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Abstract: Thermally characterizing high-thermal conductivity materials is challenging, especially
considering high temperatures. However, the modeling of heat transfer processes requires specific
material information. The present study addresses an inverse approach to estimate the thermal
conductivity of SAE 1020 relative to temperature during an autogenous LASER Beam Welding (LBW)
experiment. The temperature profile during LBW is computed with the aid of an in-house CUDA-C
algorithm. Here, the governing three-dimensional heat diffusion equation is discretized through the
Finite Volume Method (FVM) and solved using the Successive Over-Relaxation (SOR) parallelized
iterative solver. With temperature information, one may employ a minimization procedure to assess
thermal properties or process parameters. In this work, the Quadrilateral Optimization Method
(QOM) is applied to perform estimations because it allows for the simultaneous optimization of
variables with no quantity restriction and renders the assessment of parameters in unsteady states
valid, thereby preventing the requirement for steady-state experiments. We extended QOM’s prior
applicability to account for more parameters concurrently. In Case I, the optimization of the three
parameters that compose the second-degree polynomial function model of thermal conductivity
is performed. In Case II, the heat distribution model’s gross heat rate (Ω) is also estimated in
addition to the previous parameters. Ω [W] quantifies the power the sample receives and is related
to the process’s efficiency. The method’s suitability for estimating the parameters was confirmed
by investigating the reduced sensitivity coefficients, while the method’s stability was corroborated
by performing the estimates with noisy data. There is a good agreement between the reference and
estimated values. Hence, this study introduces a proper methodology for estimating a temperature-
dependent thermal property and an LBW parameter. As the performance of the present algorithm
is increased using parallel computation, a pondered solution between estimation reliability and
computational cost is achieved.

Keywords: inverse heat conduction problem (IHCP); numerical estimation; thermal conductivity;
quadrilateral optimization method (QOM); simultaneous assessment; GPU processing; CUDA-C

1. Introduction

Mathematical modeling is an essential tool for enhancing industrial processes, both for
process control and product quality. Modeling heat transfer processes requires knowledge
of the process parameters, the environmental attributes to define the boundary conditions,
and the material characteristics, such as size, to define the domain and the thermophysical
properties to adequately describe the heat transfer. In addition, the use of temperature-
dependent properties substantially influences the validity of the simulation outcomes [1].
However, the materials properties are dictated by their chemical composition and the spatial
arrangement of their components. Thus, such properties usually oscillate, given small
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differences in composition [2]. This fact hinders cataloging the properties of all materials,
as new ones are being developed at different materials engineering branches [3–7].

There are direct approaches for attaining thermophysical properties. Besides consult-
ing data series such as the Thermophysical Properties of Matter (TPRC), one may also
measure such properties experimentally. Some thermal characterization methods consist of
the guarded hot plate (GHP) [8,9], the LASER flash method [10,11], and the comparative
fluxmetric method (CFM) [12]. However, precise material characterization usually involves
large amounts of unknown parameters, which may vary with the temperature gradient.
Also, the literature regarding low-temperature range and low-thermal conductivity materi-
als is vast, but most approaches entail materials in the solid state. Indeed, there is a gap
regarding metals at high temperatures, i.e., temperatures close to the melting point, because
the data acquirement may be hampered due to the interactions between the specimen and
its container, for example [13].

Then, inverse approaches are being extensively used to fill such a gap in obtaining the
data on thermophysical properties. In this case, the inverse heat transfer problems (IHTPs)
are applied to estimate unknown parameters of the thermal process, given temperature data
inside or on the surface of the domain. The temperature information may be retrieved from
numerical experiments, which determine the temperature based on a mathematical model,
or from laboratory experiments, which usually focus on measuring the temperature field in
specific points of a thermally excited sample [14,15]. Several areas of thermal engineering
benefit from the inverse technique. For example, one may cite the estimation of the
thermal conductivity of polymeric materials [16], the attainment of the unknown functional
form of a time-dependent heat transfer coefficient [17], and the estimation of the thermal
conductivity and volumetric heat capacity of living tissue using a recent noninvasive
measurement method [18]. In addition, there are IHTP applications in food science and
engineering for assessing process parameters, for example, the energy consumption during
baking [19] or temperature-dependent food properties such as moisture diffusivity [20].

Besides the previous examples regarding the attainment of parameters from exper-
imental or numerical temperatures, several different methods exist to optimize the pa-
rameters of interest. In [21], the authors acquired the numerical temperature of a metal
sample interacting with a LASER pulse through the commercial software ANSYS Flu-
ent ®. After validating the model with laboratory experiments, the authors applied the
Levenberg–Marquardt (LM) technique to optimize four LASER pulse parameters: the
power of the LASER pulse, the dimensionless shape parameter of the heat source distri-
bution, and the beginning and end times of its interaction with the sample. The inverse
algorithm was implemented by applying GNU Octave and ANSYS Fluent software pack-
ages. Another approach is to combine artificial intelligence with inverse heat conduction
problems. In [22], the authors propose a proportional-integral-derivative (PID) inverse
algorithm to perform the real-time estimation of the boundary heat flux in an unsteady
heat conduction problem. To address the lack of adaptive ability of the latter method, the
authors introduce the single neural adaptive PID (SNA-PID) [23]. Such a method is capable
of adaptively adjusting the weights of the PID parameters and is more robust regarding
signal interferences than the classical PID method. Both AI approaches comprise inverse
the estimate of boundary heat flux involved in a numerical experiment governed by a
one-dimensional transient heat diffusion equation, given the numerical data computed at a
single position. Bayesian techniques, namely Gauss–Newton minimization regarding the
maximum a posteriori objective function and the Markov chain Monte Carlo method appli-
cation in the simultaneous assessment of the thermal diffusivity and thermal conductivity
of a metallic sample were proved to be accurate [13]. Herein, the experimental setting based
on the front-face flash method with contactless transient flux measurements of thermally
excited metallic samples was modeled. The forward problem was solved through the Finite
Element Method (FEM) with the aid of COMSOL Multiphysics® 4.3b, while the inverse
problem analytical solution was implemented using MATLAB®. The Broydon–Fletcher–
Goldfarb–Shanno (BFGS) technique consists of the minimization of an error square function,
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given the difference between the numerical and experimental temperatures. The latter
approach could be successfully applied to attain the thermal profile from the estimated
heat rate during Gas Tungsten Arc Welding (GTAW) [24]. Afterward, the methodology
was applied to determine the cooling rate at the Fused Zone (FZ), Heat-Affected Zone
(HAZ), and Base Metal (BM). The authors implemented the direct and inverse models in
an authorial C++ software [25].

The main limitation of the previously reviewed works lies in properly optimizing the
solution of inverse heat transfer problems by driving the forward model through an efficient
optimization tool. Therefore, the present study showcases the application of a methodology
developed to estimate a temperature-dependent thermal property by carefully balancing
the solution between estimation reliability and computational cost, thereby addressing the
gap in the literature. The applied multivariable optimization technique is the Quadrilateral
Optimization Method (QOM) previously proposed by Magalhães [26], which enables the
estimation of temperature-dependent thermal properties described by math functions. This
inverse method was specifically developed to determine material thermal properties at
elevated temperatures. A key advantage of the QOM is its ability to estimate parameters in
unsteady states, eliminating the need for steady-state experiments. In the present work,
the QOM functionality was extended to enable the simultaneous estimation of a higher
number of parameters. The extension also allows for estimating different quantities other
than thermal properties.

In this work, the QOM is applied to acquire the nonlinear thermal conductivity of
an SAE 1020 sample and the heat input provided by the LASER during a LASER Beam
Welding (LBW) process. The solution to the forward problem described in Section 2.1
is achieved using an in-house CUDA-C algorithm to attain the reference temperature
evolution during 2.0 s of experiment. Here, the three-dimensional heat diffusion equation
is discretized through the Finite Volume Method (FVM), and the thermal conductivity
function used to model the property evolution with temperature presents a second-degree
polynomial form. With possession of the temperature data, the QOM is applied to minimize
an objective function, considering different combinations of the parameters of interest. Two
cases are studied. In Case I, we optimize the three parameters that compose the thermal
conductivity function. In Case II, we optimize the gross heat rate provided by the LASER,
along with the thermal conductivity. Implementing the method in a parallelized structure
allows the computations to be performed at an acceptable time, reducing computational
costs compared to those of sequential approaches. Further information about the inverse
technique and details about its application in the estimation of thermal conductivity are
given in Sections 2.2 and 2.3. Once the numerical data used as reference are noiseless,
the study of the method’s suitability for estimating the parameters given noisy data is
delineated in Section 2.4. Section 3 describes the methods used in the sensitivity analysis
and discusses the results of the reduced coefficients. The study of the sensitivity allows
for the calibration of the number of time steps that regularize the objective function. Both
accuracy and computational time are pondered to attain the optimal time steps. Such
investigation is explained in Section 4. Afterward, we discuss in Section 5 the method’s
stability introduced in Section 2.4. After assuring the method is qualified to perform the
estimations, the estimation results and the comparison between the numerical temperatures
computed given reference and estimated parameters are presented in Section 6.

2. Materials and Methods
2.1. The Forward Model

The assessment of temperature-dependent thermal conductivity is an ill-posed inverse
problem. In this instance, the baseline for the estimates is the temperature field during the
LASER beam welding of steel SAE 1020. The nonlinear three-dimensional heat diffusion
equation may describe the transient heat transfer during the process as follows:
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where x, y, and z are the cartesian coordinates, λ(T) is the nonlinear thermal conductivity, T
is the temperature, ġ is the generated heat source, H is the nonlinear enthalpy function, and
t is the time. H is used to model the phase change and may be expressed as follows:

H = (1 − f )
∫ Tm

0
ρcp,sdT + f

∫ T

Tm
ρcp,ldT + ρ f L (2)

where f is the fraction of solid, defined by the Heaviside step function; Tm is the melting
temperature; ρ is the specific mass; cp,s and cp,l are the nonlinear specific heat of the solid
and liquid material, respectively; and L is the fusion latent heat.

The heat source assumes a Gaussian distribution above the sample surface. However,
the barrier effect suffered by the LASER beam decreases the heat flux distribution as the
penetration increases up to the coordinate h. In this case, the volumetric generated heat
distribution (ġ) may be written as follows:

.
g =

Ω

0.46hR2 e−
4.5(x−ut)2

R2 e−
4.5(y−L/2)2

R2

(
1 − z1/2

h1/2

)
(3)

where Ω (=1000 W) is the gross heat rate; R (=0.50 mm) is the weld bead radius; u (=0.05 m/s)
is the welding velocity; L (=40.00 mm) is the sample width (along the y-axis); and x, y, and z
are the coordinates in the respective Cartesian axis. Such values are defined by calibrating
the experimental configuration so the simulated and the experimentally observed weld bead
geometry match [27].

The model considers boundary conditions of convection and radiation at the sample
surfaces, described by the following:

−λ
∂T
∂n

∣∣∣∣
U
= h(T)(T − T∞) + σε(T)(T4 − T4

∞) (4)

where n is the normal direction on the domain boundaries, h(T) is the convection heat trans-
fer function, T∞ (=20 ◦C) is the environment temperature, and σ is the Stefan–Boltzmann
constant. The inferior surface of the specimen had its convection coefficient calculated
through the empirical correlations of a heated inverted horizontal flat plate [28]. In the side
surfaces, the correlation for a vertical flat plate was used [29]. Lastly, the free jet model for
forced convection was applied to the top surface [29].

An in-house algorithm written in CUDA-C language solves Equation (1) by discretiz-
ing it through the Finite Volume Method (FVM) to achieve the temperature profile during
LBW. The equation is applied over the domain depicted in Figure 1. The point P0 (0,0,0)
represents the origin of the domain. The heat source is pointed at P1 (5,10,0) at the begin-
ning of the experiment and moves 30 mm along the x-axis until point P2 (35,10,0). The
dotted lines stand for the sample centerline, which coincides with the joint centerline. In
addition, the blue and red arrows are placed in the specimen’s surfaces subjected to heat
loss by natural and forced convection, sequentially, as specified after Equation (4). Here,
the heat loss in the posterior surface is omitted for the sake of clarity.

As shown in Equations (1) and (4), the thermophysical properties of the material
are required to compute the temperature of the sample. Such inputs are temperature-
dependent and accounted for as temperature functions with specific behavior. Regarding
SAE 1020, the reference thermal conductivity data represented by the blue dots Figure 2.
were retrieved from Clain et al. [30]. They may be modeled as a second-degree polynomial
function of temperature, depicted as the orange dashed line, which is mathematically
represented as λ(T) = 2.5 × 10−5T2 − 5.3 × 10−2T + 57.2. The maximum error between
the reference information and the polynomial fitting is less than 4.5%, despite the outlier at
circa 780 ◦C. Indeed, the steel presents an allotropic transformation near this temperature.
In this model, the authors chose not to model such behavior with no prejudice toward the
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predicted temperature field for the sake of algorithm simplification and computational
time savings.
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Figure 2. Polynomial fitting of the nonlinear thermal conductivity function for SAE 1020.

A uniform orthogonal structured mesh with 225,000 total nodes (100 × 50 × 45 nodes, at x,
y, and z, respectively) was applied in the solution of the forward model. The Finite Volume
Method (FVM) system of equations was solved using the Successive Over-Relaxation (SOR)
parallelized iterative solver. An energy residual convergence criterion was applied to all
cases, and the threshold was set to 1.0 × 10−5. The applied simulation parameters are
presented in Table 1.
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Table 1. Simulation parameters.

Parameter Values

Temporal discretization First-order scheme
Time-step (∆t) [s] 1.0 × 10−3

Solver convergence criterion Energy residual
Residual threshold 1.0 × 10−5

Solving the forward model through the in-house CUDA-C algorithm allows for the
obtainment of the temperature profile shown in Figure 3. Each curve stands for the
temperature evolution at a different point of the sample surface. The algorithm runs for
an experiment period of 2.0 s, divided into 1.0 millisecond time steps. The thermocouples
are placed at the same sample surface where the heat is applied (plane xy). The spots of
temperature acquisition are exhibited in Table 2.
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Table 2. Thermocouple positioning.

Sensor m1 m2 m3 m4 m5 m6 m7 m8 m9

x (mm) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
y (mm) 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0
z (mm) 0 0 0 0 0 0 0 0 0

The forward model applied in this work underwent a rigorous verification process [31]
to assess the quality of the resulting temperature fields. The verification steps involved
investigations regarding the accuracy, computational performance, energy consumption,
cost efficiency, and code memory optimization of the in-house CUDA-C code.

2.2. The Inverse Problem

The QOM developed by Magalhães [26] is an optimization method that allows for the
assessment of more than one variable concurrently by minimizing an objective function
(F) given by the sum of squares of the difference between the simulated (T’) and reference



Computation 2024, 12, 92 7 of 19

(T) temperatures. Moreover, F is minimized in a future time step rather than the present
one to increase F sensitivity through the Future Time Regularization (FTR) [32]. This
regularization technique expands the Function Specification Method developed by Beck
et al. [33]. Thus, the regularized objective function may be described by the following:

F =
r

∑
p=0

N

∑
m=1

(T′
m,p − Tm,p)

2 (5)

where r is the number of time steps adopted, p is related to the time step position, N is the
total number of thermocouples, and m is the thermocouple number.

Here, T is the numerical temperature computed using reference values of the assessed
parameters, and T’ is the numerical temperature calculated using algorithm guesses, i.e.,
possible values of the parameters of interest. To define the values of each guess, the method
divides a specified domain into 3κ equally distributed points, where κ is the number of
parameters being assessed. Such a domain is addressed as the search domain and comprises
all the possible linear combinations between the parameters, being limited by the maximum
and minimum values each estimated parameter may assume. Then, the objective function
is evaluated for each guess. The closer the assessed parameters are to the reference values,
the closer T’ is to T, and, consequently, the objective function is lower. Therefore, the
evaluation of F supports the definition of the pivot point Gp, being the guess that presents
the minor objective function. A new set of 3κ guesses is distributed around the pivot point,
following pre-defined convergence criteria, which decreases the domain at each interaction.
The convergence process continues until the maximum number of interactions is reached.
All the calculations are performed in an in-house CUDA-C code. In this case, the QOM
algorithm proceeding may be summarized as follows:

1. Initialize the number of variables (κ), convergence rate (τ), search domain bounds,
maximum number of interactions, and number of time steps of the FTR;

2. First division: evaluate the search domain bounds to define the initial guess vector G
of equally spaced guesses within the domain;

3. Settling the pivot point Gp: evaluate the objective function for each guess. The guess
that presents the minimum F is defined as Gp;

4. Redistribution: evaluate τ and Gp to redefine G with guesses equally far from Gp.
5. Convergence: repeat steps 3 and 4 to decrease the domain at each interaction until the

maximum number of interactions is reached.

The size of the initial domain division mentioned in step 2 may be determined for the
general parameter ξ as follows:

∆ξ =
ξ1 − ξ0

4
(6)

where the subscripts 0 and 1 represent the minimum and maximum value the parameter ξ
may assume, i.e., the search domain bounds.

As previously stated, the subsequent divisions of the domain are related to the pivot
point instead of the upper and lower bounds as described in Equation (6). for the first
division. In this instance, the size of the domain division (∆ξ) decreases at each interaction
by a factor c, given by the following:

cj =
j

Π(1 − τ)κ−1 (7)

where j is the counter for the interactions.
The convergence process continues until the maximum number of interactions is

reached. At this point, the algorithm returns the combination of parameters of interest
that present the lesser F, being the closest to the real values, as the difference between the
temperature computed using such parameters (T’) and the reference temperature (T) is the
minimum. An algorithm scheme is presented in Figure 4 for illustrative purposes.
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2.3. QOM Applied to the Thermal Conductivity Estimate

Initially, the Quadrilateral Optimization Method is applied to simultaneously define
the coefficients of the nonlinear thermal conductivity function of SAE 1020 (Case I). Then,
the gross heat rate Ω used in the calculus of the heat distribution described in Equation (3) is
estimated along with the nonlinear thermal conductivity function (Case II). To estimate the
thermal conductivity using the heat transfer model described in Section 2.1, it is necessary
to define all the parameters of the function that describes the nonlinear thermal conductivity.
The reference thermal conductivity for SAE 1020 portrayed in Figure 2 may be represented
by Equation (8).

λ(T) = 2.5 × 10−5T2 − 5.3 × 10−2T + 57.2 (8)

Equation (9) shows the general form of λ(T), where the coefficients of the second-
degree polynomial function (α, β, and γ) are real numbers that vary according to the sample
composition. Hence, for the steel SAE 1020, the goal values the method should find for
Equation (9) parameters α, β, and γ are 2.5×10−5, −5.3×10−2, and 57.2, respectively.

λ(T) = αT2 − βT + γ (9)

Moreover, the estimation of the gross heat rate (Ω) along with the thermal conductivity
function parameters requires the expansion of the algorithm so it minimizes all parameters
concurrently. Such a parameter is constant (=1000 W), with no need for a function to
model its behavior. In such a condition, four variables must be minimized at the same
time. Regarding Ω, the goal value of 1000 W is obtained by the calibration of the forward
model once it corresponds to the heat absorbed by the sample, given in Watts. Table 3
shows the definition of the search domain for estimating the thermal conductivity function
parameters and the gross heat rate and summarizes the reference values. Besides defining
the search domain, the method requires the convergence rate and maximum number of
interactions. This work adopts τ = 0.5 and 16 interactions.

Table 3. Conductivity function parameters and gross heat rate search domain.

Variable Lower Bound Upper Bound Reference

α 2.0 × 10−5 3.0 × 10−5 2.5 × 10−5

β −6.0 × 10−2 −5.0 × 10−2 −5.3 × 10−2

γ 40 80 57.2
Ω 500 1500 1000

In the search domain for Case I, the thermal conductivity function is within the three-
dimensional plane defined by α, β, and γ, limited by the upper and lower bounds for each
parameter. Hence, κ = 3, as there are three parameters of interest. For Case II, κ = 4 (α, β,
γ, and Ω). For better clarification, we elucidate the search domain for Case I. In Figure 5,
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the edges defined by α, β, and γ are represented in red, blue, and green, respectively. For
instance, point A coordinates are (α1, β1, and γ1), which correspond to (3.0 × 10−5, −5.0 ×
10−2, 80), according to Table 3. The gray dotted lines show the initial division of the domain
into 43 equal cuboids. The divisions within the domain are omitted for better delineation.
The inner cuboids dimensions are calculated by Equation (6).
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The guess vector G is defined by the divisions of the search domain, which correspond
to specific combinations of α, β, and γ. When estimating three variables, each G is composed
of 27 guesses, defined by the coordinates of the inner vertexes of the domain division. When
estimating four parameters, 81 guesses are needed to account for the linear combinations
between the parameters.

2.4. Input Data with Added Noise

The theory of linear propagation of uncertainty was applied in this work to extend the
investigation and address the capabilities of the QOM when the input data contains added
uncertainties and noise. Applying the theory of linear propagation of uncertainty results
in [26]

U2 = U2
S′ + U2

T + U2
QOM (10)

where U is the global uncertainty, US’ is the uncertainty associated with experimental
sensors, UT is the numerical thermal model uncertainty, and UQOM is the uncertainty
related to the QOM approach. The US’ uncertainty term encompasses the temperature
sensor positioning and the data acquisition system errors, as well as the thermal contact
resistances involved in the measurements. The UT uncertainty includes the FVM, the
solver truncation, and the numerical (rounding) errors. The UQOM term comprises the
FTR uncertainty.

3. Sensitivity Analysis

In parameter estimation, it is necessary to investigate how expressive the parameter
being assessed is for the calculated results. This investigation allows the verification of
the method’s suitability for estimating such a parameter. The output from the forward
model presented in Section 2.1 is the temperature profile during autogenous LBW. In light
of this, this work evaluates the significance of temperature variation given a disturbance
in the parameters α, β, γ, and Ω by analyzing the evolution of the sensitivity coefficients
with time. The sensitivity coefficients may be obtained through the partial derivative of the
temperature with respect to a specified parameter [34]. However, the unknown parameters may
differ regarding the units or magnitude order. Hence, in order to standardize the coefficients, the
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reduced sensitivity coefficient (S) may be obtained by Equation (11), considering the assessment
of the generic parameter X. In this instance, S is given in degrees Celsius.

S = X
∂T
∂X

(11)

Equation (11) represents the effect of the parameter X over the temperature, consider-
ing the temperature is acquired in one location. However, the direct model computes the
temperature in the nine spots introduced in Table 2. Such configuration may be accounted
for by summing the coefficients for every sensor as follows:

Sn =
N

∑
n=1

X
∂T
∂X

(12)

where Sn is the sensitivity coefficient for N sensors, and N is the number of thermocouples.
In this case, N = 9.

We consider the significance of the temperature variation, given a 1% deviation in
the model parameters, obtained by the central derivative of Equation (12), described by
Equation (13).

Sn =
N

∑
n=1

X
T
(
X + X × 10−2)− T

(
X − X × 10−2)

2X × 10−2 (13)

3.1. Sensitivity of the Thermal Conductivity Function Parameters (α, β, and γ)

The significance of the temperature variation given a 1% disturbance in parameters α,
β, and γ from the thermal conductivity function described in Equation (9) are portrayed
in Figure 6. For all the parameters, the reduced sensitivity coefficient is equal or close
to 0 from the beginning of the experiment until circa 0.200 s. The null values occur be-
cause there is no significant temperature variation during this period, so T = T∞ = 20 ◦C
despite the parameters variations. After the constant period, Sn assumes positive values
for about 0.1 s before dropping significantly. It corresponds to the pre-heating when the
sample is subjected to a slight heat loss by convection, given the low temperature of the
shielding gas jet. The sample temperature at all the considered spots should be greater than
20 ◦C when the coefficients start decreasing, assuming negative values from circa
0.400 s. Besides this behavior, every parameter investigated exerts significant influence on
the temperature computed during the experiment, given the magnitudes of Sn. The most
significant Sn values for α, β, and γ are −23.88, −51.75, and −86.02, respectively. Such
values are found from 0.540 to 0.640 s. Therefore, the method is sensitive enough to assess
the thermal conductivity function parameters, considering the temperature acquired by the
nine sensors at the positions determined in Table 2.
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3.2. Sensitivity of the Gross Heat Rate (Ω)

Figure 7 shows the evolution of the reduced sensitivity coefficient with the time for
the gross heat rate. The parameter Ω exerts no influence on the temperature for the initial
0.300 s, corresponding to the period where the temperature difference is irrelevant. After
that, the temperature variation given Ω increases at an enhanced rate for circa 0.1 s, and
then the rate decreases. As previously stated, this time corresponds to the sample cooling
by the action of the shielding gas, enhancing the heat transfer due to a more significant
thermal gradient between the sample once its temperature is lower than 20 ◦C. When the
sample temperature exceeds room temperature, the thermal gradient decreases, and so
does the efficiency of the heat source. The most significant Sn for the gross heat rate is
111.7 ◦C, found at 0.573 s. The coefficients presented considerable values until the experi-
ment ended.
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4. Future Time Regularization (FTR) Analysis

The objective function sensitivity is enhanced by the FTR, so F is calculated as described
in Equation (5). Here, one may not calibrate the reference temperature T, which is constant
in time and location, nor the numerical temperature T’, once the values result from the
guesses automatically defined by the code. In this circumstance, one may attain more exact
estimates by adjusting the number of time steps r or the number of thermocouples N or
both. In order to evaluate the effect of different r on the assessments, this work considers
the N constant (=9) once the Sn calculated using this thermocouple configuration presents
acceptable values, as shown in Figures 6 and 7.

Therefore, different numbers of time steps were applied to perform the estimates
using the QOM. Here, the investigation of the relationships between r, the assessments
accuracy, and the computational time required aims to attain the optimum number of
time steps that should be considered for the parameter calculations. Considering the Sn
calculated for α, β, γ, and Ω, it is possible to affirm the need for a considerable temperature
variation so the method is sensitive enough to perform the estimates. In this case, the
time considered for the calculations should be greater than the initial period where the
temperature is comparable to 20 ◦C. The temperature profile depicted in Figure 3 implies
that the temperature surpasses 20 ◦C close to 0.300 s. In order to determine the exact point
in time where T > 20 ◦C for all the sensors, it is necessary to define such a point for the
sensor placed farther away from the heat source. If the temperature at this point is greater
than 20 ◦C during heating, the temperature at the other considered locations will also
exceed 20 ◦C. Hence, Figure 8 shows the temperature profile for sensor m9 from 0 to 0.4 s.
Here, the temperatures for the sensors m1 to m8 are omitted because the thermocouple m9
is farther from the heat source than the other sensors. The intersection between the dashed
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lines delimits the point in time from which the temperature assumes values greater than
20 ◦C. Therefore, more than 0.308 s should be used for the estimates. Moreover, it is possible
to observe that the cooling caused by the shielding gas is less than 0.01 ◦C at this point.
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The time and time step size ratio gives the number of time steps r. As the temperature
is calculated at points 0.001 s from each other, r is given by the following:

r =
t

0.001
(14)

So, to consider times over 0.308 s, one should apply r bigger than 308 to compute the
objective function. Figure 9 highlights the Sn evolution for α, β, and γ from 0.3 to 0.6 s to
guarantee the period Sn assumes considerable values. One may notice that the coefficients
for all the parameters are unsuitable for the estimations at 0.308 s remaining close to 0 up
to 0.350 s. To ensure that Sn is greater than the possible noise in the temperature data, we
consider an absolute Sn of at least 5 ◦C appropriate. The α and β Sn are comparable to
−5 ◦C at 0.410 s. However, the γ Sn passes such a value at 0.443 s. As all the parameters
are appraised simultaneously, the lesser appropriate r is 443.
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In light of this, r values ranging from 450 to 900 were considered. The estimates
obtained using the QOM, the reference values, and the error percentages are shown in
Table 4. Also, the last column of the table refers to the objective function F obtained given
the respective combination of α, β, and γ pondered by r. Such an assumption allows for
the comparison of the data, disregarding the number of points summed. If the accuracy
for each parameter was considered independently, the best r configuration would be 900
for α, 550 for β, and 800 or 850 for γ. However, by observing F, it is possible to obtain the
combination of α, β, and γ, for which the computed temperature is closer to the reference
temperature. As all the parameters are assessed simultaneously, r = 450 should be applied.

Table 4. Effect of the number of time steps in the estimates results.

α β γ

F
Reference 2.50 × 10−5 −5.30 × 10−2 57.20

Value
(×10−5)

Error
(%)

Value
(×10−2)

Error
(%) Value Error

(%)

r = 450 2.54 −1.7 −5.62 −6.1 59.9 −4.7 0.69
r = 500 2.54 −1.7 −5.62 −6.1 59.9 −4.8 1.16
r = 550 2.54 −1.7 −5.61 −5.9 59.7 −4.4 2.06
r = 600 2.54 −1.7 −5.65 −6.5 59.9 −4.7 5.35
r = 650 2.54 −1.7 −5.66 −6.8 59.9 −4.7 9.49
r = 700 2.54 −1.7 −5.65 −6.5 59.7 −4.3 11.22
r = 750 2.54 −1.7 −5.65 −6.5 59.6 −4.3 13.31
r = 800 2.54 −1.7 −5.65 −6.5 59.6 −4.2 14.85
r = 850 2.54 −1.7 −5.65 −6.5 59.6 −4.2 16.00
r = 900 2.51 −0.4 −5.65 −6.5 59.7 −4.4 23.50

In addition, the relationship between the computational time (t) required to perform
the estimates and r is portrayed in Figure 10. In this period, the algorithm computes
432 times the direct model, given different combinations of α, β, and γ, and compares
the results with the reference temperature to minimize the objective function, which is
also calculated 432 times. Observing a linear proportion between the computational
time required for the estimates and r is possible. The time varies because more or less
temperature data are considered in the estimates. The dashed line stands for the linear
trendline of the relationship between r and the time, described by Equation (15), with an
R2 of 0.9994. The computational time ranges from 2760 to 5820 ± 60 s. Thus, one should
choose 450 r to estimate the thermal conductivity function parameters, as the estimates
accuracy and computational time are satisfactory.

t = 6.8436r − 365.4545 (15)
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Moreover, it is also possible to use r = 450 for Case II, given the expressive Sn for Ω
until 0.450 s. The initial evolution of Sn with time is highlighted in Figure 11 for 0.300 to
0.450 s. The Sn exceeds 5 ◦C at 0.387 s, increasing to 83.6 ◦C at 0.450 s.
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5. Effect of Measurement Errors on the Estimated Results

Acquiring the temperature field using a numerical model implies no noise, measure-
ment errors, or uncertainties once the computations are exact. However, experimental data
could be used as a baseline for estimating materials thermal properties through the QOM,
and possible temperature measurement errors may be enhanced in the estimation result,
resulting in the method’s instability [23]. In this case, evaluating if the algorithm would
return comparable results for noisy data is necessary. Hence, the QOM was applied to
assess the parameters α, β, γ, and Ω given a disturbed temperature profile, as described in
Section 2.4. The noise was added to the reference temperature profile (Figure 3) to verify if
the method would return comparable results. A standard deviation of 10% was considered.

MATLAB® was used to add normalized random errors to the reference temperature.
Such data were implemented in the algorithm as the reference temperature, considering
the optimum r of 450. The results obtained by the QOM are shown in Table 5 for Cases I
and II, as well as the error percentages for each parameter. One may notice that the errors
remained lower than the imposed standard deviation for every parameter. Regarding Case
I, there is a remarkable similarity between the values estimated with noisy data (Table 5)
and the reference temperature (Table 4). This fact corroborates that the method is robust
enough to perform the estimates, even if there is noise in the input data.

Table 5. Estimated parameters and errors associated with noisy data.

Parameter α β γ Ω

Goal value 2.50 × 10−5 −5.30 × 10−2 57.20 1000

Case I
QOM result 2.54 × 10−5 −5.62 × 10−2 59.9 --

Error (%) 1.7 6.1 4.7 --

Case II
QOM result 2.50 × 10−5 −5.44 × 10−2 62.2 1071

Error (%) 0.0 2.7 8.8 7.1

6. Estimation Results

The estimations were performed by implementing the starting conditions described in
Table 6. The results are presented in Sections 6.1 and 6.2 for Cases I and II, respectively.
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Table 6. QOM algorithm parameters used in the estimations.

Parameter
Value

Case I Case II

κ 3 4
Points in G 27 81

τ 0.5 0.5
Search domain bounds See Table 3.
Maximum number of

interactions 16 16

r 450 450

6.1. Case I: Nonlinear Thermal Conductivity Function

The estimated thermal conductivity in function of the temperature may be expressed
as follows:

λ(T) = 2.5 × 10−5T2 − 5.6 × 10−2T + 59.9 (16)

Note that such values for the parameters α, β, and γ were obtained when applying
the optimal r configuration discussed in Section 4. When implementing Equation (16)
in the direct model, the calculated temperature presents no significant deviations from
the reference temperature during the experiment period at all thermocouples. Figure 12
shows good agreement between the data. In this matter, the numerical temperature profiles
computed with the reference nonlinear thermal conductivity are represented by the solid
lines, while the dotted lines depict the numerical temperature profiles acquired using the
estimated nonlinear thermal conductivity function.
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Figure 12. Comparison between the numerical temperature profiles computed using the reference
and the estimated nonlinear thermal conductivity function (Case I).

The relative error further analyzes the corroboration for the good agreement between
the temperature. Table 7 describes the maximum deviation in percentages between the
temperatures calculated when implementing Equations (8) and (16). It is possible to notice
that the deviation is homogeneous for all the temperature acquisition spots, with an average
of 2.46%.
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Table 7. Most expressive deviations between the numerical temperature profiles computed using the
reference and the estimated λ(T) in terms of percent error.

Sensor m1 m2 m3 m4 m5 m6 m7 m8 m9

Error (%) 2.19 2.78 2.88 2.84 2.74 2.46 2.29 2.00 1.97

6.2. Case II: Nonlinear Thermal Conductivity Function and Gross Heat Rate

The results obtained using the QOM to assess α, β, γ, and Ω and their respective error
percentages are shown in Table 8.

Table 8. Results attained for Case II applying 450 r.

Reference
α β γ Ω

2.50 × 10−5 −5.30 × 10−2 57.20 1000

Value
(×10−5) Error (%) Value

(×10−2) Error (%) Value Error (%) Value Error (%)

r = 450 2.57 2.8 −5.56 4.97 57.7 1.0 1071 7.1

Hence, the nonlinear thermal conductivity may be approximated by the following:

λ(T) = 2.6 × 10−5T2 − 5.6 × 10−2T + 57.8 (17)

The dotted lines of Figure 13 represent the temperatures calculated using Equation (17)
and Ω = 1071 W. It is possible to observe that the temperatures computed with the estimated
thermal conductivity slightly overestimate the reference temperatures (solid lines). This
tendency is found because the gross heat rate is 71 W greater than the reference value,
so more heat is being provided to the sample, increasing its temperature. Regarding the
peak temperatures, the more significant deviation is found at sensor m4, corresponding
to less than 5% of the reference temperature. Hence, the estimated values of α, β, γ, and
Ω are acceptable.
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The magnitudes of the overestimates are depicted in Table 9, which shows the most
significant error percentages when using Equations (8) and (17) to attain the temperature
field. The error percentages are inversely proportional to the thermocouple distance
to the heat source. As the overestimate is mainly due to the greater heat input, such
a tendency emphasizes the more significant Ω effect in the temperatures calculated at
positions near the heat source. Indeed, the temperature computed at m1 directly reflects
the Ω magnitude. However, such an overestimate should not interfere with the experiment
results, as it is insufficient to cause steel’s phase or microstructural changes during all
experimental periods.

Table 9. Most expressive deviations between the numerical temperature profiles computed using the
reference and the estimated λ(T) and Ω in terms of percent error.

Sensor m1 m2 m3 m4 m5 m6 m7 m8 m9

Error (%) 11.09 8.65 7.54 6.14 5.57 4.69 4.31 3.82 3.60

7. Conclusions

This work proposes an inverse method for estimating the thermal conductivity and
gross heat rate during an autogenous LASER Beam Welding experiment. Two cases are
considered. In Case I, we assess the three parameters that compose the second-degree
conductivity function of temperature. In Case II, the gross heat rate related to the heat
distribution is also estimated, in addition to the nonlinear thermal conductivity function.
The temperature field is acquired by solving the three-dimensional heat diffusion equation
using an in-house CUDA-C code. Such a language is also used to implement the inverse
method. A gradient descendent technique called the Quadrilateral Optimization Method
(QOM) is applied to optimize the parameters. The method’s suitability for Cases I and II
is investigated by considering the sensitivity of the temperature for every parameter of
interest and the stability of the method when performing the assessments from noisy data.
After assuring the method is sensitive enough, we evaluate the effect of the number of time
steps used in the regularization technique to optimize the estimates considering accuracy
and computational time. The primary outcomes may be summarized as follows:

1. The method is sensitive enough to provide precise estimates of the nonlinear thermal
conductivity function and the gross heat rate simultaneously. The estimates consider
nine points of temperature acquisition (see Table 2) during a 2.0 s experiment.

2. The method sensitivity may be enhanced by calibrating the parameter r of the Future
Time Regularization (FTR). The effect of r on the computational time and estimate
accuracy was investigated. The optimum r that minimizes the computational time
and presents considerable accuracy is 450.

3. The comparison between the simulated temperature using reference and estimated
values showed that the estimated parameters could be used as input data to calculate
the heat transfer during SAE 1020 LBW. In Case I, the error remained lower than 3%.
Case II presents more significant error percentages mainly due to the sensitivity of Ω.
The values decrease from 11% with the sensor distance to the heat source.

4. The computational time required for the estimates using 450 r is 46 ± 1 min and
99 ± 1 min for Cases I and II, respectively. In the former case, the direct model is
calculated 432 times; in the latter case, the direct model is calculated 1296 times.

The results presented in this work emphasize the extent to which the QOM may
be applied for IHTPs by performing the novel estimation of three and four parameters
simultaneously, including both a thermophysical property and a process parameter. The
main gaps of the adopted procedure consist of the requirement to know the functional form
that best suits the modelization of property evolution with temperature. Also, the authors
chose not to model the austenite decomposition of steel during solidification. One may also
find slight differences when estimating the properties during the heating and cooling of
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the sample. Future works will address such behavior by considering different functions to
model the thermal conductivity under determined temperature ranges. In addition, we
intend to investigate the method’s sensitivity further by analyzing the amount and location
of the thermocouples.
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21. Łapka, P.; Pietrak, K.; Kujawińska, M.; Malesa, M. Development and Validation of an Inverse Method for Identification of Thermal
Characteristics of a Short Laser Pulse. Int. J. Therm. Sci. 2020, 150, 106240. [CrossRef]

22. Wan, S.; Xu, P.; Wang, K.; Yang, J.; Li, S. Real-Time Estimation of Thermal Boundary of Unsteady Heat Conduction System Using
PID Algorithm. Int. J. Therm. Sci. 2020, 153, 106395. [CrossRef]

23. Wan, S.; Wang, K.; Xu, P.; Huang, Y. Numerical and Experimental Verification of the Single Neural Adaptive PID Real-Time
Inverse Method for Solving Inverse Heat Conduction Problems. Int. J. Heat Mass Transf. 2022, 189, 122657. [CrossRef]

24. dos Santos Magalhães, E.; de Carvalho, S.R.; Silva, S.M.M.L.E. The Use of Non-Linear Inverse Problem and Enthalpy Method in
GTAW Process of Aluminum. Int. Commun. Heat Mass Transf. 2015, 66, 114–121. [CrossRef]

25. Magalhães, E.D.S.; Correa, E.O.; Silva, A.L.F.L.E.; Silva, S.M.M.L.E. Microstructural Analysis in GTA Aluminum Alloy Welding
Using Inverse Problems. Appl. Therm. Eng. 2016, 100, 333–339. [CrossRef]

26. Magalhães, E. dos S. A Quadrilateral Optimization Method for Non-Linear Thermal Properties Determination in Materials at
High Temperatures. Int. J. Heat Mass Transf. 2021, 181, 121857. [CrossRef]

27. de Oliveira, A.F.M.; Magalhães, E.D.S.; Paes, L.E.D.S.; Pereira, M.; da Silva, L.R. A Thermal Analysis of LASER Beam Welding
Using Statistical Approaches. Processes 2023, 11, 25. [CrossRef]

28. Çengel, Y.A.; Ghajar, A.J. Heat and Mass Transfer: Fundamentals and Applications, 4th ed.; McGraw-Hill Science/Engineering/Math:
New York, NY, USA, 2010.

29. Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; Dewitt, D.P. Fundamentals of Heat and Mass Transfer, 7th ed.; John Wiley & Sons:
Hoboken, NJ, USA, 2011.

30. Clain, F.M.; Teixeira, P.R.D.F.; Araújo, D.B.D. Two Heat Source Models to Simulate Welding Processes with Magnetic Deflection.
Soldag. E Insp. 2017, 22, 99–113. [CrossRef]

31. Nascimento, E.; Magalhães, E.; Azevedo, A.; Paes, L.E.S.; Oliveira, A. An Implementation of LASER Beam Welding Simulation on
Graphics Processing Unit Using CUDA. Computation 2024, 12, 83. [CrossRef]

32. Magalhães, E.D.S.; Anselmo, B.D.C.S.; Lima e Silva, A.L.F.D.; Lima e Silva, S.M.M. Time Traveling Regularization for Inverse
Heat Transfer Problems. Energies 2018, 11, 15. [CrossRef]

33. Beck, J.V.; Blackwell, B.; Haji-Sheikh, A. Comparison of Some Inverse Heat Conduction Methods Using Experimental Data. Int. J.
Heat Mass Transf. 1996, 39, 3649–3657. [CrossRef]

34. Taktak, R.; Beck, J.V.; Scott, E.P. Optimal Experimental Design for Estimating Thermal Properties of Composite Materials. Int. J.
Heat Mass Transf. 1993, 36, 2977–2986. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/en14165073
https://doi.org/10.1007/s10765-007-0165-3
https://doi.org/10.1007/s10973-023-12626-y
https://doi.org/10.1016/j.jfoodeng.2019.109769
https://doi.org/10.1016/j.ijthermalsci.2019.106240
https://doi.org/10.1016/j.ijthermalsci.2020.106395
https://doi.org/10.1016/j.ijheatmasstransfer.2022.122657
https://doi.org/10.1016/j.icheatmasstransfer.2015.05.023
https://doi.org/10.1016/j.applthermaleng.2016.02.051
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121857
https://doi.org/10.3390/pr11072023
https://doi.org/10.1590/0104-9224/SI2201.10
https://doi.org/10.3390/computation12040083
https://doi.org/10.3390/en11030507
https://doi.org/10.1016/0017-9310(96)00034-8
https://doi.org/10.1016/0017-9310(93)90027-4

	Introduction 
	Materials and Methods 
	The Forward Model 
	The Inverse Problem 
	QOM Applied to the Thermal Conductivity Estimate 
	Input Data with Added Noise 

	Sensitivity Analysis 
	Sensitivity of the Thermal Conductivity Function Parameters (, , and ) 
	Sensitivity of the Gross Heat Rate () 

	Future Time Regularization (FTR) Analysis 
	Effect of Measurement Errors on the Estimated Results 
	Estimation Results 
	Case I: Nonlinear Thermal Conductivity Function 
	Case II: Nonlinear Thermal Conductivity Function and Gross Heat Rate 

	Conclusions 
	References

