1) α: The ship heading (under the established coordinate system). α determines whether
the ship has enough space to adjust to a suitable berthing position. During the
berthing process, α is changed by a change in the ship’s position, and the pilot should
adjust the angle according to the actual situation. Traditionally, α is a large angle,
even close to a right angle, before turning, and it will be gradually decreased owing
to the adjusting of the pilot, and finally, it will be close to the front line of the wharf.
This factor and location factors should be considered to determine the helm orders
and time to start turning. If the ship approaches the berth and α is still large, a large
rudder angle should be ordered to adjust the ship course to a reasonable range.

(2) V: Ship speed. The ship speed of berthing is relatively low compared to navigation.
During the berthing process, if the speed is high, there will be little time to adjust
the ship heading. If the speed is slow, it will be difficult for the ship to maintain the
rudder efficiency. Ship speed is determined by the engine telegraph, which reflects
the effect of the speed decision obtained by the proposed model. It is a significant
indicator for assessing the decision-making model.

(3) Dp and L: Ship displacement and ship length. The size of the ship influences the
maneuverability of the ship. Traditionally, the turning indices of small-sized ships
are larger than those of large-sized ships, which indicates that the turning circle of
small-sized ships is smaller than that of large-sized ships. Note that this paper focuses
on ultra-large ships, which is less influenced by the wind and current compared with
small-sized ships. The established decision-making model may be different from
small-sized ships.

(4) Leeway and drift angle. This is an angle between the course over ground and the true
course caused by the wind and current. The wind and waves are major constrains
during the berthing process, which are reflected by the leeway and drift angle in the
fuzzy logic framework of the decision-making model.

2.3. Fuzzify the Influencing Factors for Decision Making of Ship Berthing

By assigning a value between 0 and 1 for each element of discourse, fuzzy logic
can address the problems of inaccurate and uncertain data. The assigned value is called
a membership degree and determines the extent to which a given element belongs to the
fuzzy set.

Triangular membership functions are introduced for the fuzzification of the location
and environment factors. This is because the turning and speed decisions exhibit linear
changes relative to position variations. By adjusting the three parameters (i.e., lower bound
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(a), peak (b), and upper bound (c)) of the triangular membership function (as shown in
Figure 4), fuzzy rules can be established for narrower water areas, thereby enhancing the
accuracy of the decision-making model. For ultra-large ships, the displacement varies over
a wide range. Hence, trapezoidal membership functions are employed to fuzzify the ship’s
displacement, owing to their flexibility and capability to model a broader array of shapes
and distributions compared to alternative membership functions. The triangular and
trapezoidal membership functions are represented as Equations (1) and (2), respectively.

µtriangular(X) =


0 x < a

(x − a)/(b − a) a ≤ x ≤ b
(c − x)/(c − b) b ≤ x ≤ c

0 c < x

(1)

µtrapezoidal(X) =


0 x < a

(x − a)/(b − a) a ≤ x ≤ b
1 b ≤ x ≤ c

(x − d)/(c − b) c ≤ x ≤ d
0 d < x

(2)
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Before fuzzifying the input factors, the number of linguistic variables should be deter-
mined. If there are too many linguistic variables, it is difficult to quantify each individual
linguistic term. If there are too few linguistic variables, it is difficult to distinguish adjacent
linguistic terms. In this paper, 2–9 linguistic variables are used to describe the input factors.

(1) Input factors for decision-making model

There are six input factors, which are location, the ship heading, ship speed, ship
displacement, and leeway and drift angle.

Location factors. According to the pilotage data and the berthing experience of the
pilot [49,50], the location factors are divided into 4–6 fuzzy linguistic variables: opposite–
far, opposite–close, very close, close, normal, and far. Based on the berthing data, the
lateral distance of the ship from the origin Dx ∈ (1000, 1400) and the vertical distance of
the ship from the origin Dy ∈ (400, 600) when ship starts to turn in the berthing process
can be determined. Its value is mainly associated with the size of the ship. The larger the
ship, the earlier the start time of the turning. Therefore, in order to establish a generic
decision-making model considering the size of the ship, the initial data Dx, Dy, and Dx1 are
processed as in Equation (3). 

Drel
x = Dx

L
Drel

y =
Dy
L

Dabs
x = Dx1

L

(3)
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When the lateral distance of the ship from the origin is 4–5 times the ship length, the
vertical distance is 1.5–2.5 times the ship length, and the lateral distance from the target
berth is 5–6 times the ship length, the ship starts to turn. Therefore, defining Drel

x ∈ (4, 5) as
far, Drel

y ∈ (1.5, 2.5) as far, and Dabs
x ∈ (5, 6) as far.

The ship heading (under the established coordinate system). By analyzing the ship
berthing condition, α is defined between −15 and 100 degrees. In this paper, six linguistic
values, which are opposite–small, very small, small, middle, large, and very large, are
introduced for fuzzification. In the process of ship berthing, α changes from large to small
under the operation of the pilot. At the beginning of the ship turning, α is a large angle
around 80–90 degrees, and at the end of the berthing, α is a small angle close to zero
degrees. Therefore, we define α ∈ (80, 90) as very large and α ∈ (−15, 20) as very small.

Ship speed. The ship speed is defined between 0 and 6 kn, which considers the speed
of navigation in the approach channel [51,52]. In this paper, five linguistic values, which are
very slow, slow, normal, fast, and very fast, are introduced for fuzzification. Traditionally,
the rudder effect of a ship with a high speed is greater than a ship with a low speed.
However, the high speed will make the control of the ship difficult and pose a threat to
the berthing safety. According to the data of real pilotage in the berthing process, the ship
speed is around 5–6 kn at the beginning of the turning and gradually decreases to less than
0.5 kn when the ship is in position for berthing. Therefore, we define V ∈ (5, 6) as very fast
and V ∈ (0, 1) as very slow.

Ship displacement. The ship displacement is defined between 1 × 105 and 3.5 × 105 tons,
and only two linguistic values, which are large and very large, are introduced for fuzzi-
fication. For the two linguistic values, we use the trapezoidal membership function for
fuzzification. By analyzing the decisions of ships with different displacements in the
berthing process, the results obtained by the pilot are not very different. Therefore, the cate-
gory of ship size is considered using simplified method and will not be further discussed.

Leeway and drift angle. The leeway and drift angle is defined between −5 and
5 degrees and nine triangular linguistic values, which are opposite–very large, opposite–
large, opposite–normal, opposite–small, very small, small, normal, large, and very large,
are introduced for fuzzification. The influence of the wind and current determines the
leeway and drift angle, which has a certain impact on ship handling [53].

The value of the linguistic variables of the input factors in this paper is shown in
Table 1.

Table 1. The value of linguistic variables of input factors.

Inputs Fuzzified Values

Drel
x

o–far
(−6,−2,−1)

o–close
(−2,−1,0)

very close
(−1,0,2)

close
(0,2,4)

normal
(2,4,6) \ \ \ \

Drel
y

o–far
(−3,−2,−1)

o–close
(−2,−1,0)

very close
(−1,0,1)

close
(0,1,1.78)

normal
(1,1.78,2.14)

far
(1.78,2.14,3) \ \ \

Dabs
x

very close
(−1,0,2)

close
(0,2,4)

normal
(2,4,6)

far
(4,6,8) \ \ \ \ \

α
o–small

(−30,−15,0)
very small
(−15,0,20)

small
(0,20,45)

middle
(20,45,70)

large
(45,70,100)

very large
(70,100,110) \ \ \

V very slow
(0,0,1)

slow
(0,1,3.2)

normal
(1,3.2,4.8)

fast
(3.2,4.8,6)

very fast
(4.8,6,7) \ \ \ \

Dp (× 105) large
(−1,0,1,3.5)

very large
(1,3.5,5,6) \ \ \ \ \ \ \

γ
o–very large

(−6,−5,−3.75)
o–large

(−5,−3.75,−2.5)
o–normal

(−3.75,−2.5,−1.25)
o–small

(−2.5,−1.25,0)
very small

(−1.25,0,1.25)
small

(0,1.25,2.5)
normal

(1.25,2.5,3.75)
large

(2.5,3.75,5)
very large
(3.75,5,6)

(2) Intermediate factors for decision-making model

Turn correction. The turn correction is determined by ship displacement, ship length,
and leeway and drift angle, which considers the turn from the perspective of the ship and
environment factors. Turn correction is defined between −1 and 1, and nine triangular
linguistic values, which are opposite–most, opposite–more, opposite–normal, opposite–
little, no need, little, normal, more, and most, are introduced for fuzzification. Note that
nine linguistic values represent different degrees of correction, expressed by most, more,
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normal, etc. The membership function of the linguistic value of turn correction is expressed
as X, the number of linguistic variables is i, and the output is ∈ (a, b). This process can be
expressed as follows:

X =


X1
X2
X3
. . .
Xi

 =


x11 x12 x13
x21 x22 x23
x31 x32 x33
. . . . . . . . .
xi1 xi2 xi3

 (4)

where (xi1, xi2, xi3) is the value of linguistic variable Xi, and it is defined in Equation (5).
xi2 = x(i+1)1

d = b−a
i−1

xi3 − xi2 = xi2 − xi1 = d
x11 = a − d
xi3 = a − d

(5)

Turn expected. The turn expected is determined by Dx, Dy, Dx1 and α, which considers
the turn from the perspective of location factors. The turn expected is defined between −1
and 1, and seven linguistic values, which are opposite–most, opposite–normal, opposite–
little, no need, little, normal, and most, are introduced for fuzzification. In practice, the
helm order of the pilot is often a multiple of five. For example, if a large angle of turning
is required, the helm order of hard a starboard or starboard twenty will be used, and if a
small angle of turning is required to adjust the heading slightly, the helm order of starboard
five or port five will be used. Therefore, in order to carry out a human-like decision-making
process for ship berthing, the unique trapezoidal linguistic variable is determined and is
introduced in Figure 5.
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The difference between ship speed and expected speed. The speed difference is
defined within the range of −5 to 5 kn, and five linguistic values, which are opposite–very
different, opposite–similar, same, similar, and very different, are introduced for fuzzification.
Trapezoidal membership functions are introduced for the linguistic values of opposite–
very different, opposite–similar, similar, and very different, while triangular membership
functions are introduced for the linguistic value of same.

Expected speed. The expected speed is determined by Dx, Dy, Dx1, and ship displace-
ment, which considers the speed from the perspective of the location and environment
factors. The expected speed is defined between 0 and 6 kn, and five triangular linguistic
values, very slow, slow, normal, fast, and very fast, are used for fuzzification. The expected
speed reflects whether the ship speed in different positions is reasonable. The value of the
linguistic variables of the intermediate factors in this paper is shown in Table 2.
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Table 2. The value of the linguistic variables of intermediate factors.

Intermediates Fuzzified Values

Tc
o–most

(−1.25,−1,−0.75)
o–more

(−1,−0.75,−0.5)

o–normal
(−0.75,

−0.5,−0.25)

o–little
(−0.5,−0.25,0)

no need
(−0.25,0,0.25)

little
(0,0.25,0.5)

normal
(0.25,0.5,0.75)

more
(0.5,0.75,1)

most
(0.75,1,1.25)

Te

o–most
(−1.7,−1.02,
−0.98,−0.97)

o–normal
(−0.69,−0.68,
−0.64,−0.63)

o–little
(−0.36,−0.35,
−0.31,−0.3)

no need
(−0.03,−0.02,

0.02,0.03)

little
(0.3,0.31,

0.35, 0.36)

normal
(0.63,0.64,
0.68, 0.69)

most
(0.97,0.98,1,2) \ \

Ve very slow
(−2.496,0,1)

slow
(0,1,3.2)

normal
(1,3.2,4.8)

fast
(3.2,4.8,6)

very fast
(4.8,6,12) \ \ \ \

V − Ve o–very different
(−5,−4,−3,−2)

o–similar
(−3,−2,−1,0)

same
(−1,0,1)

similar
(0,1,2,3)

very
different
(2,3,4,5)

\ \ \ \

(3) Output factors for decision-making model

Turn assessment. The turn assessment is determined by the turn expected and turn
correction, which considers the helm orders from the perspective of the location and
environment factors. The turn expected is defined between −30 and 30, and seven linguistic
values, which are opposite–most, opposite–normal, opposite–little, no need, little, normal,
and most, are introduced for fuzzification.

Speed assessment. The speed assessment is determined by the expected speed, speed
difference, and ship speed, which considers the telegraph orders from the perspective of
the location and environment factors. The speed assessment is defined between −4 and
4, and nine linguistic values, which are opposite–most, opposite–more, opposite–normal,
opposite–little, no need, little, normal, more, and most, are introduced for fuzzification.

The value of the linguistic variables of the output factors in this paper is shown in
Table 3.

Table 3. The value of the linguistic variables of output factors.

Outputs Fuzzified Values

Tass

o–most
(−51,−30.6,
−29.4,−29.1)

o–normal
(−20.7,−20.4,
−19.2,−18.9)

o–little
(−10.8,−10.5,
−9.3,−9.0)

no need
(−0.9,−0.6,

0.6,0.9)

little
(9.0,9.3,

10.5, 10.8)

normal
(18.9,19.2,
20.4, 20.7)

most
(29.1,29.4,
30.6,51)

\ \

Sass
o–most

(−4,−4,−4,−4)
o–more

(−3,−3,−3,−3)
o–normal

(−2,−2,−2,−2)
o–little

(−1,−1,−1,−1)
no need
(0,0,0,0)

little
(1,1,1,1)

normal
(2,2,2,2)

more
(3,3,3,3)

most
(4,4,4,4)

(4) Fuzzy membership functions of the linguistic terms established

The decision-making model for ship berthing is developed from the viewpoint of ship
operators. Thus, employing fuzzy numbers is preferable for capturing human thought pro-
cesses in decision making. Nevertheless, experts’ expertise and information are inherently
uncertain or vague. Therefore, we utilize fuzzy numbers provided by domain experts and
pilots while considering the relative importance weights of each expert to optimize our
model. To obtain a reasonable outcome from the proposed model, three domain experts
and one pilot are invited to provide judgments on the linguistic terms. Their backgrounds
are detailed as follows:

Pilot 1: An experienced pilot working at Rizhao Port for over ten years;
Expert 2: An experienced captain with over ten years of sailing experience;
Expert 3: A professor specializing in maritime safety research for over 15 years,

particularly focusing on autonomous berthing;
Expert 4: An officer responsible for port safety management at the China Maritime

Safety Administration.
Linguistic terms can be represented as triangular fuzzy numbers based on the domain

experts’ knowledge using the Delphi method. Assuming there are n experts, each expert
(i = 1, . . ., n) is assigned a relative weight θi, where ∑n

i=1 θi = 1 and θi > 0 (i = 1, . . ., n). The
linguistic term for a specific variable, according to the experts’ judgment, is represented
as xi = (ai, bi, ci); thus, the triangular fuzzy number A = (a, b, c) corresponding to the
fuzzy linguistic term for the variable can be defined using Equations (6)–(8). The process
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of deriving fuzzy numbers for the Drel
x parameter is presented in Table 4. Likewise, fuzzy

numbers for other parameters can be derived.

a = ∑n
i=1 θiai (6)

b = ∑n
i=1 θibi (7)

c = ∑n
i=1 θici (8)

Table 4. Triangular fuzzy numbers of different linguistic terms.

Experts/Pilots Weights (θi)
Triangular Fuzzy Numbers of Different Linguistic Terms

O–Far O–Close Very Close Close Far

1 0.3 (−7, −3, −1) (−3, −1, 0) (−1, 0, 3) (0, 2, 4) (1, 4, 5)
2 0.2 (−5, −2, −1) (−2, 0, 1) (−2, −1, 2) (0, 1, 3) (2, 5, 7)
3 0.3 (−6, −1, 0) (−2, −1, 0) (−1, 0, 2) (0, 1, 4) (2, 3, 4)
4 0.2 (−6, −3, −1) (−2, −1, 1) (−2, −1, 2) (0, 2, 3) (2, 6, 7)

Total 1 (−6, −2, −1) (−2, −1, 0) (−1, 0, 2) (0, 2, 4) (2, 4, 6)

2.4. Establish the Fuzzy Rule-Based Pilotage Data and Experts’ Knowledge

The fuzzy rule base is a crucial component of the fuzzy inference system. Following
the fuzzification of the influencing factors, fuzzy logic boxes are constructed for turn
and speed decisions. This paper introduces the multiple-input and single-output fuzzy
logic box. If there are too many input variables, developing the fuzzy rule base becomes
challenging. Hence, this paper considers fewer than four input variables. Specifically, four
fuzzy logic boxes are established, representing ship position, environmental effects, ship
speed, and speed change. The fuzzy rules are determined based the pilotage data and
domain knowledge. First, the rules of ship handling can be summarized by analyzing the
helm order and telegraph order of the pilot and the ship trajectory data during the berthing
process. Second, as there are around 400 (i.e., two input variables with five linguistic
terms and two input variables with four linguistic terms) rules for each fuzzy logic box,
it is very hard to invite the experts to make judgments on all the fuzzy rules using the
IF–THEN scheme. In this paper, three experts and one pilot are invited to give principles on
determining the fuzzy rules. As shown in Figure 6, 13 typical positions are selected during
the berthing process to establish the fuzzy rules of location factors, and the established
fuzzy rules are shown in Table 5. Note that Drel

x < 0, Drel
y > 0 and Dabs

x < Drel
x will not

occur in the actual berthing process and V − Ve cannot be opposite–very different when
the ship speed is fast or very fast.

Table 5. Fuzzy rules of typical position factors.

# Inputs Outputs

Rules Drel
x Drel

y Dabs
x α Te

1 normal normal far large most
2 close normal normal very large o–small
3 far close far large most
4 normal close far large most
5 close close normal very large normal
6 far very close far middle normal
7 normal very close far small little
8 close very close normal small little
9 o–close very close close small little
10 normal o–far far small normal
11 very close o–close close very small no need
12 very close o–far close very small normal
13 very close o–far close o–small no need
. . . . . . . . . . . . . . . . . .
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During the berthing process, the ship should keep a safe distance from the wharf, and
the changes in α and V should be reasonable. Specifically, when the Drel

y is very close, the
pilot should take a large angle to the port side. Moreover, the rudder angle should not be
small at the beginning of ship turning, and α should be small even parallel to the front line
of wharf at the end of the berthing process. When Drel

x is very close, Drel
y should greater

than twice the length of the ship to keep a safe distance from the wharf. To establish the
fuzzy rules of decision-making model, the principle of establishing the fuzzy rules is shown
in Table 6. Taking the location factors as an example, if the value of Drel

x , Drel
y and Dabs

x is
unchanged and the value of the α is changed sharply at the same time, a large rudder angle
will be required, and the turn expected will be high. Similarly, all the other fuzzy rules can
be obtained.

Table 6. The principle of establishing fuzzy rule.

Variable inputs Drel
x

Fixed inputs Drel
y : very close Dabs

x : far α: large
Value o–far o–close very close close far \

Outputs normal normal little normal most \

Variable inputs Drel
y

Fixed inputs Drel
x : normal Dabs

x : far α: large
Value o–far o–close very close close normal far

Outputs most most most more normal little

Variable inputs Dabs
x

Fixed inputs Drel
x : very close Drel

y : o–close α: middle
Value very close close normal far \ \

Outputs most more normal normal \ \
Variable inputs α

Fixed inputs Drel
x : normal Drel

y : close Dabs
x : far

Value o–small very small small normal large very large
Outputs o–most o–more o–little little more most
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Following the establishment of the fuzzy rules, the surface figures illustrating the
fuzzy reasoning rules are depicted in Figure 7. Specifically, Figure 7a illustrates the fuzzy
reasoning rules for the location, Figure 7b illustrates those for the environment and ship
parameters, and Figure 7c illustrates the rules for the expected speed.
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2.5. Defuzzify the Outputs

After the derivation of the output (expressed by linguistic terms), the final results
should be defuzzified. The process for defuzzification is to convert the fuzzy output into
the crisp value of helm orders and telegraph orders. Three widely used techniques for
defuzzification include the center of gravity, mean of maximum, and height methods. First,
the center of gravity method calculates the center of gravity or centroid of the fuzzy set’s
membership function to determine the crisp output value. Second, the mean of maximum
method identifies the maximum membership value within the fuzzy set and computes the
mean of the input values corresponding to this maximum membership. Third, the height
method selects the input value at which the membership function reaches its peak height.
As the center of gravity method considers the total output distribution, this paper adopts it
to obtain comprehensive results for helm and telegraph orders.

3. Application of the Proposed Model for Ultra-Large Ship Berthing
3.1. Derive the Pilotage Data in Real Ship Berthing Process

Towards the end of 2021, the Rizhao Port had 28 production berths and 11 berths
above 10 thousand tons, and the cargo handling capacity achieved 41.32 million tons. The
ship used for verification was the Panamanian ship named MV BAO FU, with a length of
329.95 m, a breadth of 57 m, and a displacement of 277,400 tons.

The nine waypoints were selected with the interval 1–3 min between adjacent way-
points during the berthing process, where the helm order or telegraph order of the pilot
to control the ship were collected. The ship speed decreased from 5.3 kn to 0.2 kn when
the ship approached the target berth, which is shown in Figure 8. The ship finally berthed
safely, and the detailed information for this process is shown in Table 7.

Table 7. Initial data of ship berthing.

Number Time Dx Dy Dx1 α γ V

1 53′36′′ 1273.8 702.9 1973.4 84.8 −4.8 4.57
2 54′33′′ 1247.4 580.8 1947.0 82.4 −5.0 4.42
3 55′24′′ 1211.1 488.4 1910.7 80.2 −5.0 4.31
4 56′26′′ 1168.2 336.6 1871.1 75.0 −5.0 4.18
5 58′23′′ 1036.2 145.2 1735.8 56.0 4.5 3.91
6 1:00′50′′ 792.0 0.0 1491.6 29.6 4.9 3.70
7 1:02′38′′ 594.0 −92.4 1293.6 22.0 5.0 3.59
8 1:04′19′′ 409.2 −148.5 1108.8 20.0 5.0 3.60
9 1:07′48′′ 0.0 −273.9 699.6 22.0 3.3 3.70
10 1:12′23′′ −435.6 −330.0 264.0 10.4 5.0 2.29
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Figure 8. The waypoints selected in the berthing process.

3.2. Derive the Decision-Making Results

The collected data from the ship berthing process allows us to determine both the
distance between the ship bow and the origin and the angle between the front line
and bearing line of the wharf. The value of Dx can be calculated using the formula
Dx = distance × cos(angle), while Drel

x can be calculated using Equation (3). Similarly,
the location factors include Drel

y , Dabs
x , and the environment, and ship factors include the

ship heading, leeway and drift angle, and ship speed, which can be obtained are given in
Table 7.

After establishing the membership function of the location, environment and ship
factors, the linguistic values for the fuzzy sets of each fuzzy logic box in this scenario can
be determined. Since the ship displacement remains constant throughout the berthing
process, the linguistic values remain unchanged. This can be described as follows. For a
ship with a displacement of 277,400 tons, it can be fuzzified as (large, 0.68; small, 0.32).
Unlike the ship factors, the location and environment factors undergo changes throughout
the berthing process. Consequently, the membership of this fuzzy set adjusts accordingly,
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and the resulting fuzzy sets are presented in Table 8. Note that a few input factors are used
twice in different fuzzy logic boxes (Drel

x , Drel
y , Dabs

x ), and the same type of factor may have
different linguistic values in different fuzzy logic boxes. Further, the intermediate variables
include turn expected, turn correction, and expected speed, which are the outputs of four
fuzzy logic boxes. The output variables of the intermediate variables are also fuzzified
by using the standard triangular or trapezoidal membership function, and the linguistic
values are given in Table 2. After defuzzifying the intermediate factors, the final crisp value
of helm orders and the engine telegraph can be obtained. Figure 9 illustrates the process
of determining turning and speed decisions, using the first waypoint as an example. All
outputs of the decision-making model are presented in Table 9, where Treal denotes the
actual rudder angle controlled by the pilot.

Table 8. Fuzzy sets of ship berthing condition.

Number Drel
x Drel

y Dabs
x α γ V Ve V − Ve Dp

1 (normal, 0.93;
close, 0.07)

(far, 0.99;
normal, 0.01)

(far, 0.99;
normal, 0.01)

(large, 0.50;
very large,

0.50)

(o–very
large, 0.84;

o–large, 0.16)

(fast, 0.86;
normal,

0.14)

(very fast,
0.44; fast,

0.56)

(o–similar,
0.76; same,

0.24)

(very large,
0.68;

large, 0.32)

2 (normal, 0.89;
close, 0.11)

(normal, 0.98;
close, 0.02)

(far, 0.95;
normal, 0.05)

(large, 0.41;
very large,

0.59)

(o–very
large, 1.00)

(fast, 0.76;
normal,

0.24)

(fast, 0.75;
normal,

0.25)

(similar,
0.02; same,

0.98)

3 (normal, 0.83;
close, 0.17)

(normal, 0.38;
close, 0.62)

(far, 0.90;
normal, 0.10)

(large, 0.34;
very large,

0.66)

(o–very
large, 1.00)

(fast, 0.69;
normal,

0.31)

(fast, 0.63;
normal,

0.37)

(similar,
0.09; same,

0.91)

4 (normal, 0.77;
close, 0.23)

(normal, 0.02;
close, 0.98)

(far, 0.83;
normal, 0.17)

(large, 0.16;
very large,

0.84)

(o–very
large, 1.00)

(fast, 0.61;
normal,

0.39)

(fast, 0.50;
normal,

0.50)

(similar,
0.18; same,

0.82)

5 (normal, 0.51;
close, 0.49)

(close, 0.44;
very close,

0.56)

(far, 0.63;
normal, 0.37)

(middle, 0.56;
large, 0.44)

(very large,
0.6;

large, 0.4)

(fast, 0.45;
normal,

0.55)

(fast, 0.31;
normal,

0.69)

(similar,
0.21; same,

0.79)

6 (normal, 0.20;
close, 0.80)

(very close,
1.00)

(far, 0.26;
normal, 0.74)

(small, 0.62;
middle, 0.38)

(very large,
0.92;

large, 0.08)

(fast, 0.31;
normal,

0.69)

(fast, 0.12;
normal,

0.88)

(similar,
0.30; same,

0.70)

7
(close, 0.90;
very close,

0.1)

(very close,
0.72; o–close,

0.28)

(normal, 0.96;
close, 0.04)

(small, 0.99;
middle, 0.01)

(very large,
1.00)

(fast, 0.24;
normal,

0.76)

(fast, 0.04;
normal,

0.96)

(similar,
0.32; same,

0.68)

8
(close, 0.62;
very close,

0.38)

(very close,
0.55; o–close,

0.45)

(normal, 0.68;
close, 0.32) (small, 1.0) (very large,

1.00)

(fast, 0.24;
normal,

0.76)

(normal,
0.87; slow,

0.13)

(similar,
0.68; same,

0.32)

9 (very close,
1.00)

(very close,
0.17; o–close,

0.83)

(normal, 0.06;
close, 0.94)

(small, 0.99;
middle, 0.01)

(large, 0.64;
normal,

0.36)

(fast, 0.31;
normal,

0.69)

(normal,
0.84; slow,

0.16)

(similar,
0.85; same,

0.15)

10
(o–close,

0.68;
o–far, 0.32)

(o–close,
1.00)

(close, 0.4;
very close,

0.6)

(very small,
0.49; small,

0.51)

(very large,
1.00)

(normal, 0.58;
slow, 0.42)

(normal,
0.46; slow,

0.54)

(similar,
0.27; same,

0.73)

Table 9. The outputs of decision-making model.

Number Treal V Te Tc Tass Ve Sass

1 30.0 4.57 0.821 0.848 24.7 5.33 0.0
2 10.0 4.42 0.387 0.915 13.2 4.40 0.0
3 20.0 4.31 0.488 0.915 15.9 4.22 0.0
4 30.0 4.18 0.803 0.913 24.4 4.00 0.0
5 0.0 3.91 0.458 −0.796 10.0 3.70 0.0
6 −10.0 3.70 0.097 −0.875 0.0 3.40 0.0
7 0.0 3.59 0.088 −0.915 −0.4 3.27 0.0
8 10.0 3.60 0.014 −0.915 −2.4 2.92 −1.0
9 0.0 3.70 0.240 −0.653 4.5 2.85 −1.0
10 0.0 2.29 0.138 −0.912 −1.0 2.02 0.0
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3.3. The Error Analysis-Based Decision-Making Results

In the berthing process, the ship turning is influenced by human factors [54]. The
difference in the start time of turning makes the helm orders different. As shown in Figure 6,
if the initial ship position is #1 and the rudder angle is large, the berthing trajectory can be
#1 → #4 → #7 → #11, and the pilot should ease the helm in time and adjust the heading
in the berthing process; on the contrary, if the rudder angle is small at the beginning, the
berthing trajectory can be #1 → #4 → #10 → #12, and a large rudder angle is required to
make the ship berth safely.
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The error is analyzed from the partial and overall perspective, which not only com-
pares the difference between the decision-making results and pilotage data of each waypoint
but also analyses the overall error. The error of each waypoint is used as a reference for the
time to adjust the heading and speed, and the overall error is used as an important indi-
cator for assessing the decision-making results. The specific method can be implemented
as follows:

εt
i =

∣∣∣Ti
real − Ti

ass

∣∣∣ (9)

As shown in Equation (9), Ti
real and Ti

ass are the pilotage data and the outputs obtained
by the decision-making model of each point for ship turning, respectively. The εt

i is the error
value of each point, and the εt is the average value of εt

i. The overall error should reflect
the turning cumulant in the whole process, which can be converted into the accumulated
turning angle of the berthing process. The overall error cannot be an instantaneous value
but is an integration of the difference in Treal and Tass to the time. The εt and the overall
error εt

all can be calculated by Equations (10) and (11).

εt =
∑ εt

i
i

(10)

εt
all =

∑
(
Ti

real − Ti
ass

)
× (timei+1 − timei)

∑ Ti
real × (timei+1 − timei)

(11)

For the speed decision part, the expected speed can be deduced under the influence
of the location and other environment factors at the same position. Even the trajectory of
the ship during the berthing process is different. The ship should berth with a low speed
when close to the shore. Therefore, to simplify the process of error analysis, the influence
of the operations by different pilots on speed is not considered, and the specific steps are
as follows: 

εs
i =

∣∣Vi − Ve
i

∣∣
εs =

∑ εs
i

i

εs
all =

∑|Vi−Ve
i |

∑ Vi

(12)

The comparison between the output obtained by the model and the pilotage data is
shown in Figure 10. It can be seen from the figure that the maximum error of the speed
decision is lower than 0.85 kn, and the average error value is 0.368 kn, which is relatively
small compared to the ship speed of sailing in the approach channel. However, in the turn
decision-making part, the outputs of the decision-making model of some waypoints are
different from the pilotage data. This is because the error of individual waypoints is greatly
influenced by human factors. Note the helm order of 4–6 waypoints, which are hard a
starboard, midship, and port ten. The operation of hard a starboard at the fourth waypoint
makes the rudder angle change sharply, which exceeds the expected rudder angle. Then, in
order to ease the helm, the sixth waypoint carries out the operation of port ten. To make
the ship turning obvious and easy to be observed by the pilot, turning a large angle at the
beginning of berthing and operating an opposite rudder angle during the berthing process
are often carried out. However, this operation of the pilot can be improved by conducting
further analysis. This is because the ship turning should be gradual and smooth, and
the skipping rudder angle will reduce the maneuverability of the ship and make the ship
control difficult. Traditionally, the rudder angle obtained by the model gradually changes
from large to small in the berthing process, which indicates the decision-making model
complies with the ship handling rules than human operation. Comparing the two results,
the operations of the rudder angle is slightly different, but the accumulated turning angle
is similar to the value obtained via Equation (11). This verifies that the same result can
be obtained by different turning operations. Therefore, the overall error analysis method
is used to assess the turn decision-making model. The different types of error values are
shown in Table 10.
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As shown in Table 10, the average value of the individual error of the turn decision is
5.61, and the overall error is 2.28%, which indicates the turn error of a single turn is less
than 6 degrees, and the accumulated turning angle error during the berthing process is
less than 3 degrees. The average individual error of the speed decision is 0.368 kn, and
the overall error is 9.61%. The overall error of the decision-making model is less than 10%,
which indicates that the ship berthing operation based on the decision-making model is
suitable for the actual ship berthing process.
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Table 10. The results of error analysis.

Number ∆t εt
i εs

i
–
εt

–
εs εt

all εs
all

1 57 5.28 0.76

5.61 0.368 2.28% 9.61%

2 53 3.18 0.02
3 58 4.08 0.09
4 117 5.58 0.18
5 147 10.00 0.21
6 108 10.00 0.30
7 101 0.36 0.32
8 209 12.36 0.68
9 275 4.53 0.85
10 / 0.99 0.27

3.4. The Influence of Turn and Speed Error

As the pilots may have different preferences in ship handling, the decisions of different
pilots will be different even in the same conditions. Moreover, if the berthing conditions
(e.g., location and environment) are different, the decisions will also be different. According
to the pilotage data of berthing, the diagrammatic sketch of six typical scenarios for berthing
is shown in Figure 11. However, the ship can berth safely in these different berthing process.
Therefore, this section will further analyse the turn and speed error between the proposed
model and pilotage data.
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The overall turn error, which has a greater effect on the berthing safety than individual
error, is much more significant in the berthing process of MV BAO FU ships. It can be seen
from Figure 11 that the fifth berthing trajectory has overlaps with the first, second, third,
and fourth berthing trajectory. Even if the ship location is the same, the turn decision of each
berthing case is different. However, the ships finally berth safely with different decisions,
which indicates the berthing process is dynamic, and the pilot will reasonably adjust the
ship position, speed, and heading according to the navigational environment. Further
analysis shows that the accumulated turning angle of different operation patterns is very
similar during the berthing process, which is a significant parameter that influences the
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berthing process and determines the berthing safety. As shown in Figure 12, the orange rect-
angular area represents the turning angle in each period, and the summation of the orange
rectangular area represents the accumulated turning angle during the berthing process.
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For speed errors, the high speed poses a threat to the berthing safety, and the low
speed influences the rudder effect to a certain extent. Traditionally, the difference between
the expected speed and ship speed should be small. If the difference between the expected
speed and ship speed is in a reasonable and small range, it will have little impact on the
berthing safety. In Table 9, Sass reflects the demand for speed change and is close to zero in
eight waypoints, and only two waypoints need a slight speed change (i.e., −1).

4. Conclusions

With the development of modern science and technology, the improvement of au-
tonomous navigation has been technically feasible. Nevertheless, the autonomy of ultra-
large ships in confined waters remains limited. Furthermore, while the ship motion model
based on hydrodynamic parameters has been widely utilized in existing research, it of-
ten lacks actual operational data. The primary contribution of this paper is to propose a
human-like decision-making model for autonomous berthing. This model can be utilized
in subsequent studies on human-like autonomous berthing algorithms, achieved through
the identification of influencing factors via berthing scenario analysis and the utilization of
fuzzy numbers provided by domain experts and pilots.

This paper establishes a fuzzy inference system comprising a three-layer framework,
consisting of the input layer, fuzzy inference layer, and output layer. The decision-making
model is divided into two parts: decision-making for turning and decision-making for
speed. Moreover, the ship berthing condition is analyzed by considering factors such as
the distance from the shore, ship displacement, and the leeway and drift angle. Following
the analysis of the ship berthing condition, location and environmental parameters are
obtained for fuzzification. Fuzzy number functions are then utilized to incorporate expert
knowledge and pilotage data into the optimization process of the decision-making model,
which realizes the establishment of the decision-making model based on human thoughts.

Furthermore, pilotage data are used for the first time to validate the proposed model
and calculate speed and turning errors. Optimizing the decision-making model based on
pilotage data enhances its relevance to real-world shipping scenarios and bridges the gap
between behaviors predicted by ship motion models and actual ship behaviors. From the
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results of error analysis, the average individual error for turning decisions is 5.61 degrees,
with an overall error of 2.28%. The average individual error for speed decisions is 0.368 kn,
with an overall error of 9.61%. Both the overall and individual errors of the decision-making
model fall within a reasonable and small range, indicating its high accuracy.

Overall, this research proposes a decision-making model for ultra-large ship berthing
based on fuzzy logic and human thoughts. The proposed model is further optimized
based on pilotage data collected during real ship berthing processes and expert knowledge.
This optimization aims to enhance the rationality, accuracy, and generalizability of the
model, thereby improving the quality and human aspect of turning and speed decisions.
The results of this research offer theoretical and practical insights into the development
of a human-like decision-making method for autonomous navigation in port waters and
maritime safety management in the shipping industry. The model can be further applied
to develop a more widely applicable decision-making system for autonomous navigation
in confined waters. In further research, we will collect additional pilotage data to further
explore optimization methods for the decision-making model. Additionally, it is essential
to integrate the characteristics and advantages of pilot data with those of ship motion
models to develop revolutionary products surpassing the current state of the art.
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