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Abstract: In this paper, an analysis of existing models for describing surfaces of various types is per-
formed, and the possibilities of their application at the level of mathematical modeling are analyzed.
Moreover, due to the large number of models and the complexity of selecting the appropriate model,
e.g., when conducting a practical experiment, an algorithm for choosing a specific model depending
on the initial data is proposed. According to the algorithm, a software prototype that implements this
algorithm (written in Python) is proposed.
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1. Introduction

In the modern world, the tasks of researching, studying, and saving our planet, in
view of climate change and other environmental and anthropogenic problems, are very
important. One of the most effective modern methods of earth surface exploration is
through the use of remote sensing systems. In modern science and technology, remote
sensing and measuring is one of the main methods of analysis in many fields: natural
science [1–8], agriculture [9–15], climatology [16–21], etc. At the same time, models of these
surfaces are necessary to relate the parameters of the studied surfaces (or objects) to the
electromagnetic fields that these surfaces radiate or reflect. When preparing experimental
studies, or interpreting the results of such experimental studies, theoretical modeling is im-
portant, and when determining the potential capabilities of various remote measurements,
knowledge of the proper model of the field and parameter relations is one of the conditions
that make the results of a study efficient and precise. Modern publications currently do
not provide a comprehensive approach to creating, analyzing, or using models to describe
actual ground surfaces. According to the received signals, radio engineering systems can be
divided into either active or passive systems. The signals received by the system are related
to the surface parameters via the radar cross-section or brightness temperature. There are
many stand-alone articles and studies, but there is no generally accepted classification or
structural approach to the model selection task. However, choosing the right mathematical
models for these characteristics is the key to efficiency both in practical experiments and in
modeling or interpreting the results. To simplify the optimal model selection process, this
paper analyzes the existing mathematical relations and proposes both their classification
and also an algorithm for model selection based on known initial data. A prototype of a
software application that implements this algorithm has also been created.

2. Materials and Methods

One of the areas of remote sensing research that has been developing rapidly in recent
years is the development and application of remote sensing systems. All radio frequency
systems can be divided into two major classes: active and passive. Passive systems receive
the surface’s own thermal radiation, while active systems irradiate the surface or object
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and receive a reflected signal, which contains information about the object parameters.
Due to the different nature of electromagnetic waves, the characteristics that relate these
waves to surface parameters are also different. In a passive case, such a characteristic is the
brightness temperature TBr, while in an active case, it is a radar cross-section (RCS) σ2.

All models for surface description can be divided into being either electrodynamic
(mathematical) [22,23] or empirical (practical) [24–40]. Mathematical models are well
developed based on the general laws of electrodynamics and have been applied to remote
sensing problems for a long time. Practical models reflect the results of specific experiments
and are constantly being improved and developed.

For both electrodynamic and empirical models, specific conditions and limitations
exist for their application, in particular in terms of operating frequencies f (wavelengths
λ), covering types (with or without vegetation), and geometric characteristics: the root
mean square heights of roughness σh (or spatial heights of roughness h(x, y)), radius of
roughness curvature RK, and ↕, which is the radius of roughness correlation.

Nowadays, in order to conduct a practical experiment or to simulate a remote sensing
experiment and take into account the parameters of the studied surface, it is necessary
to find a valid model. This, due to the large number of options, the conditions of their
application, and the connection, in particular with the type of system used, is quite a
complex, time-consuming, and laborious task.

This paper proposes to classify the existing surface models as follows:

1. By classifying the type of systems that can be used (active, passive).
2. By classifying the obtaining method (electrodynamic, empirical).
3. By classifying the type of described surface (ground, water).
4. By classifying the type of covering (ground surface without vegetation, surface with

vegetation below a defined level, surface with high vegetation, smooth water surface,
water surface with foam, surface covered with snow or ice).

5. By classifying the ability to estimate atmospheric parameters (taking into account the
atmosphere impact, along with the ability to estimate atmospheric parameters).

Table 1 shows the classification of surface model types, with descriptions, that are
available in the public domain.

Table 1. Surface model classification.

Type Frequency Range
(Wavelengths) Conditions of Use

Brightness temperature

Electrodynamic

Flat – h(x, y) = 0, σh ≈ 0

Flat with the atmosphere – h(x, y) = 0, σh ≈ 0

Small-scale –
|h(x, y)| ≪ λ,

∂h(x, y)
∂x

≪ 1,
∂h(x, y)

∂y
≪ 1, σh ≤ λ

20

Large-scale – RKx ≫ λ, RKy ≫ λ, σh ≥ λ

Two-scale – σh1 ≥ λ, σh2 ≪ λ

Empirical

Sea surface with foam 9.3–34 GHz
(8.8 mm—3.2 cm)

For a sea surface with foam (excluding atmospheric
illumination), including wind speed

τ − ω model 4–8.8 GHz
(3.4–7.5 cm)

Vegetation is an equally absorbing and backscattering
layer over the soil surface

Qp model 6.9–36.5 GHz
(8.3 mm–4.3 cm) Surface without vegetation
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Table 1. Cont.

Type Frequency Range
(Wavelengths) Conditions of Use

Regression model 22.2–37.5 GHz
(0.8–1.35 cm)

To estimate the moisture content of a cloudless
atmosphere

“Meteor” regression
model 37.5 GHz (0.8 cm) To estimate the moisture content of the atmosphere and

clouds at a sight angle θ = 30◦

“Nimbus 5” model
λ1 = 0.96 cm, λ2 = 1.35 cm—operating

wavelengths,
31.25 GHz, 22.22 GHz

To estimate the moisture content of the atmosphere and
clouds when sighting in nadir, θ = 0◦

“Seasat” model

λ1 = 0.81 cm, λ2 = 1.43 cm,
λ3 = 1.67 cm λ4 = 2.8 cm,

λ5 = 4.55 cm—operating wavelengths,
frequencies 37.05 GHz, 20.98 GHz,
17.96 GHz, 10.71 GHz, 6.593 GHz

To measure the near-surface wind speed vns < 7 m/s,
thermodynamic temperature T0 [K], atmosphere’s
moisture content Q [mg/cm2], and cloud moisture

content W [mg/cm2]

Radar Cross-Section (RCS)

Electrodynamic

Flat – h(x, y) = 0, σh ≈ 0

Small-scale –
|h(x, y)| ≪ λ,

∂h(x, y)
∂x

≪ 1,
∂h(x, y)

∂y
≪ 1, σh ≤ λ

20

Large-scale – RKx ≫ λ, RKy ≫ λ, σh ≥ λ

Two-scale – σh1 ≥ λ, σh2 ≪ λ

Empirical

Exponential model Frequency 3...100 GHz
Wavelength 0.003–0.1 m

Quasi-smooth surfaces, rough surfaces with and without
vegetation, as well as snow and anthropogenic areas

Grazing angle ψ ≤ 30◦, ψ = π
2 − θ, θ—angle

of incidence

Oh’s model – 0.1 < k · σh < 6.0, 2.6 < k · ↕ < 19.7,
moisture content 0.09 < m < 0.31

Surface with vegetation Frequency 1–18 GHz
Wavelength 0.017–0.3 m Surface with vegetation

Dubois model Frequency 1.5–11 GHz
Wavelength 0.027–0.2 m

Surfaces without vegetation, sighting angles from 30 to
65 degrees

The normalized radar cross−sections ratio is
σ0

VV ≥ σ0
HH

σh from 0.3 cm to 3 cm
Angles of incidence are θ = 30◦ . . . 65◦

Model with cylindrical
reflectors – A surface that can be represented as a set of cylindrical

reflectors

Integral equation model –
Soils without vegetation at high root mean squares of

roughness values. kσh ≪ 1, k =
2π

λ

Model with a near-surface
wind – φ = 30, 40, 50 deg is the angle with respect to the

direction opposite to the wind vector

Shi’s model-algorithm – Surface without vegetation

Surface model with snow – Surface covered with snow
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3. Results
3.1. Electrodynamic Models of Brightness Temperature

It is typical (Figure 1) for a passive location that the observed object itself emits or
re-emits natural radio-thermal signals from other hot objects (e.g., the Sun).
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Figure 1. Surface radiolocation geometry.

By dividing the entire radiation-receiving area into main and side lobes and calculating
the mean antenna temperatures in these areas, we obtain one of the fundamental formulas
of radiometry:

TA = TΓη(1 − β) + Tσηβ+ T0(1 − η), (1)

where TΓ is the radiating object’s apparent temperature, smoothed (averaged) by the main
lobe of the radiation pattern,

β =

∫
Ωside

Grec(
→
ϑ )

∫
Ω=4π

Grec(
→
ϑ )dΩ

(2)

is the scattering factor of the receiving antenna; Tσ is the brightness temperature of the
averaged background radiation from the side and back lobes; η is the aperture efficiency;
and T0 is the thermodynamic temperature of the antenna–waveguide tract.

The apparent temperature of the radiating object includes the true radio brightness
temperature and the temperature caused by the radiation illumination of the atmosphere,
clouds, the Sun, etc.

3.1.1. Electrodynamic Model of Flat Surface

The main characteristics of the flat surface model (Figure 2) are the Fresnel reflection
coefficients for oscillations of plane waves with horizontal polarizations [22,23],

.
Kf H =

.
E0 ref
.
E0 inc

=

√ .
ε1 cos θ1 −

√ .
ε2 −

.
ε1 sin2 θ1√ .

ε2 cos θ1 +
√ .

ε2 −
.
ε1 sin2 θ1

(3)

and vertical polarization,

.
Kf V =

.
ε2 cos θ1 −

√ .
ε1
√ .

ε2 −
.
ε1 sin2 θ1

.
ε2 cos θ1 +

√ .
ε1
√ .

ε2 −
.
ε1 sin2 θ1

, (4)
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where
.
E0 ref,

.
E0 inc are the reflected and incident field;

.
ε1,

.
ε2 are the dielectric constants of

medium 1 and medium 2 (Figure 2); and θ1 is the sensing angle (Figure 2).
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Although the Fresnel coefficients are generally defined for plane waves, if the irradi-
ation takes place from a distance H0 (which is significantly greater than the wavelength
(2πH0/λ ≫ 1)) and at least 4–5 Fresnel zones can be located within the reflecting surface,
they are also valid for the specular reflection of spherical waves with fairly high accuracy.
This means that the dimensions of the flat area of the reflective surface (where this model is
valid) must be at least 3

√
H0λ. For example, for a height of H0 = 1000 m and λ = 3 cm,

the diameter of the area is about 15 m.
In general, the dielectric constant is a complex number

.
ε = ε − j60λg, where g is the

medium’s conductivity (reciprocal of resistivity), and λ is a wavelength.
The most common case in practice is when the medium above the boundary is air

(
.
ε1 ≈ 1 and

.
ε2 ≈ .

ε); then, the Fresnel reflection coefficients are as follows:

.
Kf H =

cos θ1 −
√ .

ε − sin2 θ1

cos θ1 +
√ .

ε − sin2 θ1
,

.
Kf V =

.
ε cos θ1 −

√ .
ε − sin2 θ1

.
ε cos θ1 +

√ .
ε − sin2 θ1

. (5)

The radio brightness temperature of the thermal radiation of a flat surface is

TBr V(H) = (1 −
∣∣∣ .
Kf V(H)

∣∣∣2)T0, (6)

where T0 is the thermodynamic surface temperature.

It should be noted that if the angle θ1 = 0, then in (5, 6),
∣∣∣ .
Kf V

∣∣∣2 =
∣∣∣ .
Kf H

∣∣∣2, and
the polarization degree m = 0, i.e., at vertical sensing, the flat surface is a polarization–
isotropic object—a source of unpolarized radio-thermal radiation. At Brewster’s angle
θB (determined by the equation sin θB = 1√

(1+ε)
),

.
KfB = 0 and χB = 1. The brightness

temperature, in this case, is equal to the thermodynamic temperature, i.e., TBrB = T0.
If the medium under the boundary is non-isothermal (the medium parameters are not

constant and depend on the direction), then [22,23,29]

TBr V(H) =

[
1 −

∣∣∣ .
Kf V(H)(θ)

∣∣∣2]χ(θ)

∞∫
0

T0(z)e−χ(θ)zdz,θ1 = θ, (7)
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where

χ(θ) =
4π

λ

√√√√√ ε r − sin2 θ

2

√1 +
(

ε i
ε r − sin2 θ

)2
− 1


is the specific power attenuation of incident waves in the subsurface medium; ε r, ε i are the
real and imaginary parts of the complex dielectric constant.

We denote K(h0, θ) = exp

{
−

h0∫
0

χA(z′)dz′/ cos θ

}
(where χA is the attenuation in

the atmosphere). Then, the flat surface temperature, considering the illumination by the
atmosphere, can be written in the following form [22,23]:

TBr K V(H) = χV(H)(
.
ε, θ)K(h0, θ)T0 +

∣∣∣ .
Kf V(H)(

.
ε, θ)

∣∣∣2K(h0, θ)TBr A(θ)

+TA[1 − K(h0, θ)],
(8)

where χV(H)(ε, θ) = (1 −
∣∣∣ .
Kf V(H)(ε, θ)

∣∣∣2) is the emissivity of the surface; TBr A(θ) is the
radio brightness temperature of the total atmospheric radiation reflected by the surface in
the θ direction; and TA is the average atmospheric temperature (approximately 30◦ less
than the atmospheric temperature near the Earth).

TBr A(θ) = TA

1 − e
−1

cos θ
(χoozo+χwozw)

, (9)

where zo, zw are the characteristic oxygen and water vapor absorption heights; χoo, χwo
are oxygen and water vapor absorption coefficients (near the Earth’s surface).

In (8), the first term is the surface radiation in the θ direction, attenuated by the
K(h0, θ) factor on the wave propagation path from the surface to the receiving antenna; the
second term is the total atmospheric radiation reflected by the surface in the θ direction and
attenuated on the propagation path; and the third term is the direct atmospheric radiation
between the receiving antenna and the surface in the θ direction.

In practice, the following expression is used to determine the coefficient K(h0, θ):

K(h0, θ) = exp
{
− 1

cos θ
(χoozo + χwozw)

}
.

The above expressions, within the flat surface model, are the initial expressions for
solving the inverse problems of data interpretation of the recorded reflected signals and
signals of its radio-thermal radiation.

The numerical values of the real and imaginary parts of the complex dielectric constant
used in practical calculations are given in Table 2 [22]. It is important to note that the
values given in the table are only approximate. This is due to the relation between the
dielectric constant and the system parameters (wavelength) and the surface parameters
(e.g., salinity) [41–44].

Table 2. Electrophysical parameters of various media.

Medium Dielectric Constant ε Conductivity g, S/m

Snow 1.2 2 · 10−4

Dry soil 2.5. . .4 10−2. . . 10−1

Moist soil 4. . .20 10−2 . . . 3
Crystalline rocks 5. . .10 10−6. . . 10−4

Water 60. . .80 10−3 . . . 10
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For the initial data (thermodynamic temperature T0 = 300 K, the real part of the
dielectric constant ε = 70, the conductivity of the medium g = 5 S/m, and the wavelength
λ = 3.333 · 10−3 m (frequency f = 90 GHz)), the following dependencies, in accordance
with the theoretical information given earlier (Figures 3–5), are obtained.
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Figure 5. Dependencies of the flat surface brightness temperature on the sighting angle θ at vertical
polarization with tva and without tv atmosphere impact.
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3.1.2. Surface Model with Small-Scale Roughness

The small-scale model can be applied to rough surfaces where the roughness h(x, y) is
small in comparison to the electromagnetic wavelength, i.e., |h(x, y)| ≪ λ, and the sloping
∂h(x, y)

∂x
≪ 1,

∂h(x, y)
∂y

≪ 1. The average value of the function h(x, y) for a small and

rough surface is the plane h0(x, y) = 0. According to Rayleigh’s criterion, this surface is
almost smooth. The electrophysical characteristics of the medium under the surface h(x, y)
are as follows: dielectric constant ε2 ̸= 1 and permeability µ2 = 1 are constant values (the
medium is isotropic). Such a model corresponds to the asphalt or concrete surface for the
centimeter range of radio waves or an arable area for longer waves.

A field that is backscattered by such a surface (Figure 6) is in the small perturbation
approximation [22,23]. The perturbed fields of different polarizations within the first
approximation of small perturbations in media 1 and 2 are represented as follows:

.
Ek =

.
C0

.
Mk(

.
ε1,

.
ε2,

→
ϑ i,

→
ϑ S) cos θi cos θS

k2

π

∫
∆S

h(
→
r )e−jq⊥(

→
r −→

r 0)d
→
r ,

where
.

C0 cos θi cos θS
∫

∆S
h(

→
r )e−jq⊥(

→
r −→

r 0)d
→
r =

.
α is a coefficient that takes into account

the transmission coefficient of the receiver path and losses in the atmosphere (∆S is the
surface area, and h(

→
r ) is the height of roughness);

→
q⊥ is the horizontal projection of the

backscattering vector
→
q .
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The scattering coefficient
.

Mk determines the relation between the parameter values of
medium 1 and medium 2 and the received field voltages (k = (VV, HH, HV, VH) indicates
the type of polarization). These coefficients in the general case (for a bistatic model) were
obtained in [22,23]. A special case of backscattering at a monostatic location is of particular
importance

( .
ε1 = 1,

.
ε2 =

.
ε, cos θi = cos θS, ϕS = π). In this case,

.
MHH =

.
ε − 1(

cos θi +
√ .

ε − sin2 θi

)2 ,
.

MVV =

( .
ε − 1

)
·
(
(

.
ε − 1) sin2 θi +

.
ε
)( .

ε cos θi +
√ .

ε − sin2 θi

)2 ,

.
MVH ≈

.
MHV ≈ 0.

(10)

Within the first approximation of small perturbations, the brightness temperature of
the small-scale surface is

TBr V(H) =
(

1 − KI V(H)

)
T0.
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In the specific case of lh
(→

r
)

/λ >> 1 (the indicatrix of the scattered field is narrow),

TBr V(H) =

(
1 −

∣∣∣ .
Kf V(H)

∣∣∣2 · exp

{
−
(

4π

λ
· σ2

h · cos θ
)2
}
+ KDif V(H)

)
T0. (11)

The integral scattering coefficients that determine the increase in radio brightness
temperatures can be represented as the sum of two terms, the first of which corresponds to

the coherent component of the scattered field (unperturbed field
→
E(x, y, z = 0)), and the

second to the diffuse component (the perturbed field).

KCoh V(Γ) =
∣∣∣ .
Kf V(H)

∣∣∣2 · exp

{
−
(

4π

λ
· σ2

h · cos θ
)2
}

, (12)

KDif V(H) =
1

4π ∑
k=(V,H)

∫
Ω

KDif V(H)

(
.
ε,

→
ϑ i,

→
ϑ S

)
dΩS = σ0

k

(
.
ε,

→
ϑ i,

→
ϑ S

)
/cos θi. (13)

With a narrowly scattered field indicatrix (when the radius of roughness correlation is
much larger than the wavelength),

KDif k ≈ 16πk2σ2
h cos2 θi

∣∣∣ .
Mk

∣∣∣2, (14)

where k = 2π
λ is the wavenumber.

The obtained relations relating the scattered fields and radio brightness of the surface
temperature to its parameters are the basis for estimating these parameters. It should be
noted that for more reliable estimations of these parameters (when calculating the radio
brightness temperatures of a surface with small-scale roughness), the second approximation
in the small perturbation method should be taken into account.

For the initial data (thermodynamic temperature T0 = 300 K, real part of the dielectric
constant ε = 70, conductivity of the medium g = 5 S/m, wavelength λ = 3.333 · 10−3 m
(frequency f = 90 GHz), and root mean square of the roughness height σ2

h = 10−4 m), the
following dependencies, in accordance with the theoretical information given earlier, are
obtained (Figure 7).

Computation 2024, 12, x FOR PEER REVIEW 10 of 37 
 

 

   
22 2 2

Dif k h i kK 16 k cos M ,  (14) 

where 


=


2
k  is the wavenumber. 

The obtained relations relating the scattered fields and radio brightness of the surface 

temperature to its parameters are the basis for estimating these parameters. It should be 

noted that for more reliable estimations of these parameters (when calculating the radio 

brightness temperatures of a surface with small-scale roughness), the second approxima-

tion in the small perturbation method should be taken into account. 

For the initial data (thermodynamic temperature =0T 300  K, real part of the dielec-

tric constant  =70 , conductivity of the medium =g 5  S/m, wavelength − =  33.333 10  

m (frequency =f 90  GHz), and root mean square of the roughness height − =2 4
h 10  m), 

the following dependencies, in accordance with the theoretical information given earlier, 

are obtained (Figure 7). 

 

Figure 7. Dependences of the small-scale surface brightness temperature on the sighting angle   

at horizontal Тh  and vertical Тv  polarization. 

3.1.3. Surface Model with Large-Scale Roughness 

Suppose that a surface with large-scale roughness satisfies the Kirchhoff approxima-

tion (consisting of large smooth roughness whose curvature radii are much larger than 

the wavelength, Figure 8). The field on the surface is defined as the sum of the incident 

and reflected waves [22,23]. In other words, the “large” scale of the roughness is deter-

mined by the curvature radii кR  , which must be much larger than the wavelength: 

 кх куR ,R . There are no restrictions on the roughness height ( )h x,y : it can be 

either significantly larger or smaller than the wavelength  . The average height of the 

roughness is zero. In most cases, the reflective medium is isotropic, nonmagnetic (  =2 1

), and described by a complex permittivity 2 . A typical illustration of this model is a 

“dead” ripple at sea. 

  

Figure 7. Dependences of the small-scale surface brightness temperature on the sighting angle θ at
horizontal Th and vertical Tv polarization.



Computation 2024, 12, 104 10 of 33

3.1.3. Surface Model with Large-Scale Roughness

Suppose that a surface with large-scale roughness satisfies the Kirchhoff approximation
(consisting of large smooth roughness whose curvature radii are much larger than the
wavelength, Figure 8). The field on the surface is defined as the sum of the incident and
reflected waves [22,23]. In other words, the “large” scale of the roughness is determined by
the curvature radii RK, which must be much larger than the wavelength: RKx ≫ λ, RKy ≫ λ.
There are no restrictions on the roughness height h(x, y): it can be either significantly larger
or smaller than the wavelength λ. The average height of the roughness is zero. In most
cases, the reflective medium is isotropic, nonmagnetic (µ2 = 1), and described by a complex
permittivity

.
ε2. A typical illustration of this model is a “dead” ripple at sea.
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Figure 8. Surface with large-scale roughness.

In general, as we know, the brightness temperature is determined as follows:

TBr = T0χ,

where χ is the emissivity coefficient; T0 is the thermodynamic temperature.
There are several approaches that we may take when attempting to calculate the

brightness temperatures of this surface: the method without and with taking shading into
account, based either on a deterministic averaging over the plane D of the emissivity χV(H)

of quasi-flat elements of the large-scale roughness,

χV(H) = η

(
cos θi

cos θi0

){
1 −

∣∣∣ .
Kf V(H)

( .
ε, θ
)∣∣∣2 ± sin2 α

(∣∣∣ .
Kf V

( .
ε, θ
)∣∣∣2 − ∣∣∣ .

Kf H
( .
ε, θ
)∣∣∣2)}, (15)

with a periodic law of change in their height h, or on statistical averaging with given proba-
bilities of element shading (probabilities of elements’ visibility from specified directions in
the geometric optics approximation) and the joint distribution probabilities of derivatives
∂h/∂x, ∂h/∂y. In this expression, the coefficient η is equal to 1 or 0, depending on whether
the area ds is visible or not from the antenna side; θ is the angle between the direction of
the plane wave’s wavevector k (direction towards the receiving antenna phase center) and
the normal vector to the element ds; θi0 is the angle between the direction k and the normal
to the underlying surface; and α is the dihedral angle between the vertical plane of wave
propagation and the plane formed by the vectors k and n.

For the initial data (the thermodynamic temperature T0 = 300 K, real part of the dielec-
tric constant ε = 70, conductivity of the medium g = 5 S/m, wavelength λ = 3.333 · 10−3 m
(frequency f = 90 GHz), coefficient η = 1, and α = 45o), the following dependencies, in
accordance with the theoretical information given earlier, are obtained (Figure 9).
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3.1.4. Two-Scale Surface Model

We consider a model that represents a combination of small smooth roughnesses that
satisfy the conditions of small perturbations that cover the whole of the large quasi-flat
roughness (Figure 10) [22,23,43–45].
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Figure 10. Two-scale surface.

This model is described by a wide spatial range of roughnesses, including examples
of both small and large roughnesses. An example of such surfaces is the sea surface in
a situation with heavy waves, when it is covered with both primary (large) waves and
smaller waves (fine ripples) that are located on the surface of the large waves. Another
example is a desert with sand barchans.

Nowadays, various versions of such a model have been developed and continuously
improved, focusing on solving specific types of remote sensing applications of the disturbed
sea surface using radar and radiometry methods. There are, for example, models that
take backscattering into account in a quasi-mirror area, using the idea of a set of smooth
platforms that are inclined at different angles with a local reflection coefficient. These local
reflection coefficients are calculated using the Fresnel formula for a specific inclination angle
of the selected platform to the local normal. In other models [44,45], “large” wave platforms
are considered to be rough, and it is assumed that the specular component for the selected
rough platform is reduced due to “resetting” by the diffuse scattering mechanism. For
such a surface, assuming a normal spectral density of small-scale elevations with a height
variance σ2

h, which satisfies the condition of small perturbations, for the modified reflection
coefficient on a large area Rs(λ, θ), taking into account this roughness, the following
expression was obtained:

Rs(λ, θ) = R(λ, θ)

(
1 − 4 · k2 · σ2

h · cos θ · exp

(
− sin2 θ

2

))
,

where k = 2π
λ is the electromagnetic wavenumber.
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In [43], the decrease in the Fresnel coefficients R(λ, θ), under the same conditions, is
estimated to be of the order value of

∆(R(λ, θ)) ≃ 2 · k2 · σ2
h · cos2 θ.

For the initial data (thermodynamic temperature T0 = 300 K, real part of the dielectric
constant ε = 70, conductivity of the medium g = 5 S/m, and wavelength λ = 0.03 m
(frequency f = 10 GHz)), the following dependencies, in accordance with the theoretical
information given earlier, are obtained (Figures 11 and 12).
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3.2. Empirical Models of Brightness Temperature

These models are obtained by statistical processing of data from multiple targeted
experiments, as a result of which the correlation relations of averaged measured values
and required parameters are established in the form of regression coefficients. Most often,
regression equations are used, in which the recorded (averaged) and estimated values
are defined either in the form of linear or nonlinear relationships or in the form of linear
relationships and found correlations between the desired parameters and logarithms of the
recorded values.

A large number of different useful models of the relationship between radio-thermal
temperatures and the parameters of these media have been developed to interpret data from
polarization measurements of radio-thermal radiation from land covers, water surfaces,
“atmosphere-underlying surface” systems, “ocean–atmosphere” systems, and others. In
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these systems, due to mutual illumination, the brightness temperatures are total and are
often called apparent temperatures.

In the higher part of the centimeter wavelength range, the illumination by atmospheric
radiation can be neglected, while in the lower part, the absorption and, consequently, its
emissivity are noticeable.

The illumination leads, on the one hand, to errors in the estimations of the Earth surface
parameters, while on the other hand (with the proper experiment organization), it leads
to the possibility of measuring, along with the surface parameters (e.g., thermodynamic
temperature T0, near-water speed υ (m/s), etc.), the atmospheric parameters (atmospheric
Q [kg/m2] and cloud W [kg/m2] moisture content, water storage R or intensity I [mm/h]
of rains, etc.).

3.2.1. Sea Surface with Foam

The sea surface model with foam (excluding illumination) [24,25,28] is interesting,
because the regression relations include the wind speed V as a parameter. It makes it
possible to estimate this characteristic. The brightness temperature of the sea surface TBr is
related to its thermodynamic temperature T0 through the surface absorption coefficient k
by a ratio:

TBr = kT0. (16)

The absorption coefficient can be represented as

k = (k0 + ∆k1)(1 − F) + ∆k2F, (17)

where k0 is the absorption coefficient of a smooth sea surface. It can be calculated by the
following formula:

k0p = 1 −
∣∣Rp(θ, ε)

∣∣2, (18)

where Rp(θ, ε) are the Fresnel coefficients for the p-th polarization; ∆k1 is the heavy sea
correction; ∆k2 is the foam correction; and F is the effective surface area occupied by
the foam.

These values for vertical and horizontal polarization are determined by the following
regression relations:

∆k1h =
V
T0

(
A + Bθ2

)√
f − 0.00065f, (19)

∆k1V =
V
T0

(a + b exp(cθ))
√

f − 0.00065f, (20)

∆k2H = 0.005 +
208 + 1.29f

T0

(
1 − 1.748 · 10−3θ− 7.336 · 10−5θ2 + 1.044 · 10−7θ3

)
,

∆k2V = 0.005 +
208 + 1.29f

T0

(
1 − 9.946 · 10−4θ+ 3.218 · 10−5θ2 − 1.187 · 10−6θ3 + 7 · 10−20θ10

)
,

F = b0 + b1V + b2V2. (21)

The coefficients in expressions (17)–(21) have the following values:

A = 0.115, B = 3.8 · 10−5, a = 0.117, b = −2.09 · 10−3, c = 7.32 · 10−2,

b0 = 1.707 · 10−2 + 8.56 · 10−4f + 1.12 · 10−5f2,

b1 = −1.501 · 10−2 + 1.821 · 10−3f − 4.634 · 10−5f2,

b2 = 2.442 · 10−4 − 2.282 · 10−6f + 4.134 · 10−7f2.

The thermodynamic temperature T0 is measured in Kelvin (K), the sighting angle θ in
degrees, the wind speed V m/s, and the frequency f in GHz.
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For the initial data (the thermodynamic temperature T0 = 300 K, real part of the
dielectric constant ε = 70, conductivity of the medium g = 5 S/m, wavelength λ = 0.03 m
(frequency f = 10 GHz), and wind speed coefficient V = 4 m/s), the following dependen-
cies, in accordance with the theoretical information given earlier, are obtained (Figure 13).
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3.2.2. τ − ω Model

The τ − ω model [26,36] was developed based on the assumption that vegetation is
a uniformly absorbing and backscattering layer above the soil surface. According to this
model, the brightness temperature at the p-th polarization consists of the direct vegetation
emission, soil emission, and vegetation emission reflected by the soil, and is described by
the following equation:

TBr p =
(
1 − Rp

)
· Ts · exp

(
− τ

cos θ

)
+ (1 − ω) · Tν ·

(
1 − exp

(
− τ

cos θ

))
+

Rp · (1 − ω) · Tν ·
(

1 − exp
(
− τ

cos θ

))
· exp

(
− τ

cos θ

)
,

(22)

where Rp is the Fresnel coefficient at the p-th polarization; Ts is the soil temperature, which
is by assumption equal to the vegetation temperature Tν due to the fact that the soil and
vegetation are in temperature equilibrium; ω is the single backscattering coefficient (in the
C-band (from 4 GHz to 8.8 GHz), it is equal from 0.05 to 0.13); and τ is the optical depth
of vegetation.

For the initial data (the temperature of soil and vegetation Ts = Tv = 293 K, real part
of the dielectric constant ε = 10, wavelength λ = 0.06 m (frequency f = 5 GHz), single
backscattering coefficient ω = 0.09, and optical depth of vegetation τ = 2), the following
dependencies, in accordance with the theoretical information given earlier, are obtained
(Figure 14).
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3.2.3. Qp Model

The Qp model can be used at large sighting angles for radiometers located on the Aqua
(AMSR-E), Nimbus-7 (SSMR), and TRRM (TMI) satellites, and the DMSP (SSM/I) meteoro-
logical satellite. It is developed based on an advanced integral equation model for a wide
range of surface moisture and roughness characteristics. For the Qp model, the effective
reflectivity at the p-th polarization is determined by the backscattering coefficient [27]:

Re
p = Qp · Rp +

(
1 − Qp

)
· Rp, (23)

where Rp is the Fresnel coefficient at the p-th polarization, and Qp is the roughness coeffi-
cient, which is expressed by

log(Qv) = 3.2165 + 2.4528 · log(s/l)− 6.6741 · log(s/l),

log(Qh) = 5.6036 + 3.0650 · log(s/l)− 9.3776 · log(s/l),
(24)

where s is the root mean square of the roughness height, and l is the correlation radius.
The brightness temperature is related to the backscattering coefficient by the following

expression:

TBr p =

(
1 −

∣∣∣Re
p

∣∣∣2) · T0, (25)

where T0 is the thermodynamic surface temperature.
For the initial data (thermodynamic temperature T0 = 300 K, real part of the dielectric

constant ε = 5, conductivity of the medium g = 1 S/m, wavelength λ = 0.015 m (frequency
f = 20 GHz), root mean square of the roughness height s = 0.01, and correlation radius
of roughness l = 0.05), the following dependencies, in accordance with the theoretical
information given earlier, are obtained (Figure 15).
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3.2.4. Atmosphere–Surface Regression Model

In multi-parameter measurements in passive remote sensing systems, it is possible to
estimate not only the underlying surface parameters, but the atmosphere layer between this
surface and the receiving antenna. One of the estimated parameters can be the moisture
content of the cloudless atmosphere Q [g/cm2] (the integral water vapor content in the at-
mosphere volume of a unit’s cross-section). When using the atmosphere-underlying surface
regression model and space sensing, the attenuation coefficient on the wave propagation
path from the surface to the receiving antenna can be considered equal to [28]
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K(h0, θ) = K(h0 = ∞, θ) = exp
(

−Γ
cos θ

)
, (26)

where Γ is the attenuation, which is determined by the regression equation in relation to
the moisture content Q:

Γ =

{
0.06 + 0.014 · Qon λ = 0.8 cm,
0.015 + 0.08 · Qon λ = 1.35 cm,

(27)

For the moisture content of Q = 10 [g/cm2], the following dependencies, in accordance
with the theoretical information given earlier, are obtained (Figure 16).
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The regression relations for determining the atmosphere’s moisture content Q and
cloud moisture content W, obtained using the Meteor satellite equipment, at a sighting
angle θ = 30◦ and an operating wavelength λ = 0.8 cm, have the following form [28]:

Q = 0.16 · TBr H − 23,W = 0.018 · TBr H − 2.78, (28)

where TBr H is the brightness temperature of the surface at horizontal polarization.
According to the studies based on the Nimbus-5 (artificial Earth satellite) equip-

ment, the following dependencies were obtained for nadir observations (sighting angle
θ = 0◦) [28]:

Q = −4.03 · TBr(λ2)− 0.0515 · TBr(λ1),

W = −0.404 − 1.54 · 10−3 · TBr(λ2) + 4.09 · 10−3 · TBr(λ1),
(29)

where λ1 = 0.96 cm and λ2 = 1.35 cm are the operating wavelengths.
For the multichannel microwave radiometer of the “Seasat” satellite expressions for

determining the near-surface speed vns < 7 m/s, the thermodynamic temperature T0 [K],
atmosphere’s moisture content Q [g/cm2], and cloud moisture content W [mg/cm2] were
obtained [28,40]:

vns = −523.9 + 0.2229 · TBr V(λ4) + 0.6056 · TBr H(λ4) + 130.3 · ln(280 − TBr V(λ3))

−39.19 · ln(280 − TBr H(λ3)) + 10.24 · ln(280 − TBr V(λ2))− 32.75 · ln(280 − TBr H(λ2))

+2.999 · θ,

(30)
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T0 = −149.1 + 1.677 · TBr V(λ5) + 1.666 · TBr H(λ5)− 0.2767 · TBr V(λ4)− 0.559 · TBr H(λ4)

+46.17 · ln(280 − TBr V(λ3)) + 3.097 · ln(280 − TBr H(λ3))− 0.916 · ln(280 − TBr V(λ2))

−12.54 · ln(280 − TBr H(λ2))− 0.585 · θ,

(31)

W = 246.1 − 51.72 · ln(280 − TBr V(λ3)) + 134.4 · ln(280 − TΓ(λ3)) + 46, 14 · ln(280 − TBr V(λ2))

+24.95 · ln(280 − TBr H(λ2))− 155.5 · ln(280 − TBr V(λ1))− 36.63 · ln(280 − TBr H(λ1))

−3.391 · θ,

(32)

Q = −9.784 + 6.927 · ln(280 − TBr V(λ3)) + 5.361 · ln(280 − TBr H(λ3))− 4.518 · ln(280 − TBr V(λ2))

−6.081 · ln(280 − TBr H(λ2)) + 0.039 · θ,
(33)

where λ1 = 0.81 cm, λ2 = 1.43 cm, λ3 = 1.67 cm, λ4 = 2.8 cm, and λ5 = 4.55 cm are the
operating wavelengths.

For the initial data (thermodynamic temperature T0 = 300 K, real part of the dielectric
constant ε = 70, conductivity of the medium g = 5 S/m), the following dependencies, in
accordance with the theoretical information given earlier, are obtained (Figure 17).
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3.3. Electrodynamic Surface Models for Active Remote Sensing

Active sensing is based on the fact that radio engineering systems have a radiation
source that is directed at the target object, and then, the reflected radiation is detected by
the receiver [22,23].

One of the most important backscattering characteristics of an object (surface) is the
radar cross-section [8,43].

σ =
∏A

∏T
4πR2, (34)

where ∏T and ∏A are the power flux densities [W/m2] of the incident electromagnetic
wave (EMW) near the target and reflected near the antenna phase center; R is the distance
from the antenna to the object.

In (34),

∏
T

=

PrGr

(→
ϑ i

)
4πR2

i
=

∣∣∣ .
Einc

∣∣∣2
2ρ

=

∣∣∣ .
Einc

∣∣∣2
240π

,
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∏
A

=
Pscat(refl)

4πR2
S

=
∏T ·σ
4πR2

S
=

〈∣∣∣ .
Escat(refl)

∣∣∣2〉
2ρ

=
1

240π

〈∣∣∣ .
Escat(refl)

∣∣∣2〉,

where Pr is the radiation source’s power, Gr

(→
ϑ i

)
is the power gain (radiation pattern), RS

is the distance between the field receiving point and the target, Ri is the distance between
the transmitting antenna and the target,

.
Einc is the complex amplitude of the incident field

near the target area,
.
Escat(refl) is the complex amplitude of the scattered field strength at

the receiving point, Pscat(refl) is the power of the field, scattered (reflected) by the surface
near it, and ρ =

√
εa/µa is the wave impedance of the wave propagation medium. For free

space and approximately for the Earth’s atmosphere, it is equal to 120π Ohm.
The power flux density in the antenna location area, assuming it is isotropically

distributed on the sphere, is as follows:

∏
A

=
Pscat(refl)

4πR2
S

=
∏T ·σ
4πR2

S
.

The complex amplitude of the scattered field strength at the receiving point contains
information about the surface from which the incident electromagnetic wave is reflected.

Each surface has individual geometric (height and flatness of roughnesses), electro-
chemical (conductivity), and other features. Thus, the information about them is contained
in the RCS, which helps to solve, for example, the inverse problem of the restoration
(estimation) of surface parameters.

An important characteristic of the unit surface’s backscattering (1 m2) is the normalized
radar cross-section (normalized RCS):

σo(x, y) =
∆σ(x, y)

∆x∆y
, (35)

which for real land covers would be a function of the underlying surface coordinates (flat
or spherical, passing at the midpoint of its roughness).

Using the expression for the specific RCS, and according to it, experimental studies
and the development of empirical models can be performed.

σ0 = 4πR2
S

∏A

∏A DT
=

(4π)3

λ2

Pk(rec)

Ptrans

R2
i R2

S
Gtrans(ϑi)Grec(ϑS)DT

,

where DT is the target area; Ptrans and Pk(rec) are the transmitter power and receiver output
power; and Gtrans(ϑi) and Grec(ϑS) are the radiation patterns of the radiating and receiving
antennas, located at a distance Ri and Rs from the target, respectively.

Otherwise,

Pk =
λ2

(4π)3
PtransGtrans(

→
ϑ i)Grec(

→
ϑ S)σ

0
k(

→
ϑ i,

→
ϑ S)DT

R2
i R2

S
.

3.3.1. Electrodynamic Model of a Flat Surface

In active remote sensing of a flat surface, the complex amplitudes for vertical and
horizontal polarization are equal [22,23].

.
AVV =

.
α · Kf V(θ,

.
ε),

.
AHH =

.
α · Kf H(θ,

.
ε), (36)

where
.
α is a complex factor, which is equal for the complex amplitudes

.
AVV and

.
AHH;

KfV(θ,
.
ε) are the Fresnel reflection coefficients.
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For the initial data (the real part of the dielectric constant ε = 70, conductivity of
the medium g = 5 S/m, wavelength λ = 0.03 m (frequency f = 10 GHz), coefficient
.
α = 1 − j0, 1), the following dependencies, in accordance with the theoretical information
given earlier, are obtained (Figure 18).
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where   is the wavelength; 2
h  is the root mean square of the roughness height; hl  is 

the distance (radius) of spatial correlation, which may be greater or less than the wave-
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3.3.2. Surface Model with Small-Scale Roughness

The normalized RCS of a small-scale roughness surface is determined by the following
expression [22,23]:

σ0
k =

4k4

π

∣∣∣ .
Mk

∣∣∣2 cos2 θi cos2 θSW
[→

q⊥(
→
r )
]
, (37)

where

W
[→

q⊥(
→
r )
]
=

+∞∫
−∞

Rh

(→
r , ∆

→
r
)

exp
{
−j

→
q⊥∆

→
r
}

d∆
→
r , (38)

Rh

(→
r , ∆

→
r
)
=
〈

h(
→
r )h

(→
r + ∆

→
r
)〉

(39)

are the energy spectrum and correlation function, respectively.
In practice, the following expressions can be used to calculate the normalized RCS of

this type of surface:

σ0
VV = 4

(
2π

λ

)4
σ2

hl2h
∣∣∣ .
MVV

∣∣∣2 cos4 θi exp
[
−
(

2πlh
λ

)
sin2 θi

]
, (40)

σ0
HH = 4

(
2π

λ

)4
σ2

hl2h
∣∣∣ .
MHH

∣∣∣2 cos4 θi exp
[
−
(

2πlh
λ

)
sin2 θi

]
, (41)

where λ is the wavelength; σ2
h is the root mean square of the roughness height; lh is the

distance (radius) of spatial correlation, which may be greater or less than the wavelength,
assuming that the roughness is sloping; and θi is the sighting angle.

For the initial data (real part of the dielectric constant ε = 70, conductivity of the
medium g = 5 S/m, wavelength λ = 0.03 m (frequency f = 10 GHz), root mean square
of the roughness height σ2

h = 0.001, and roughness correlation radius lh = 0.001), the
following dependencies, in accordance with the theoretical information given earlier, are
obtained (Figure 19).
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3.3.3. Surface Model with Large-Scale Roughness

The normalized RCS of such a surface with significantly sloping roughness (the
depolarized component can be neglected) and at θi = θS, ϕS = π does not depend on the
type of polarization [22,23,29].

σo =

∣∣∣ .
Kf(0)

∣∣∣2
4 cos4 θi

↕2
h

σ2
h

exp

(
−

↕2
h

4σ2
h

tg2θi

)
, (42)

where ↕h is the roughness correlation radius; σ2
h is the root mean square of the roughness

height; θi s the direction of the electromagnetic wave incidence; and
.

Kf(0) =
.

Kf V(
.
ε, θi =

0) =
.

Kf H(
.
ε, θi = 0).

For the initial data (real part of the dielectric constant ε = 70, conductivity of the
medium g = 5 S/m, wavelength λ = 0.03 m (frequency f = 10 GHz), root mean square of
the roughness height σ2

h = 0.3, and roughness correlation radius lh = 0.3), the following
dependencies, in accordance with the theoretical information given earlier, are obtained
(Figure 20).
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3.3.4. Two-Scale Surface Model

The normalized RCS in the case of backscattering can be determined [22,23].

σo
VV = σo

1 + σo
2

∣∣∣ .
MVV(

.
ε, θi)

∣∣∣2,

σo
HH = σo

1 + σo
2

∣∣∣ .
MHH(

.
ε, θi)

∣∣∣2,

σo
VH = σo

HV = σo
1

 ∣∣∣ .
MVV(

.
ε, θi)

∣∣∣2 + ∣∣∣ .
MHH(

.
ε, θi)

∣∣∣2−
−2
∣∣∣ .
MVV(

.
ε, θi)

∣∣∣∣∣∣ .
MHH(

.
ε, θi)

∣∣∣ cos ∆φ

σ2
h′1

,

(43)
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where

σo
1 =

∣∣∣ .
Kf(0)

∣∣∣2
a2
ш1

exp

[
− tg2θi

a2
ш1

−
(

4πσ2
h1

λ

)2
]

sec4 θi,

σo
2 = 4k4σ2

h2
↕2

h2
cos4 θi exp

[
−
(

2π↕h2
λ

)2
sin2 θi

]
,

(44)

where a2
ш =

4σ2
h

↕2
h

; ∆φ = arg
( .

MVV(
.
ε, θi)

)
− arg

( .
MHH(

.
ε, θi)

)
, σ2

h′1
= 2σ2

h1/l2h1.

A distinctive feature of this model is the presence of the backscattering matrix ele-
ment σo

VH = σo
HV, which describes the depolarization of the reflected signal. The vari-

ance of this element is proportional to the variance of the inclinations of the large-scale
roughness surface.

For the initial data (real part of the dielectric constant ε = 70, conductivity of the
medium g = 5 S/m, wavelength λ = 0.03 m (frequency f = 10 GHz), root mean square of
the roughness height σ2

h1 = 0.3, and roughness correlation radius of a major component
lh1 = 0.3 (for a minor component, σ2

h2 = 0.001, lh2 = 0.001)), the following dependencies,
in accordance with the theoretical information given earlier, are obtained (Figure 21).
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3.4. Empirical Models of Surfaces in Active Remote Sensing
3.4.1. Exponential Model

Let us consider the exponential model [31,32], which can be used to describe the RCSs
of various surfaces (including quasi-smooth, rough with and without vegetation, as well as
snow and anthropogenic areas) in the range of operating frequencies 3...100 GHz and at
grazing angles ψ ≤ 30◦.

When dealing with a beam that is nearly parallel to the surface, it is sometimes more
useful to refer to the angle between the beam and the surface rather than the angle between
the beam and the normal, i.e., an angle of 90◦ minus the angle of incidence. This is called
the glancing angle or grazing angle. An incidence at a grazing angle is called a “grazing
incidence”. The grazing angle is the angle formed by an incident beam (or reflected beam)
and a plane (surface).

The normalized RCS of such a model (in dB) is determined by

σ0(f, ψ) = A1 + A2 · log
(

ψ

20

)
+ A3 · log

(
f

10

)
, (45)

where ψ is the grazing angle, and ψ = π/2 − θ, θ is the angle of incidence; f is the
operating frequency; and A1, A2, A3 are coefficients that are determined by the type of
surface (Table 3).
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Table 3. Values of coefficients A1, A2, and A3 in Formula (45).

Surface A1 A2 A3

Concrete −49 32 20
Arable land −37 18 15

Snow −34 25 15
Deciduous forest, summer −20 10 6
Deciduous forest, winter −40 10 6

Coniferous forest, summer and winter −20 10 6
Meadow, grass height over 0.5 m −21 10 6

Meadow, grass height less than 0.5 m −28 10 6
Urban and rural buildings −8.5 5 3

For the operating frequency f = 50 GHz, the following dependencies, in accordance
with the theoretical information given earlier, are obtained (Figure 22).
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3.4.2. Oh’s Model

Consider the empirical Oh’s model proposed in [33,34]. This model is based on
radar backscattering measurements and information about the scattering pattern in the
boundary cases (when the parameter characterizing the height of the roughness k · σh is
large). Here, σh is the root mean square height of the roughness, and k is the wavenumber.
The proposed model operates under the following conditions: roughness characteristics
0.1 < k · σh < 6.0, 2.6 < k · ↕ < 19.7 (↕ is the roughness correlation radius); and the
moisture content is 0.09 < m < 0.31. The expressions for the normalized RCSs at the
vertical-, horizontal-, and cross-polarizations for this model are as follows:

σ0
VV =

g
√

p
· cos3 θ · (ΓV(θ) + ΓH(θ)),

σ0
HH = g · √p · cos3 θ · (ΓV(θ) + ΓH(θ)),

σ0
HV = q · σ0

VV,

(46)

where ΓV(θ), ΓH(θ) are the Fresnel coefficients at vertical and horizontal polarizations;
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g = 0.7 ·
(

1 − exp
(
−0.65 · (k · σh)

1.8
))

,

p =
σ0

HH
σ0

VV
, q =

σ0
HV

σ0
VV

,

p =

(
1 −

(
2θ
π

)1/3Γ0

· exp(−k · σh)

)2

,

q = 0.23 ·
√

Γ0 · (1 − exp(−k · σh)), Γ0(0) =

∣∣∣∣∣
√ .

ε − 1√ .
ε + 1

∣∣∣∣∣
2

,

where
.
ε is the surface dielectric constant; θ is the angle of incidence.

For the initial data (real part of the dielectric constant ε = 4, conductivity of the
medium g = 0.1 S/m, wavelength λ = 0.03 m (frequency f = 10 GHz), and root mean
square of the roughness height σ2

h = 0.01), the following dependencies, in accordance with
the theoretical information given earlier, are obtained (Figure 23).
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3.4.3. Empirical Model of a Surface with Vegetation

An empirical model of the dependence of the specific RCS of a surface with vegetation
on the angle of incidence, operating frequency, radiation, and reception polarization—
which works well at angles of incidence from 0◦ to 60◦ and at frequencies of 1–18 GHz—was
proposed in [35] and has the following form:

σ0(dB) = a0 + a1ea2θ + (a3 + a4e−a5θ) · e−(a6−a7θ)f, (47)

where the coefficients a1 − a7 are determined by the radiation and reception polarization.
The values of these coefficients are presented in Table 4.

Table 4. Coefficient values in Formula (47).

Polarization a0 a1 a2 a3 a4 a5 a6 a7

HH 2.69 −5.35 0.014 −23.4 33.14 0.048 0.053 0.0051
VV 3.49 −5.35 0.014 −14.8 23.69 0.066 0.048 0.0028
HV 3.91 −5.35 0.013 −25.5 14.65 0.098 0.258 0.0021
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The big advantage of this model is its statistical validity, since Expression (47) is
derived from a large amount of data (obtained from the Skylab space station and ground
measurements).

A simpler empirical model for surfaces with vegetation was also proposed in [35]:

σ0(dB) = D + 10 · α · log f + 8.6 · β · fα − M · θ, (48)

where α = 0.8, β = 0.04, and D = −15.5, M = 0.1.

3.4.4. Dubois Empirical Model

The homogeneous surface model proposed by Dubois [36] agrees reasonably well with
ground measurements for fields without vegetation and performs poorly on sufficiently
vegetated fields. The second condition for the application of this model requires the
fulfillment of the σ0

VV ≥ σ0
HH ratio. The normalized radar cross-section of such a surface at

horizontal and vertical polarizations is described by the following expressions:

σ0
HH = 10−2.75 ·

(
(cosθ)1.5

(sinθ)5

)
· 100.028·ε·tgθ · (kσh sin θ)1.4 · λ0.7,

σ0
VV = 10−2.35 ·

(
(cosθ)3

(sinθ)3

)
· 100.046·ε·tgθ · (kσh sin θ)1.1 · λ0.7,

(49)

where σh is the root mean square height of the surface roughness; λ is the wavelength.
These relations are valid in the frequency range from 1.5 GHz to 11 GHz for surfaces with
root mean square of the roughness heights from 0.3 cm to 3 cm and for angles of incidence
θ = 30◦. . . 65◦.

For the initial data (real part of the dielectric constant ε = 4, wavelength λ = 0.06 m
(frequency f = 5 GHz), and root mean square of the roughness height σ2

h = 0.02) the
following dependencies, in accordance with the theoretical information given earlier, are
obtained (Figure 24).
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Figure 24. Dependences of the Dubois model’s normalized RCS on the sighting angle θ at horizontal
Σhh and vertical Σvv polarizations.

3.4.5. Model with Cylindrical Reflectors

According to this model, the surface can be described as a set of cylindrical reflectors,
and thus, the normalized radar cross-section at vertical and horizontal polarizations can be
represented as follows [29]:
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σ0
VV =

N · S2 · k2

4 · π
·
[
(ε1 − 1)2 + ε2

2
35

]
·

3 + 16
1+ε1

+ 96
(1+ε1)

2 + sin2 θ ·
[

12 + 8
1+ε1

− 64
(1+ε1)

2

]
3
5

(
dVV

k

)2
+ 4

5 (1 + 2 cos2 θ)
, (50)

σ0
HH =

N · S2 · k2

4 · π
·

[
1
35 (ε1 − 1)2 + ε2

2

]
·
[

3 + 16
1+ε1

+ 96
(1+ε1)

2

]
3
5

(
dHH

k

)2
+ 4

5 (1 + 2 cos2 θ)
, (51)

dVV = 3
8 · N · S · ε2 sec θ ·

{
1 + 12

(1+ε1)
2 + sec2 θ ·

[
1 − 4

(1+ε1)
2

]}
,

dHH = 3
8 · N · S · ε2 sec θ ·

{
1 + 12

(1+ε1)
2

}
,

ε = ε1 + jε2,

where N is the number of cylinders per unit surface area, S is the cross-sectional area, and
1/d is the depth at which the field strength of the incident wave decreases by a factor of e.

For the initial data (real part of the dielectric constant ε = 4, conductivity of the
medium g = 0.1 S/m, wavelength λ = 0.03 m (frequency f = 10 GHz), number of
cylinders per unit surface area N = 100, and cross-sectional area S = 0.001) the following
dependencies, in accordance with the theoretical information given earlier, are obtained
(Figure 25).
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3.4.6. Integral Equation Model

The integral equation method (IEM), introduced in [30], is often used as an extension
of the models that can determine the intensity of soil dispersion (without vegetation) at
large values of the root mean square of the roughness. In the backscattering from such
areas, single backscattering prevails over multiple backscattering in most cases. As a first
approximation, the normalized RCS in this model is defined as follows:

σ0
pp =

k2

2
exp

(
−2k2

zσ
2
h

) ∞

∑
n=1

σ2n
h

∣∣∣In
pp

∣∣∣2 Wn(−2kx, 0)
n!

, (52)

where
In
pp = (2kz)

n · fpp exp
(
−2k2

zσ
2
h

)
+

1
2
{

kn
z
[
Γpp(kx, 0)

]}
,

and where the pp-index describes the type of polarization of radiation and reception.

fVV =
2ΓVV

cos θ
, fHH =

2ΓHH

cos θ
,
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where ΓVV and ΓHH are the Fresnel coefficients for vertical and horizontal polarization,
respectively; kz = k cos θ, kx = k sin θ, and Wn are the n-th-degree Fourier transforms of
the surface autocorrelation function, which are equal to

Wn(k) =
∞∫

0

ρn(ξ)I0(kξ)dξ,

where I0 is a zero-order Bessel function.
For a small kσh ≪ 1, we obtain the first-order integral equation (n = 1), for which

σ0
HH = 8k4σ2

h

∣∣∣ΓHH(θ) cos2 θ
∣∣∣2W(−2kx, 0), (53)

σ0
VV = 8k4σ2

h

∣∣∣∣∣ΓVV(θ) cos2 θ+
sin2 θ[1 + ΓVV(θ)]

2

2

(
1 − 1

.
ε

)∣∣∣∣∣
2

W(−2kx, 0). (54)

At frequencies above 4 GHz,

ΓHH(θ) =

∣∣∣∣∣cos θ−
√ .

ε − sin2 θ

cos θ+
√ .

ε − sin2 θ

∣∣∣∣∣
2

,ΓVV(θ) =

∣∣∣∣∣
.
ε cos θ−

√ .
ε − sin2 θ

.
ε cos θ+

√ .
ε − sin2 θ

∣∣∣∣∣
2

.

In the frequency range of f < 4 GHz,

ΓHH(θ) ≈ ΓVV(θ) ≈ Γ0(0) =

∣∣∣∣∣
√ .

ε − 1√ .
ε + 1

∣∣∣∣∣
2

,

where Γ0(0) is the Fresnel coefficient when irradiating into the nadir.
For the initial data (real part of the dielectric constant ε = 4, conductivity of the

medium g = 0.1, wavelength λ = 0.06 m (frequency f = 5 GHz), root mean square of
the roughness height σ2

h = 10−5, and W(−2kx, 0) = 1), the following dependencies, in
accordance with the theoretical information given earlier, are obtained (Figure 26).
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horizontal Σhh and vertical Σvv polarizations at frequencies above 4 GHz.

For the initial data (real part of the dielectric constant ε = 4, conductivity of the
medium g = 0.1, wavelength λ = 0.3 m (frequency f = 1 GHz), root mean square of
the roughness height σ2

h = 10−4, and W(−2kx, 0) = 1), the following dependencies are
obtained (Figure 27).
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3.4.7. Model with Near-Surface Wind

According to this model, the backscattering cross-section is connected to the near-
surface wind speed as follows [37]:

σ0
k = α0kνγ0k + α1kνγ1k cosφ+ α2kνγ2k cos 2φ, (55)

where k = (VV, HH), ν is the wind speed [m/s], and φ is the angle in the opposite direction
of the wind vector [deg].

The best estimates of the constants in this expression are shown in Table 5.

Table 5. Constant values for the model.

k φ, deg α0 γ0 α1 γ1 α2 γ2

VV
30 8.4 × 10−4 1.85 5.3 × 10−5 1.76 3.3 × 10−4 1.95
40 1.3 × 10−4 2.15 3.5 × 10−5 2.03 6.4 × 10−5 2.27
50 4.2 × 10−4 2.34 1.6 × 10−5 2.22 2.0 × 10−5 2.46

HH
30 1.2 × 10−4 1.62 2.64 × 10−4 1.54 3.8 × 10−4 1.7
40 7.6 × 10−4 2.05 3.9 × 10−5 1.94 2.8 × 10−5 2.16
50 9.6 × 10−4 2.40 7.2 × 10−6 2.28 3.9 × 10−6 2.54

Based on the above-mentioned information, the following dependencies are obtained
(Figure 28).
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3.4.8. Shi’s Model Algorithm

The relations of normalized RCSs according to this algorithm are described by three
equations [38]:

σ0
pp =

∣∣αpp
∣∣2[ SR

app(θ) + bpp(θ)SR

]
,

10lg

[
|αVV|2 + |αHH|2

σ0
VV + σ0

HH

]
= aVH(θ) + bVH(θ)10lg

 |αVV||αHH|√
σ0

VVσ
0
HH

,

σ0
HH

σ0
VV

=
|αHH|2

|αVV|2
· exp[ar(θ) + k · (br(θ) + cr(θ)) · W],

(56)

where pp are the indices describing the type of polarization, SR = (kσh)
2W, and W are the

Fourier transforms of the spatial correlation function of the surface. All the coefficients
in these equations are functions of the angle of incidence θ only and are given in [38] in
polynomial form.

3.4.9. Empirical Model of Backscattering from Snow

In the millimeter range, backscattering from snow includes surface backscattering
from air–snow and snow–ground interfaces, as well as volumetric backscattering from ice
crystals in the snow layer [31,39]. The specific EPR of snow is determined by the following
factors: radar frequency, transmission and reception polarization, radar beam grazing
angle, and electrophysical and geometric characteristics of the snow cover.

The main snow parameter that determines the normalized RCS is its water equivalent,

W = ρSh,

where ρS is the snow density, and h is the height of the snow cover.
In general, the normalized RCS for snow can be described as in [31,39]:

σ0 = σ0
ss(λ, θ) + σ0

s
(
θ′
)
+

γ2
sa
(
θ′
)

L2(θ′) · σ0
soil
(
θ′
)
, (57)

where σ0
ss is the normalized RCS of the air–snow interface, σ0

s
(
θ′
)

is the normalized RCS
from the volumetric snow layer, γ2

sa
(
θ′
)

is the reactive power factor of the air–snow inter-
face, and σ0

soil

(
θ′
)

is the normalized RCS of the soil.
The angle θ′ can be defined through the angle θ in the following expression:

sin θ =
√

εs · sin θ′,

where εs is the dielectric constant of snow.

3.5. Model Selection Algorithm

Based on the analysis and processing of a large amount of information following
the proposed classification, an algorithm for surface model selection [6,46] was created
(Figure 29), and a software product prototype for selecting a surface model type was
created (Figure 30). Thus, the user will be able to select functional dependencies for
certain experiments or calculations based on known initial data (system type, operating
frequencies, and physical and geometric characteristics of the surface).
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At the first stage of the research, it is necessary to determine the initial conditions:
whether the researcher has information about the system parameters or the type of surface.
If the problem statement contains the system parameters and technical characteristics and
it is necessary to establish its capabilities (variants of the surfaces), the first algorithm
is recommended for use (Figure 29a). If the research goal is to study a specific type of
surface (its geometric and physical characteristics are at least partially known), a sec-
ond approach is used (Figure 29b), which allows us to select options for the research’s
technical implementation.

Next, you need to select the appropriate parameters of the system or surface and,
as a result, you will receive recommendations on how to use the surface model. Despite
its simplicity, this algorithm will simplify and speed up some stages of Earth’s surface
remote sensing.

Due to the fact that the field of remote sensing is rapidly evolving—new models
are appearing, existing ones are being improved, and various experimental studies are
being conducted—the information table and the proposed algorithm can be supplemented
and improved.

At this stage, the algorithm is implemented as software (written in Python), and no
study of the software’s reliability has been conducted. If the proposed algorithm is of
interest to specialists in surface remote sensing, further development of this work towards
the creation of software with the corresponding necessary research and analysis is possible.

4. Discussion

Nowadays, the task of measuring the parameters of various types of surfaces, the
Earth’s surfaces in particular, is very relevant, both from a scientific point of view and for
practical applications in agriculture, ecology, geology, and other fields. When preparing
and designing practical experiments and analyzing the results of modeling or specific
experiments, the interpretation task must be solved. Moreover, the accuracy and validity of
the results are determined by the relevance of the model that describes the studied surface
and relates the surface parameters to the signals that are recorded by the radio system.
Thus, the authors performed a thorough analysis of open sources regarding different types
of such models. This paper provides a comprehensive description and analysis of such



Computation 2024, 12, 104 31 of 33

models that can be used under different conditions to describe various types of surfaces:
earth surface, vegetated surface, sea surface, and others.

In addition, in this paper and on the basis of this material, an algorithm for selecting
the optimal option is proposed, which can and should undoubtedly be expanded when
dealing with new models of the relation of surface parameters to signals received by radio
engineering systems. As a further development, we can also consider refining the software
application prototype, improving the ergonomics and clarity of information perception.

It is clear that the diversity of our planet’s coverings is not limited to the types of
surfaces presented in this paper, e.g., there are phenomenological models, facet models, and
more. Also, there may be cases when the illuminated area of the observed surface contains
a diverse terrain. It should be noted that the result of the experiment largely depends on
the radio system’s resolution, but the task of achieving high resolution is a technical task
that requires separate solutions and approaches.

Thus, as numerous studies show, taking into account even the simplest dependencies
of received fields or their statistical characteristics with the surface structure and its elec-
trophysical parameters brings a lot of additional information. It gives an opportunity, by
recording radio and radio-thermal fields of different polarizations, to obtain information
about dielectric permittivity, conductivity, and surface geometric characteristics, allowing
us to determine the temperature, humidity, salinity, surface density, roughness height
profiles, and more.

Results achieved in the field of active and passive radar designs with optimal spatial
and temporal processing of registered electromagnetic fields and high resolutions allow us
to set inverse problems of high-precision estimations of surface parameters and their map-
ping using data of electrodynamic models and, to a great extent, stimulate the development
of new methods of solving direct electrodynamic problems in modeling more complex
surfaces and Earth’s real covers.

5. Conclusions

This paper presents a comparative analysis of the existing models for self-radiation
signals or signals reflected by a surface (with surface characteristics). On this basis, a
relation models’ classifier is proposed. For some of the most commonly used types of
surfaces, theoretical information and simulation results are presented, which demonstrate
the properties of the models. Following the proposed classification, an algorithm for
selecting a model based on known initial data is constructed, and a software product that
implements this algorithm is created. The obtained results are recommended for use in
planning practical experiments on Earth surface remote sensing, in interpreting the results
of such experiments, in modeling similar studies, as well as for educational purposes to
ensure a better understanding of theoretical material.
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