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Abstract: In the realm of underwater environment detection, achieving information matching stands
as a pivotal step, forming an indispensable component for collaborative detection and research in areas
such as distributed mapping. Nevertheless, the progress in studying the matching of underwater side-
scan sonar images has been hindered by challenges including low image quality, intricate features,
and susceptibility to distortion in commonly used side-scan sonar images. This article presents a
comprehensive overview of the advancements in underwater sonar image processing. Building upon
the novel SchemaNet image topological structure extraction model, we introduce a feature matching
model grounded in side-scan sonar images. The proposed approach employs a semantic segmentation
network as a teacher model to distill the DeiT model during training, extracting the attention matrix
of intermediate layer outputs. This emulates SchemaNet’s transformation method, enabling the
acquisition of high-dimensional topological structure features from the image. Subsequently, utilizing
a real side-scan sonar dataset and augmenting data, we formulate a matching dataset and train the
model using a graph neural network. The resulting model demonstrates effective performance in
side-scan sonar image matching tasks. These research findings bear significance for underwater
detection and target recognition and can offer valuable insights and references for image processing
in diverse domains.

Keywords: sidescan sonar; semantic segmentation; topological features; attention mechanism;
image matching

1. Introduction

In recent decades, side-scan sonar technology has emerged as an indispensable tool in
marine science research owing to its efficient application in ocean exploration and under-
water environmental monitoring. Side-scan sonar is capable of generating high-resolution
images of underwater topography, which plays a pivotal role in mapping benthic habitats,
classifying underwater objects, and conducting detailed studies of seafloor geomorphol-
ogy [1–3]. However, the complexity of side-scan sonar images has historically posed
challenges in extracting and interpreting their information [4]. The rapid advancement
of information processing and image feature extraction technologies in recent years has
offered new avenues for addressing this challenge. Numerous algorithms have demon-
strated outstanding performance in image recognition and matching [5–7], opening up new
possibilities for the automatic processing and analysis of side-scan sonar images [8].

In the realm of side-scan sonar image analysis, the task of matching images, specifically
aligning side-scan sonar images of the same location from diverse angles, has perennially
posed a formidable challenge. This challenge stems from many factors, encompassing the
inherent low quality of side-scan sonar images, pronounced distortion, and the intricate
nature of the features depicted [9,10]. These complexities render the extraction of features
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and subsequent image matching an exceptionally demanding endeavor for side-scan sonar
images. Contemporary research predominantly revolves around feature extraction and
matching using traditional feature-matching algorithms, employing clustering for feature
extraction and matching, and harnessing machine learning for the extraction and matching
of features [11].

Feature extraction and matching based on traditional algorithms have been among
the earliest research endeavors in related fields, demonstrating superior performance in
relatively simplistic environments with distinct landmarks. However, their efficacy in
complex settings heavily depends on the design of the matching algorithms. Among the
most widely employed are feature descriptors such as Scale-Invariant Feature Transform
(SIFT), Speeded Up Robust Features (SURF), and the more recently developed KAZE. These
algorithms furnish robust tools for image matching, and are particularly adept at handling
images in challenging environmental conditions. They facilitate the identification of similar
feature points across disparate images, thereby enabling precise image registration and
object recognition. Ghate and Nikose (2021) [12] analyzed the repeatability of SIFT and
SURF descriptors with the aim of optimizing preprocessing methods for underwater
images by refining the extraction process of key feature points. Additionally, Pourfard et al.
(2021) [13] proposed a method that amalgamates the KAZE algorithm with a modified
SURF descriptor for the registration of Synthetic Aperture Radar (SAR) images, specifically
targeting the issue of speckle noise. In the realm of 2D object recognition, Bansal et al. (2021)
[14] conducted a comparative study, scrutinizing SIFT, SURF, and ORB feature descriptors
to evaluate their performance across diverse scenarios. Lozano-Vázquez et al. (2022) [15]
explored an array of image enhancement and feature extraction methods, with a focus
on reliably extracting image features such as SIFT and SURF under low-light conditions.
Finally, Shaharom et al. (2023) [16] presented a comprehensive review of the application
of the SIFT and SURF algorithms in multispectral image matching, delving into various
research strategies aimed at augmenting the performance of these algorithms in processing
multispectral images. It is evident that the concerted efforts employing different feature
descriptors enable the extraction of image features to a considerable extent. However, in
underwater environments significant manual optimization is necessary to ensure a requisite
degree of accuracy.

Clustering algorithms have demonstrated significant value and efficiency in sonar
image processing and target recognition. Mainstream clustering algorithms categorize data
points into multiple clusters, each consisting of data points with similar characteristics,
thereby simplifying subsequent data analysis. In sonar image processing, K-means clus-
tering proves effective in classifying and recognizing features within images, facilitating
the identification and categorization of underwater objects and regions. Anilkumar et al.
(2019) [17] proposed an algorithm that incorporates an enhancement technique based on
Contrast Limited Adaptive Histogram Equalization (CLAHE) coupled with clustering
algorithms to track underwater cables and enhance image quality, consequently enhancing
the accuracy of line detection. This approach enhances the visibility of underwater images,
presenting a viable technical solution for cable tracking. Additionally, Vikas (2017) [18]
introduced an image processing algorithm utilizing fuzzy C-means clustering to identify
and eliminate shadows in side-scan sonar images. Through cluster analysis, this technique
effectively distinguishes shadows from actual objects in the images, thereby enhancing the
efficiency and accuracy of sonar image processing [19].

The underwater target detection algorithm proposed by Li et al. (2022) [20] utilizes
an improved YOLOv4 model. It incorporates K-means++ clustering for anchor boxes to
adapt to underwater scene characteristics and employs image enhancement techniques
to enhance detection performance. This method demonstrates significant advantages in
improving the accuracy and real-time performance of underwater target detection. In
another study, Xinyu et al. (2017) [21] investigated a sonar image processing method that
integrates k-means clustering-based image segmentation for denoising and segmenting
sonar images. This approach effectively distinguishes targets, background, and noise
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within the images, providing an effective tool for sonar image analysis. Additionally,
Rajput et al. (2022) [22] examined the utilization of spider search algorithms for noisy sonar
image segmentation coupled with clustering methods to differentiate objects, shadows, and
background. By simulating the principles of natural selection and genetic algorithms, this
method optimizes the clustering process, thereby enhancing the efficiency and accuracy of
sonar image segmentation.

An overview of the literature reveals the extensive application and significance of
the k-means clustering algorithm in sonar image processing. Nevertheless, these studies
predominantly employ clustering directly on the original sonar images, often following
noise reduction at most. Consequently, the outputs frequently exhibit numerous outliers,
lack robustness, and demonstrate significant variability when there are changes in the
viewpoint of the images, rendering them ineffective in complex underwater environments.

With the advancement of data science, the application of deep learning technologies
in sonar image processing and underwater environment monitoring has become a key
driving force in the development of this research field. Due to their excellent performance
in image recognition, classification, and feature extraction, deep learning models are
widely used for automatic identification, tracking, and detection of sonar targets. Neupane
and Seok (2020) [23] reviewed the latest advancements in deep learning algorithms for
automatic sonar target recognition, detailing key information on data acquisition, datasets,
and hyperparameters, providing a reference for research in this field. Moreover, Li et al.
(2020) [24] explored the effectiveness of deep learning frameworks in marine remote
sensing image classification, demonstrating how these frameworks can extract information
from marine remote sensing images through eight typical applications. Misiuk et al.
(2023) [25] reviewed the relevant developments of underwater surveying and mapping
technology in the past 30 years and pointed out the future development directions of related
technologies. In underwater object classification, Gav et al. (2015) [26] focused on using
ultrasonic technology for classification, highlighting the effectiveness of different methods
such as Bayesian and Principal Component Analysis (PCA) in achieving underwater
object classification. These studies showcase the application of deep learning in sonar
data analysis and highlight its significant role in marine science research and underwater
environment monitoring.

The study by Gašparović et al. (2022) [27] proposed an automated deep learning ap-
proach for detecting underwater pipelines and compared the performance of six different
CNN detectors for underwater object detection. Singh and Bhat (2021) [28] conducted a
review of deep learning-based algorithms for enhancing underwater images, focusing on
the latest methodologies, datasets, and evaluation criteria, then compared the outcomes of
these algorithms. These investigations underscore the potential of deep learning technolo-
gies in ameliorating the quality of underwater imaging and image enhancement. While
the utilization of deep learning technologies in the underwater domain has been steadily
increasing in recent years, its prevalence still lags behind that in terrestrial and aerial image
processing. This discrepancy can be attributed to the relative difficulty of acquiring sonar
data, which results in a smaller total volume of available data, posing challenges in meeting
the data requirements of models. Consequently, more research has been directed towards
local feature extraction and image quality enhancement, with fewer studies focusing on
extracting global features from sonar images and performing image matching.

Summarizing the above, research on feature extraction and image matching in the
underwater sonar image domain remains scarce and is in a relatively nascent stage. Ad-
ditionally, due to the complexity of underwater environments, single feature extraction
methods struggle to achieve very good results, and a combination of multiple methods is
the mainstream direction for future development. Currently, feature extraction and match-
ing methods have emerged based on the bag-of-words model combined with clustering
and feature descriptors [29], along with image matching methods that utilize machine
learning and semantic information to extract image topological representations [30], both of
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which have achieved relatively good results. Although these studies have not been applied
in the underwater domain, they can provide inspiration.

While delving into research in related fields, we encountered a particularly enlighten-
ing article by H. Zhang, M. Xue, et al. (2023) [31]. Their paper introduces SchemaNet, a
novel reasoning paradigm characterized by pattern reasoning, with the aim of producing in-
terpretable predictions through reconstructing the forward pass of a Deep Neural Networks
(DNN). A salient aspect of the paper lies in its utilization of a diverse array of methodolo-
gies, including deep neural networks, clustering algorithms, topological feature extraction,
and graph neural networks, to facilitate multidimensional feature extraction from images.
This encompasses spatial, semantic, and attentional features. The integration of features
from various dimensions significantly enhances the efficacy of image matching tasks.

Their study centered on evaluating the efficacy of interpretable models for classifi-
cation tasks. Expanding upon this, our research applies these models to the domain of
underwater sonar image matching. We utilize raw sonar images as inputs for our custom
semantic segmentation model, yielding segmentation results that incorporate both seman-
tic and spatial information. Subsequently, we extract image topological structures from
these results. Finally, we feed these data into a graph neural network and compute the
correlations among the network outputs to accomplish image matching.

The primary contributions of this article can be summarized as follows:

1. We employ a self-designed CNN-based semantic segmentation model as the teacher
model for training the DeiT model and conducting knowledge distillation. This
process involves obtaining intermediate layer outputs and self-attention matrices.

2. Based on SchemaNet, we utilize clustering methods to cluster data from intermedi-
ate layers into multiple visual words. These words serve as nodes in the image’s
topological structure. Additionally, we integrate self-attention matrices to calculate
the weights of nodes and their interaction coefficients, which act as the edges in the
image’s topological structure.

3. We extract feature vectors from the image’s topological structure using a graph neural
network and transform the classification problem into an image matching problem.
This approach allows the graph neural network to be trained to output the topological
similarity between different images as the criterion for image matching.

2. Methodology and Method
2.1. DeiT and Knowledge Distillation

Introduced by A. Vaswani, the transformer [32] model has emerged as the predominant
model in deep learning owing to its outstanding performance. Initially designed for natural
language processing tasks, subsequent efforts by researchers led to the development of the
Vision Transformer (ViT) [33] model, effectively extending the transformer architecture to
the realm of image processing. The transformer architecture departs from the conventional
convolutional structures prevalent in traditional deep neural networks, opting instead for
an abundance of attention matrices to extract image features. Essentially, this approach can
be considered equivalent to convolutional kernels of variable sizes, resulting in a notably
high performance ceiling. However, it is essential to note that the transformer model’s
effectiveness is contingent on extensive training with substantial datasets. For instance, the
ViT model relies on the proprietary JFT-300M dataset, comprising 300 million images, an
impractical scale for general tasks, thereby posing challenges to the widespread application
of the model.

DeiT (Data-efficient Image Transformer) [34] was developed to mitigate the challenge
of extensive data pretraining requirements encountered by traditional transformer-based
visual models such as ViT. DeiT introduces a technique called “knowledge distillation”,
wherein a proficient high-performance model (referred to as the teacher model) guides
the training of a smaller model (known as the student model). Through this approach,
DeiT, acting as the student model, can assimilate richer and more refined information from
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the teacher model, typically a larger well-trained CNN, without the necessity of directly
assimilating vast datasets.

In Figure 1, the class token is used to represent the semantic category of input infor-
mation, which is input into the model in parallel with the embedded patch sequence. This
segmentation is necessary in order to align with the sequence-form input required by the
transformer structure. The distillation token is a concept introduced during the training
process for knowledge distillation. It is utilized to capture knowledge from the teacher
model to assist in training the student model. By incorporating a special token into the
input sequence, the model can effectively concentrate on essential information from the
teacher model.

Figure 1. The DeiT model architecture applied to our task.

The Feed Forward Network (FFN) constitutes a feedforward neural network compris-
ing two linear layers intertwined with a nonlinear activation function. Typically, a residual
connection and layer normalization are incorporated between these linear layers to facilitate
nonlinear transformation and feature mapping at each position. Self-attention stands as a
fundamental component within the transformer model, employed for computing attention
weights across distinct positions within the input sequence. It encompasses three linear
transformations (query, key, and value) followed by the calculation of attention scores
through the softmax function, culminating in the multiplication of these scores by the value
to derive the final representation.

The total loss incurred during the training of the DeiT model comprises two compo-
nents, which correspond to self-supervised learning and knowledge distillation, respec-
tively. These are delineated as follows:

(1) Self-supervised learning loss aims to enable the model to learn image feature rep-
resentations in an unsupervised manner, denoted as LCE in the figure. Here, Lce
corresponds to the cross-entropy loss. If we assume the model’s predicted distribution
for image patches as p and the true label distribution as q, then the formula for LCE is

LCE = −∑
i

qilog(pi) (1)

(2) Knowledge distillation loss is integral to the process of knowledge distillation, playing
a pivotal role in shaping the model’s learning.

Lteacher = τ2KL
(
ψ(Zs/τ), ψ(Zt/τ)

)
(2)
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The temperature parameter, denoted as τ, plays a crucial role in regulating the smooth-
ness of the probability distribution during the distillation process. The calculation of the
Kullback–Leibler (KL) divergence is represented by KL. The output probability distri-
butions of the student model and the teacher model, denoted as ψ(Zs/τ) and ψ(Zt/τ),
respectively, undergo a temperature adjustment. This adjustment involves dividing the
original Zs and Zt by the temperature parameter τ and subsequently transforming them
into probability distributions using the softmax function, denoted as ψ.

The combined total loss incorporating both parts is as follows, with λ representing the
weight parameter:

Lglobal = (1− λ)LCE + λLteacher. (3)

In light of the limited volume of side-scan sonar data, which typically only reaches into
the thousands, we employed a self-designed semantic segmentation network architecture
rooted in Convolutional Neural Networks (CNNs) [35] as the reference model for the
Data-efficient Image Transformer (DeiT). By means of distillation training, we attained
superior results compared to those obtained with the transformer architecture.

The configuration of our model architecture, depicted in Figure 2, comprises an en-
coder and a decoder each consisting of four layers, akin to the U-Net architecture. The
encoder of the model is segmented into upper and lower channels. In light of the relatively
large size of the utilized sonar images, the primary channel at the bottom employs large
convolution kernels to accommodate a broad receptive field, while the upper channel
employs smaller convolution kernels to compensate for this. Additionally, the main chan-
nel integrates SE-blocks to modulate attention weights across diverse channels, thereby
augmenting segmentation accuracy. Subsequently, the decoder amalgamates the output
features from both channels and employs transposed convolution for downsampling, ul-
timately yielding pixel-level classification results. We employ this model as the teacher
model, not exclusively for enhancing the semantic segmentation performance of DeiT but
rather to extract the self-attention matrices from its intermediate layers. Post-distillation, the
DeiT model exhibits pixel-level classification capabilities analogous to those of the teacher
model. This approach additionally ensures that the self-attention matrices generated from
its intermediate layers encompass pertinent information regarding the semantic features.

Figure 2. Semantic segmentation model.

2.2. Extraction of Image Topological Structure Based on Attention

Traditional feature matching methods, exemplified by SIFT and SURF, exhibit subopti-
mal robustness when confronted with sonar images, which frequently manifest substantial
distortion. Similarly, matching methods grounded in the bag-of-words model prove inade-
quate in underwater environments, as they lack the diverse and semantically rich visual
words prevalent in urban settings. Consequently, an adept matching method for underwa-
ter sonar images requires robustness and the ability to assimilate information pertaining to
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location, semantics, and interactions within the image for achieving heightened accuracy.
This semantic information is encapsulated in the output features of a semantic segmentation
network. Through clustering, a sequence of feature nodes with distinct characteristics can
be derived. By leveraging these feature nodes as the vertices of a topological structure and
the inter-node relationships as edges, an effective topological structure for image matching
can be constructed.

When the training of the DeiT network concludes, the subsequent step involves
extracting the output features from the layer immediately preceding the activation function.
These features then undergo discretization. This discretization is specifically achieved by
applying k-means clustering to a set of visual tokens extracted from the dataset. The goal is
to construct a visual vocabulary with a predefined size M. In this context, M is deliberately
set to 128. This process effectively quantizes the continuous feature space into a discrete set
of tokens. This transformation facilitates a more structured and interpretable representation
of the image content, offering potential benefits for a variety of tasks, including image
matching and retrieval.

Ingredient(x) = argmin
i∈{1,...,M}

‖ x−ωi ‖2 (4)

The term Ingredient (x) denotes the index of the visual word ω, with x representing
the extracted deep output features, excluding both the class token and the distillation token.

After discretizing the features, the resulting discretized sequence is denoted as
X̃ = (x̃1, . . . , x̃n). Simultaneously, the sequence of nodes, referred to as visual words ω
and represented as V when functioning as nodes, is unique as well: V = Unique(X̃).
Each node contains both its index (i.e., the vertex’s ordinal number) and weight, where
the weight is determined by two criteria, namely, its contribution to the prediction
probability of the network model and its proportion among all visual words. The
formula for calculating the weight is as follows:

λν = α1 ∑
i∈Ξ(ν|X̃)

ψCLS
i + α2|Ξ(ν|X̃)|. (5)

The symbol |Ξ(ν|X̃)| signifies the frequency of occurrence of the node indexed by
v within all nodes in the image. The set Ξ(ν|X̃) denotes the collection of nodes. The
notation ψCLS

i represents the attention matrix corresponding to the i-th patch concerning
the class token. Additionally, α1,2 > 0 denotes predefined weights designed to balance
these two terms. The component preceding λν signifies the contribution to the prediction
probability of the network model, while the latter component indicates its proportion
among all visual words.

The connections among vertices, representing the edges of the topology, are established
through the calculation of interactions between these vertices. For any pair of vertices
u, v ∈ V with distinct indices, the edge weight is determined based on two criteria: the
mean attention among pairs of diverse nodes and their spatial adjacency relationship. The
formula for computing the average attention between pairs of distinct nodes is as follows:

eattn
u,v =

1
|Π[(u, v)|X̃]| ∑

(i,j)∈Π[(u,v)|X̃]

ΨV
i,j. (6)

In this context, Π[(u, v)|X̃] denotes the Cartesian product of the sets Ξ(ν|X̃) and
Ξ(u|X̃). Additionally, ΨV

i,j represents the attention matrix between distinct patches i and j
relative to the patch tokens. It is important to note that the model’s output attention matrix
comprises submatrices for various tokens.
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Similarly, the adjacency is defined as

eadj
u,v =

1
|Π[(u, v)|X̃]| ∑

(i,j)∈Π[(u,ν)|X̃]

1
ε + ‖Pos(i)− Pos(j)‖2

. (7)

In this context, the function Pos(i) is defined to return the original 2D coordinates
of the input visual tokens relative to the model output feature plane after flattening. The
interaction between vertices u and v is ultimately represented as a weighted sum of two com-
ponents, with β1 and β2 serving as predefined weights.

eu,v = β1eattn
u,v + β2eadj

u,v (8)

After processing, the characteristics extracted from the intermediate layers of the
model are converted into a sequence of nodes comprising indices and weights, accompa-
nied by edges with weights that reflect the interactions between various pairs of nodes.
Subsequently, these topological features are employed for matching.

2.3. Image Matching Based on Graph Neural Networks

We employ Graph Convolutional Network (GCN) [36] as the feature extractor for
the graph (as shown in Figure 3), representing its topological structure. To facilitate the
integration of graph information into the GCN module, we assign a trainable embedding
vector to each node in the topological graph. Each vector is initialized independently,
drawn from a multivariate Gaussian distribution N(0, Id).

Figure 3. Graph neural network model. Each graph convolutional network layer contains two
layers of information aggregation structure, the first aggregating node information and the second
aggregating edge information.

The network output of the GCN is

OutPut(F) = N(σ((Id + E)FW)), (9)

where F represents the topological features used as input to the Graph Neural Network
(with its dimension being |V| × d, where V represents the number of nodes and d represents
the dimension of the embedding vectors), σ denotes a nonlinear activation function, N
stands for feature normalization, W is a trainable parameter matrix, and E represents edge
weights. After passing through all the GNN layers, the features are aggregated through
weighted average pooling. Unlike the GCN in the diagram, the final output is not classified
through the results output by an MLP; rather, a feature vector z is obtained. When data
are input into the network model, a series of vector outputs Z = (z1, . . . , zn) are obtained,
with n being the number of samples in the dataset. When an image is processed entirely
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to obtain its output zi (i ∈ n), the final prediction logic is defined by computing the inner
product similarity, with y = zgtz>i and with zgt representing the output of the ground truth.

3. Experiment

All experiments were carried out on an Intel Core i9-10900F CPU @ 2.8 GHz × 20 with
64 GB of RAM. Additionally, an NVIDIA GeForce 3090 GPU with 24 GB of VRAM was
utilized. The experimental setup included CUDA Toolkit 11.3, CUDNN V8.2.1, Python 3.9,
and PyTorch-GPU 1.10.1, all running on the Ubuntu 20.04 operating system.

3.1. Dataset Collection

The sonar image dataset was collected by the HYDRO 3060 side-scan sonar in Qiandao
Lake, Jiande, Hangzhou, China. Part of the publicly available data has been uploaded to
this GitHub repository (https://github.com/YDY-andy/Sonar-dataset, accessed on 6 July
2023). The collected sonar data underwent processing using software, converting the data
from XTF format to waterfall video and then obtaining sonar data in image format through
frame-by-frame sampling. Our team developed and manufactured the sonar equipment,
which was equipped on an underwater robot. Additionally, the Autonomous Underwater
Vehicle (AUV) was outfitted with inertial navigation, Doppler, global positioning systems,
and ultra-short baseline positioning systems, enabling manual cruising by remote control
or following a pre-established program trajectory (Figure 4). The AUV collected all data
for this paper while employing a slow and constant speed cruising at an altitude of 10 m
underwater, with a maximum distance of 50 m from the bottom. Figure 4 depicts the
underwater robot used for data collection. The original image data size was 960× 900 pixels,
with an example of the original sonar image presented in Figure 5.

Figure 4. Self-developed AUV for data collection.

Figure 5. The original sonar image (each sonar image is cropped down the middle into two images
in order to increase data volume and reduce image size).

https://github.com/YDY-andy/Sonar-dataset
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The training of neural network models necessitates labeled data serving as ground
truth; thus, annotating the sonar data becomes imperative. The LabelMe labeling software
(version 5.01) developed by the Massachusetts Institute of Technology served as the tool for
image labeling. A total of five categories were assigned to the sonar data labels: (1) water;
(2) seamounts; (3) ground (formerly cultivated land); (4) shadowed areas; and (5) unlabeled
areas (background). The term “unlabeled areas” primarily denotes the fragmented regions
remaining after labeling the images with the first four categories. The labeled images are
depicted in Figure 6.

Figure 6. (a) Original image and (b) label.

To facilitate the image matching process, which necessitates generating images akin to
the ground truth but with specific distortions for training, we employed four augmentation
techniques: random cropping, random rotation, random erasing, random expansion, and
random contrast adjustments. Figure 7 showcases the augmented training images.

Random cropping, random rotation, random erasing, and random contrast adjust-
ments are commonly used methods in machine learning data augmentation. Random
expansion, our original method, randomly selects a random number of contours from a
semantic block using edge detection method and performs dilation processing on them.
This method can create distorted images more naturally.

Figure 7. From left to right: the original image, contrast change, random erasure, random cropping,
random rotation, and random expansion.

3.2. Algorithm Architecture and Network Training

The algorithm’s architecture involves the training of two network models (DeiT
and GCN), the generation of topological structures for samples serving as ground truth
and those used in the training set, and the final matching process, as illustrated below
(Algorithm 1).
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Algorithm 1 Topological feature construction and matching

Require: D = {(xi, yi)}D
i=1: the training dataset with D samples;

Backbone(·): DeiT distilled by our model (remove activation function layer);
Matcher(·, ·): the graph matcher; M: the amount of visual vocabulary; Θ: the set
of all trainable parameters; δt: the sparsification threshold.

1: procedure INITIALIZATION
2: Training Backbone(D)
3: Sample a subset D̂ ⊂ D as the ground truth
4: Amplify data on D̂ to obtain D̃
5: for (x, y) ∈ D̂ do
6: Ω← Discretize(M, (Backbone(x))) . Ω:isual words (tpology nodes set)
7: Ĝ ← Topology(Backbone(x)[attn], Ω) . Ĝ:Topology of ground truth
8: for êi,j ∈ Ê do . Remove edges with weights below the threshold
9: if λ̂i < δt or λ̂j < δt then

10: êi,j ← Null
11: end if
12: end for
13: end for
14: end procedure
15: procedure TRAINING(Matcher(G̃, Ĝ))
16: for (x, y) ∈ D̃ do
17: Ω← Discretize(M, (Backbone(x)))
18: G̃ ← Topology(Backbone(x)[attn], Ω) . G̃:Topology
19: for êi,j ∈ Ê do
20: if λ̂i < δt or λ̂j < δt then
21: êi,j ← Null
22: end if
23: end for
24: ŷ← Matcher(G̃, Ĝ)
25: Compute the final loss and gradient ∇Θ w.r.t. parameters Θ
26: Update parameters Θ with AdamW optimizer
27: end for
28: end procedure
29: Ĝ ← Initialization
30: Training(Matcher(G̃, Ĝ))

The training hyperparameters for all the networks are presented in Table 1. Because
the matching process relies on topological structures generated from deep network features,
maintaining the original images’ high resolution is unnecessary. Hence, the images input
to the DeiT and GCN were resized to 224 × 224, facilitating a higher batch size.

Table 1. Training hyperparameters.

Hyperparameters Segmentation DeiT GCN

Num of workers 8 8 8
Batch size 3 64 64
Oprimizer SGD AdamW AdamW

Learning rate 0.01 0.001 0.001
Learning policy poly cosine annealing cosine annealing

Train epoch 50 50 50
number of hidden layer / 12 2

Multi-heads / 3 /

The network training process is visualized in the following figures (Figures 8 and 9).
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Figure 8. The change curve of the accuracy (Acc) and training loss function for the DeiT network.

Figure 9. The change curve of the accuracy (Acc) and training loss function for the matcher.

The DeiT network essentially converges at 1500 epochs, while the matcher only con-
verges around 2500 epochs. Moreover, at the point of convergence, the validation loss of
the matcher is significantly higher than that of the DeiT network. This phenomenon could
be attributed to the distillation training method employed by the DeiT network. Distilla-
tion training allows the DeiT network to acquire knowledge from an already well-trained
teacher network, thereby enhancing its generalization capability and resulting in a faster
convergence rate. On the other hand, the classification task faced by the matcher is more
complex, as it requires integrating a broader range of modal information, which likely
increases the difficulty of convergence.

4. Results and Analysis

In order to compare the extraction results of different sonar images, we selected
two images from the same location but with different side-scan sonar perspectives as
examples, as shown in Figure 10. The node numbers and distributions extracted by the
model are displayed in Figure 11, while the topology structure containing the weights is
shown in Figure 12. Additionally, we randomly selected two images unrelated to these two
as negative samples for comparison, with the node distribution and topological structure
of the negative samples presented in Figures 13 and 14. Because the original images were
cropped into 14 × 14 = 196 patches when input into the DeiT network, these patches
correspond to the dimensions of the input data. After clustering, each dimension was
assigned a node index, which is reflected in the images as shown, with a total of 196 squares,
each containing the corresponding node index.

From the figures, it can be observed that the basic node distributions of the two im-
ages are quite similar, with the highest proportion of nodes being 8, 40, and 99, among
others. However, certain regions differ. Additionally, the distribution of nodes does not
completely align with the semantic regions, as the node distribution depends not only on
semantic features but on certain latent features, such as the connectivity and shape between
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regions, which are difficult to describe explicitly. This represents an effective extraction and
summarization of the high-dimensional features of the images.

In the process of integrating nodes and edge weights to construct a more concrete
representation of the topological structure, we exclude nodes and edges with weights less
than 0.02 to ensure the sparsity of the structure, retaining only the relatively important
nodes and edges in the figure. The circles in the figure represent nodes, while the remaining
values are weights. It can be seen that the topological structures are highly similar, as they
represent different perspectives of the same location, with identical node indices and only
a few differences in edges and weights.

Overall, there is almost no evident similarity in the weights of nodes and the composi-
tion of edges, indicating that the similarity between sonar images from different locations
is low. However, some patterns can still be observed in the figures. For example, all four
images contain nodes 26, 40, and 99 and the weights of these three nodes are generally
relatively high, suggesting that the model considers these three nodes to represent common
features in sonar images. Moreover, in all four images, there are edges between nodes
26 and 40 as well as between nodes 40 and 99, indicating that the model recognizes a
correlation between these important nodes. Despite the likelihood that the topological
structures of unrelated images do not match, there is still some invariance in the local
structures that reflect inherent features of sonar images.

We compared our method with other models in the field of image matching (or those
capable of performing image matching) using a sonar dataset. The results are presented in
Table 2.

Table 2. Model performance comparison.

Method ACC FLOPs

SIFTs 18.682 /
BagNet 68.343 1.10 G

SchemaNet 92.456 1.20 G
Our model 96.140 1.18 G

Here, SIFT refers to image matching using the classic SIFT descriptor, BagNet [37] is a
model that employs deep networks to extract a visual bag-of-words for image matching
and, SchemaNet is the original model used in [31], utilizing VIT as a teacher model for
the classification network, which we have adapted for the task of image matching on a
sonar dataset.

It is evident that the performance of classic SIFT is limited, and that the effectiveness
of BagNet, which solely relies on visual bag-of-words matching, is also unsatisfactory.
While SchemaNet performs better, the use of ViT as a teacher model is not as effective as
employing our CNN-based semantic segmentation model, likely due to the limited amount
of sonar image data.

Figure 10. Left, middle, and right show the original images, the annotation results of the original
images, and the output of the semantic segmentation network, respectively.
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Figure 11. Node distribution of positive samples (images from the same location but different
perspectivesm, the numbers in the figure represent the node index).

Figure 12. Positive sample topology structure; points and edges with weights below 0.02 will
be discarded.

Figure 13. Node distribution of negative samples (unrelated images, the numbers in the figure
represent the node index).

Table 3 lists the image (topology) matching normalization results for four images.To
increase the discrimination of the output results, we normalized the self-matching score of
the same image to 2.
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Figure 14. The topological structure of negative samples.

Table 3. Different image matching scores.

Positive Sample B Negative Sample A Negative Sample B

Positive sample A 0.6257 0.2025 0.1917
Positive sample B / 0.2463 0.2138

Negative sample A / / 0.1779

The data presented in Table 3 reveal that images from the same location but with
different perspectives achieved the highest matching scores, whereas the scores for match-
ing between unrelated images were comparatively lower. Moreover, a comprehensive
matching test conducted on the dataset revealed that the highest score for matches between
images with no relation was 0.4324, which remains significantly lower than the scores for
related images. This indicates that our model effectively utilizes topological relevance to
match images based on their shared location in sonar imagery.

5. Conclusions

This study investigates the application of topological matching for analyzing un-
derwater side-scan sonar images, offering novel insights and solutions for underwater
environment detection and image processing. Feature matching in sonar imagery poses
persistent challenges in underwater settings due to image quality limitations, complex
features, and susceptibility to distortion. However, by leveraging SchemaNet and inte-
grating deep learning and knowledge distillation techniques, the method proposed in
this paper effectively addresses these challenges and offers a robust solution for feature
matching in underwater side-scan sonar images. Our model can extract the topological
structure of sonar images containing various high-dimensional feature information and
use it as a benchmark for image matching. The image topology structure, which includes
semantic and regional relationships, is very effective in dealing with low-quality images
and perspective distortion.

The paper introduces a self-designed semantic segmentation module as the teacher
model, which trains the DeiT network to generate attention matrices. These matrices serve
as the foundation for constructing the topological representation of images. A curated
set of representative sonar images is then utilized for matching, with data augmentation
techniques employed to create diverse images for the training set. This approach enables
the network to perform image matching even in the presence of geometric and perspective
distortions, as evidenced by the output of the final model.

6. Discussion

This research introduces a novel solution and technological framework for feature
matching in underwater sonar images, with significant theoretical and practical impli-
cations. Future research endeavors could focus on further refining and optimizing the
topological feature-based matching model, thereby expanding its applicability to a broader



J. Mar. Sci. Eng. 2024, 12, 782 16 of 17

spectrum of underwater scenarios and contributing to advancements in underwater en-
vironment detection and monitoring. Meanwhile, this study has a significant limitation,
namely, that while using deep learning models to extract the topological structure of images
for image matching can achieve high accuracy in matching results, it cannot achieve fine
matching between the pixels of two images. At present, the main methods for achieving
fine matching are descriptor methods such as SIFT. Thus, combining these two approaches
to achieve high accuracy with fine pixel-level matching is a research direction that needs to
be considered in the future.
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