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Abstract: Coaxial magnetic gears have piqued the interest of researchers due to their numerous
benefits over mechanical gears. These include reduced noise and vibration, enhanced efficiency, lower
maintenance costs, and improved backdrivability. However, their adoption in industry has been
limited by drawbacks like lower torque density and slippage at high torque levels. This work presents
an analytical 2D model to compute the magnetic potential in Halbach array coaxial magnetic gears
for every rotational angle, geometry configuration, and magnet specifications. This model calculates
the induced torques and torque ripple in both rotors using the Maxwell Stress Tensor. The results
were confirmed through Finite Element Analysis (FEA). Unlike FEA, this analytical model directly
produces harmonics values, leading to faster computational times as it avoids torque calculations
at each time step. In a case study, a standard coaxial magnetic gear was compared to one with a
Halbach array, revealing a 14.3% improvement in torque density and a minor reduction in harmonics
that cause torque ripple. Additionally, a case study was conducted to examine slippage in both
standard and Halbach array gears during transient operations. The Halbach array coaxial magnetic
gear demonstrated a 13.5% lower transmission error than its standard counterpart.

Keywords: coaxial magnetic gear; Halbach array; analytical torque calculation; dynamical response;
slip effect; torque ripple

1. Introduction

Magnetic gears (MGs) possess significant advantages compared to mechanical gears
such as a lower level of noise and vibration, backdrivability, lower maintenance cost and
higher reliability [1] due to the absence of contact between the moving parts. Due to the
above advantages, MGs have been used in several power transmission applications such as
in aircraft mechanical transmissions [2–4], electric vehicles [5], wave energy conversion [6–8]
and space applications [9]. However, the lower torque density (typically one order of
magnitude [1]) of the MGs compared to mechanical gears and rare-earth materials scarcity
prevents the wide adoption of these drives in the industry. To overcome this issue, a
significant number of topologies of MGs have been proposed by researchers while the
modelling and optimization of MGs have been extensively discussed in the literature.

A promising topology for the increase in the torque density in MG drives is the coaxial
magnetic gear (CMG) arrangement proposed in 2001 by Atallah et al. [10]. CMG perfor-
mance can be further improved if the permanent magnets (PMs) are placed in a specific
arrangement called Halbach array [8,11–13]. Halbach arrays can create a strong magnetic
field [14] due to their inherent capability to generate a one-sided magnetic field [15]. The
Halbach array CMG (HAL-CMG) drive has a higher torque density, superior dynamical
response under load and good self-shielding magnetization [16–19]. However, these drives
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insert further parameters in the optimization process, making the problem of increasing
the torque density computationally intensive. Therefore, an analytical calculation of the
torque would significantly reduce the computational cost required to achieve optimal
torque density for a given configuration of the HAL-CMG drive and in general would facil-
itate the design of application-specific HAL-CMG drives. The magnetic field is calculated
analytically through a 2D model developed by Jian et al. [20] assuming equipotential iron
pole pieces. The induced torques in the inner and outer rotor of the CMG are calculated
from the Maxwell Stress Tensor [21–24]. Thus, the calculation of the dynamical response of
the CMG drive during transient operation of the CMG drive would require the calculation
of the induced torque in every time step, increasing significantly the computational cost.
Recently, a new methodology [25] developed by the authors proposed an analytical method
of calculating the torque in every angle of rotation of the CMG rotors. The methodology
for obtaining analytical solutions for the induced torques is similar to the case of axial
magnetic gears [26]. With the model developed in [25], the torque is calculated analytically
in only one position and through an analytical formulation, can be obtained in every other
angle of rotation. Therefore, the computational cost required for the calculation of the
dynamical response and the resulting slippage of the CMG drive during transient operation
is significantly reduced.

In the present study, a novel analytical 2D model for the calculation of the magnetic
potential of the HAL-CMG drive has been derived. The applied torque on the two ro-
tors and the torque ripple were calculated analytically using the Maxwell Stress Tensor.
Therefore, the dynamical response of the HAL-CMG drive can be determined with a single
torque calculation at a single position. A case study was performed for a four-pole-pair
inner rotor and a ten-pole-pair outer rotor in a standard CMG and an optimized HAL-CMG
with the same geometrical and parameters of the PMs. The stall torque and the amplitude
of the harmonics contributing to the torque ripple were calculated and compared for the
two drives. In addition, the obtained torques were verified with Finite Element Analysis
(FEA). The stall torque of the HAL-CMG was 14.3% higher than the standard CMG’s while
the amplitudes of the torque-contributing harmonics which generate torque ripple were
slightly reduced. Finally, a case study of transient operation was performed in order to
investigate the dynamical response of the two types of CMG drives and determine the
transmission error, which was found to be 13.5% lower for the HAL-CMG. Therefore, as
expected, with the use of HAL-CMG the stall torque is increased compared to the standard
CMG drive, while a better dynamical response is achieved during transient operation
without compromising the other operational characteristics.

2. Analytical Modelling
2.1. Magnetic Potential Calculation

The three components of the HAL-CMG are: the inner rotor, the outer rotor and the
flux modulator ring. As shown in Figure 1, r1, r2, r3, r4, r5, r6, rout are the radii of the inner
iron yoke, the inner PMs, the inner and the outer side of the modulator ring, the outer
PMs, the outer iron yoke and the external side of the HAL-CMG, respectively, while δ is
the angle of each ferromagnetic segment. The different colors of the PMs represent the
different orientations of the magnets.

The calculation of the scalar magnetic potential in standard CMGs has been developed
by Jian et al. [20]. In the present research, an analytical 2D model for the calculation of the
magnetic potential for the HAL-CMG is proposed. The magnetic field of the HAL-CMG is
obtained as a superposition of the magnetic fields generated by the PMs of the inner and
outer rotor separately. In order to obtain an analytical solution, infinite permeability of the
iron yokes and the ferromagnetic segments is assumed.
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Figure 1. Halbach array coaxial magnetic gear.

Figure 2, depicts a linear analogue of the HAL-CMG shown in Figure 1 with PMs only
on the inner rotor. Furthermore, αh, βh, γh, ψ are the PMs angles of the Halbach array.
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The governing equations for each region of Figure 2, are [20,25]:

∇2 φI(r, θ) =
divM

µr
, in Region I (1)

∇2 φI I,I I I(r, θ) = 0, in Regions I I, I I I (2)

∇2 φS(r, θ) = 0, in the slots (3)

where φ is the scalar magnetic potential for each region, and µr is the relative permeability
of the PMs.

The solution of Equation (2) for Regions I I, I I I is:

φI I(r, θ) =
∞

∑
n=1

[(
Enrn + Fnr−n)cos(nθ) +

(
Gnrn + Hnr−n)sin(nθ)

]
+ E0lnr + F0 (4)

φI I I(r, θ) =
∞

∑
n=1

[(
Inrn + Jnr−n)cos(nθ) +

(
Knrn + Lnr−n)sin(nθ)

]
+ I0lnr + J0 (5)
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In order to obtain the solution of Equation (1), the magnetization vector M of the
HAL-CMG has to be written in the form of Fourier Series as follows:

M = Mrr + Mθθ (6)

where Mr and Mθ are the radial and tangential components of magnetization, respectively,
presented in Figures 3 and 4, while r and θ are unit vectors.
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Where Bm is the residual magnetism of the PM, and αh, βh, γh, ψ are the PMs angles,
while p is the number of pole pairs of the Halbach array, as shown in Figure 2. The radial
magnetization, Mr, can be written as:

Mr(θ) =
∞

∑
k=1

akcos(kp(θ − θ0)) + bksin(kp(θ − θ0)) (7)

where θ0 is the angle of rotation of the inner rotor
The tangential magnetization, Mθ , can be written as:

Mθ(θ) =
∞

∑
k=1

dkcos(kp(θ − θ0)) + eksin(kp(θ − θ0)) (8)
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where the Fourier coefficients ak, bk, dk and ek are given as a function of αh, βh, γh, ψ in
Appendix A.

As a consequence, the special solution of Equation (1) will have the following form:

φs(r, θ) =
∞
∑

n=1
{Wn(r)[(akcos(nθ0)− bksin(nθ0) + dknsin(nθ0)

+ekncos(nθ0))cos(nθ) + (aksin(nθ0) + bkcos(nθ0)
−dk ncos (nθ0) + ek nsin (nθ0))sin (nθ)]}

(9)

where:

Wn(r) =


r

µr(1−n2)
, i f n = pk

rlnr
2µr

, i f n = pk = 1
0, i f n ̸= pk

(10)

and k = {1, 2, 3, . . .}.
Therefore, the general solution of Equation (1) is:

φI(r, θ) =
∞
∑

n=1
[(Anrn + Bnr−n + Wn(r)(akcos(nθ0)− bksin(nθ0)

+dk nsin(nθ0) + ek ncos (nθ0)))cos(nθ) + (Cnrn + Dnr−n + Wn(r)(aksin(nθ0) + bkcos(nθ0)
−dk ncos (nθ0) + ek nsin(nθ0)))sin(nθ)] + A0lnr + B0

(11)

The solution of the Equation (3) is:

φS
j (r, θ) =

φF
j+1 − φF

j

γ

(
θ − αj

)
+ φF

j +
∞

∑
n=1

[(
Xjnr

nπ
γ + Yjnr−

nπ
γ

)
sin

(
nπ

γ

(
θ − αj

))]
(12)

where φF
j is the magnetic potential of the jth ferromagnetic segment, γ is the central slot

angle and αj is the left angle of each ferromagnetic segment.
The unknown coefficients: An, Bn, Cn, Dn, En, Fn, Gn, Hn, In, Jn, Kn, Ln, A0, B0, E0, F0, I0,

J0, Xjn, Yjn, φF
j of Equations (4), (5), (11) and (12), can be determined from the following

boundary conditions [20,25].

1. The magnetic potential in the radii r1 and r6 should be zero (φI
r1
= 0, φI

r6
= 0).

2. The continuity of the magnetic potential and the continuity of the radial flux density
(derivative of the magnetic potential) between adjacent regions should be satisfied.

3. The flux flowing from the inside surface of the modulator ring should be equal to the
flux flowing to the outside surface of the modulator ring.

4. The flux flowing into the ferromagnetic segment should be equal to the flux flowing
out.

Therefore, from the boundary conditions, a system of linear equations is derived that
can be solved with the Gauss method, and consequently, the magnetic potential induced
by the inner rotor PMs can be calculated.

Similarly, the magnetic potential generated from the outer rotor PMs can be calculated.
As a consequence, the radial and tangential magnetic flux in the HAL-CMG (after the

superposition of the magnetic potentials induced by the PMs of the inner and outer rotor)
is:

Br = −µ0
∂φ

∂r
(13A)

Bθ = −µ0

r
∂φ

∂θ
(13B)



Computation 2024, 12, 88 6 of 12

2.2. Analytical Torque Calculation of HAL-CMG

Similarly to the standard CMG, the torque can be calculated analytically using the
Maxwell Stress Tensor [25]. Therefore, the torque at the two rotors can be calculated from
Equations (14) and (15).

Min(r2) =
∞

∑
k=1

ξ(2k−1)pin ,insin[(2k − 1)pinθin + (2k − 1)poutθout

]
(14)

Mout(r5) =
∞

∑
k=1

ξ(2k−1)pout ,outsin[(2k − 1)pinθin + (2k − 1)poutθout

]
(15)

where ξ(2k−1)pin ,in and ξ(2k−1)pout ,out are the amplitudes of the torque-contributing harmonic
terms in the inner and outer rotor, respectively, which can be calculated analytically from the
coefficients An, Bn, Cn, Dn, En, Fn, Gn, Hn, In, Jn, Kn, Ln, A0, B0, E0, F0, I0, J0, Xjn, Yjn
as shown in [25].

2.3. Dynamical System Equations

The system of HAL-CMG dynamical equations can be expressed as:

Iin
..
θin +

∞

∑
k=1

ξ(2k−1)pin ,insin[(2k − 1)pinθin + (2k − 1)poutθout] = Tin (16)

Iout
..
θout +

∞

∑
k=1

ξ(2k−1)pout ,outsin[(2k − 1)pinθin + (2k − 1)poutθout] = −Tout (17)

where Iin, Tin, Iout and Tout are the moments of inertia and the external applied torque at
the inner and outer rotors, respectively [25]. Since the aim of the dynamical response model
is to determine the slippage in the HAL-CMG and the maximum transmission error during
acceleration/deceleration, mechanical losses and friction are not considered in the present
study.

3. Results
3.1. Torque Calculation, Optimization of HAL-CMG and Comparison with Standard CMG

To illustrate the improvement in the torque density that is achieved with the use of
HAL-CMG drives, a case study was performed for a standard CMG and an HAL-CMG
drive with the same geometrical and constitutive parameters of the PMs, as is presented in
Table 1. The iron yokes and the modulator ring of the HAL-CMG are pure iron, while the
PMs are NdFeB (N52 grade).
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Table 1. Geometrical Parameters of the CMG.

pin 4

pout 10

r1 [mm] 80

r2 [mm] 100

r3 [mm] 105

r4 [mm] 125

r5 [mm] 130

r6 [mm] 150

rout [mm] 170

L [mm] 100

δ [deg] 15

Br [T] 1.44

Iin [kgm2] 0.1178

Iout [kgm2] 0.0904

The parameters of the Halbach array for the inner and outer rotor (described in
Figure 2) resulted from optimization of the stall torque and are presented in Table 2. The
optimization process did not require an advanced technique since with the proposed model,
the stall torque can be obtained analytically for any Halbach array arrangement in the two
rotors with a low computational cost. It should be noted that the optimal arrangement of
the outer rotor, in the performed case study, is the standard CMG, since the angles βh and
γh of the outer rotor are equal to zero.

Table 2. Parameters of the HAL-CMG drive.

Inner Rotor

αh [deg] 18

βh [deg] 9

γh [deg] 9

ψ [deg] 60

Outer Rotor

αh [deg] 18

βh [deg] −
γh [deg] −
ψ [deg] −

In Figure 5, the applied torque in the two rotors is presented for the two drives for the
case of fixed inner rotor and rotating outer rotor.
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Figure 5. Comparison of the torques applied on the inner and outer rotor in the standard and the
HAL-CMG.

It can be observed that there is a significant improvement in the torque density with
the use of HAL-CMG. More specifically, the stall torque of the HAL-CMG was 14.3% higher
than the standard CMG, which is coherent with experimental results [1].

In Figure 6, the induced torques in the two rotors of the HAL-CMG were verified with
FEA (ANSYS Maxwell). The adopted mesh type used in the FEA model is triangles with an
automatic meshing method that refines the mesh until convergence. A difference of 1–1.5%
was observed between the analytical and FEA model; however, the computational cost was
significantly lower. Therefore, with the developed analytical model an accurate and fast
calculation of the torque in the two rotors of the HAL-CMG is achieved. Furthermore, with
the developed model, the torque ripple generated from the torque-contributing harmonics
can be determined, a result that cannot immediately be obtained from FEA since only the
resulting torque is calculated (sum of the contributing harmonics). In order to calculate the
torque ripple from FEA, it is necessary to perform a Fourier transform. The process would
require additional computational time and several FEA simulations at different angles of
rotation, while with the analytical model, a single calculation is sufficient to determine the
torque ripple.
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The amplitudes of the torque-contributing harmonic terms of the two rotors are
presented in Table 3.

Table 3. Amplitude of contributing harmonics.

Amplitude of Inner Rotor Harmonic (Nm) Amplitude of Outer Rotor Harmonic (Nm)

Standard
CMG HAL-CMG Standard

CMG HAL-CMG

ξ4 333.81 381.89 ξ10 832.98 952.95

ξ12 1.25 1.09 ξ30 3.26 2.88

ξ20 0.02 0.001 ξ50 0.05 0.002

Due to the higher harmonics, torque ripple is observed in both drives. The torque
ripple of the HAL-CMG is 0.3%, which is slightly lower than the torque ripple observed
in the standard CMG drive. Therefore, with the use of HAL-CMG, the stall torque is
increased compared to the standard CMG drive without comprising the other operational
characteristics.

3.2. Dynamical Response of HAL-CMG Drive

The dynamical response of the HAL-CMG drive is determined from Equations (16)
and (17) [25]. In the performed case study a defined velocity profile of the inner rotor was
considered, as described in Table 4 and Figure 7. Furthermore, an external load (Tout) of
250 Nm was applied at the outer rotor.

Table 4. Inner rotor velocity for the performed case study.

Time [s] Velocity of Inner Rotor [rpm]

0 0

10 2500

45 2500

50 0
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The transmission error is obtained from the difference between the ideal (according to
the nominal gear ratio) and the real position of the outer rotor, as obtained from Equations
(16) and (17). The transmission error of the standard CMG and the HAL-CMG is compared
for the performed case study. For reasons of clarity, only the envelope of the transmission
error is presented in Figure 8.
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It can be observed that there is a significant decrease in the transmission error of the
HAL-CMG in comparison to the standard CMG drive, as the maximum of the transmission
error for the HAL-CMG is 13.5% lower, a result that can be attributed to the higher stall
torque of the HAL-CMG. Overall, the HAL-CMG drive has higher torque density and supe-
rior dynamical response in comparison to the standard CMG drive, which is in accordance
with other results in the literature [16–19].

4. Conclusions

In the present research, a novel analytical 2D model was developed for the calculation
of the magnetic potential of HAL-CMGs for every angle of rotation, geometry configuration
and magnet parameter. The applied torque in the two rotors was calculated analytically
using the Maxwell Stress Tensor. The induced torques in the two rotors of the HAL-CMG
were verified with FEA. A case study was performed for a standard CMG and an optimized
HAL-CMG with the same geometrical and constitutive parameters of the PMs. The stall
torque of the HAL-CMG was improved by 14.3%. In addition, the torque ripple with the use
of Halbach arrays was slightly reduced compared to the standard CMG. Finally, a case study
of transient operation was performed in order to investigate the dynamical response of the
two types of CMG drives and determine the transmission error. The transmission error of
the HAL-CMG was 13.5% lower than the standard CMG, a result that can be attributed to
its higher stall torque. Therefore, from the performed case study, it can be observed that
the HAL-CMG offers a significant increase in torque density, a better dynamical response
and a reduction in the transmission error, which is in accordance with other results in the
literature. The developed model could be a valuable design tool for the optimization and
the dynamical response calculation of HAL-CMGs, since the applied torque in the two
rotors can be calculated analytically, thus significantly reducing the computational cost.
Furthermore, the torque ripple of the HAL-CMG due to the torque-contributing harmonics
can be calculated analytically, a result that cannot immediately be obtained from FEA
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since a Fourier transform is required that would increase the computational cost and FEA
simulations.
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Nomenclature

µ0 magnetic permeability of free space [H/m]
µr relative magnetic permeability -
p number of pole pairs -
L width of the coaxial gear [m]
N number of ferromagnetic segments -
γ central slot angle [rad]
δ central ferromagnetic segment angle [deg]
Subscripts
in inner rotor
out outer rotor
r radial direction
θ tangential direction

Appendix A

The Fourier coefficients ak, bk, dk and ek for the calculation of the radial and tangential
magnetization are given as a function of the Halbach array parameters αh, βh, γh, ψ as
follows:

ak =
Bm

πµ0k [−sin(kpαh)− sinψ(sin(kp(αh + βh))− sin(kpαh))

+sinψ(sin(kp(αh + 2βh + γh))− sin(kp(αh + βh + γh))) + sin(kp(2αh + 2βh + γh))
− sin(kp(αh + 2βh + γh)) + sinψ(sin(kp(2αh + 3βh + γh))− sin(kp(2αh + 2βh + γh)))

−sinψ(sin(kp(2αh + 4βh + 2γh))− sin(kp(2αh + 3βh + 2γh)))]

bk = − Bm
πµ0k [−cos(kpαh)− cos(0)

−sinψ(cos(kp(αh + βh))− cos(kpαh)) + sinψ(cos(kp(αh + 2βh + γh))− cos(kp(αh + βh + γh)))
+cos(kp(2αh + 2βh + γh))− cos(kp(αh + 2βh + γh))

+sinψ(cos(kp(2αh + 3βh + γh))− cos(kp(2αh + 2βh + γh)))
−sinψ(cos(kp(2αh + 4βh + 2γh))− cos(kp(2αh + 3βh + 2γh)))]

dk =
Bm

πµ0k [cosψ(sin(kp(αh + βh))− sin(kpαh))

+sin(kp(αh + βh + γh))− sin(kp(αh + βh))
+cosψ(sin(kp(αh + 2βh + γh))− sin(kp(αh + βh + γh)))

−cosψ(sin(kp(2αh + 3βh + γh))− sin(kp(2αh + 2βh + γh)))− sin(kp(2αh + 3βh + 2γh))
−sin(kp(2αh + 3βh + γh))− cosψ(sin(kp(2αh + 4βh + 2γh))− sin(kp(2αh + 3βh + 2γh)))

ek = − Bm
πµ0k [cosψ(cos(kp(αh + βh))− cos(kpαh))

+cos(kp(αh + βh + γh))− cos(kp(αh + βh))
+cosψ(cos(kp(αh + 2βh + γh))− cos(kp(αh + βh + γh)))

−cosψ(cos(kp(2αh + 3βh + γh))− cos(kp(2αh + 2βh + γh)))
−cos(kp(2αh + 3βh + 2γh))− cos(kp(2αh + 3βh + γh))

−cosψ(cos(kp(2αh + 4βh + 2γh))− cos(kp(2αh + 3βh + 2γh)))
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