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Abstract: In this study, the synergetic action of nanopulsed plasma bubbles (PBs) and photocatalysts
for the degradation/mineralization of trimethoprim (TMP) in water was investigated. The effects
of ZnO or TiO2 loading, plasma gas, and initial TMP concentration were evaluated. The physic-
ochemical characterization of plasma-treated water, the quantification of plasma species, and the
use of appropriate plasma species scavengers shed light on the plasma-catalytic mechanism. ZnO
proved to be a superior catalyst compared to TiO2 when combined with plasma bubbles, mainly
due to the increased production of ·OH and oxygen species resulting from the decomposition of O3.
The air–PBs + ZnO system resulted in higher TMP degradation (i.e., 95% after 5 min of treatment)
compared to the air–PBs + TiO2 system (i.e., 87%) and the PBs-alone process (83%). The plasma gas
strongly influenced the process, with O2 resulting in the best performance and Ar being insufficient
to drive the process. The synergy between air–PBs and ZnO was more profound (SF = 1.7), while ZnO
also promoted the already high O2–plasma bubbles’ performance, resulting in a high TOC removal
rate (i.e., 71%). The electrical energy per order in the PBs + ZnO system was very low, ranging
from 0.23 to 0.46 kWh/m3, depending on the plasma gas and initial TMP concentration. The study
provides valuable insights into the rapid and cost-effective degradation of emerging contaminants
like TMP and the plasma-catalytic mechanism of antibiotics.

Keywords: cold atmospheric plasma; plasma catalysis; antibiotics; water treatment; zinc oxide;
plasma bubbles

1. Introduction

The presence and persistence of antibiotics in aquatic ecosystems have become a major
concern in recent years. Antibiotics are widely used as they are essential medications for
combating bacterial infections in humans, animals, and plants. However, despite their
effectiveness, their abuse, misuse, and improper disposal by various industries, including
aquaculture, healthcare, and agriculture, pose major threats to public health and the
environment, as their accumulation in water bodies has led to the emergence of antibiotic-
resistant bacteria [1,2]. Among these antibiotics, trimethoprim, a widely used medication
to treat bacterial infections, has been found to contribute to the contamination of aquatic
ecosystems [3,4].

The removal of antibiotics from water is a major challenge due to their persistence
and diverse chemical properties. Various water treatment methods have been developed
to address this issue [5,6]. However, most of these methods are expensive, are not envi-
ronmentally friendly, or cannot achieve high removal efficiencies. Advanced oxidation
processes (AOPs) are considered more effective in oxidizing a wide range of organic com-
pounds, including antibiotics, as well as being versatile and applicable to various types
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of wastewater [7]. For instance, photocatalysis has been widely applied for the degra-
dation of antibiotics involving the use of a photocatalyst which becomes activated when
exposed to ultraviolet (UV) or visible light [8]. Among the AOPs, non-thermal plasma
(NTP) is an emerging and promising process that does not require the use of chemical
agents [9,10]. During NTP, a plethora of long- and short-lived reactive species are gen-
erated together with UV light and highly energetic electrons that participate in electron
transfer reactions with organic molecules, initiating chain reactions that lead to the degra-
dation of pollutants [11,12]. Plasma species include reactive oxygen species (ROS) such
as hydroxyl radicals, atomic oxygen, ozone and hydrogen peroxide and reactive nitrogen
species (RNS) such as nitrate/nitrite anions, peroxynitrite, etc. [13,14]. Normally, after
plasma treatment, the antibiotics are decomposed into less toxic and harmful intermediates,
if complete mineralization cannot be achieved [15]. However, the effectiveness of most
plasma reactors (e.g., gas–liquid DBD) is limited by the short lifetime of the species and
their low penetration into the liquid phase [16]. Therefore, the main challenge remains the
uncomplete mineralization of antibiotics resulting from the limited utilization of the UV
radiation, electrons and reactive species generated during plasma discharge.

Recently, to alleviate this problem, plasma bubbles have been increasingly explored
as a means of enhancing the mass transfer of plasma species from the gas to the aqueous
phase [17,18] or in combination with photocatalysts (plasma catalysis) to improve the
degradation rate and mineralization of the pollutant by increasing plasma energy utiliza-
tion [19,20]. During plasma catalysis, the plasma-generated reactive species (electrons, ions,
radicals, and UV radiation) can activate the catalyst surface and promote the generation
of additional reactive species or convert certain plasma species (e.g., O3) to species with
higher oxidation potential (e.g., ·OH) [21].

In the present study, underwater plasma bubbles, energized by low-frequency high-
voltage (HV) nanopulses, were combined with TiO2 or ZnO photocatalysts for the degra-
dation of the antibiotic trimethoprim (TMP) in water. Considering that reports on TMP
degradation by plasma are scarce [22,23], a thorough investigation was conducted to pro-
vide insightful information. Thus, a point-to-point comparison was made between the two
catalysts in terms of plasma-catalytic synergy during TMP degradation, species formation
and physicochemical properties of the plasma-treated water. In this context, the effect of
various parameters in the absence and presence of the two catalysts, such as treatment
time, catalyst loading and plasma gas, was investigated. Furthermore, the role of the main
plasma species in TMP degradation was evaluated through scavenging experiments, while
the process energy efficiency (electrical energy per order) and TMP mineralization were
assessed. The strategy of combining underwater plasma bubbles with two well-known
photocatalysts could contribute to the understanding of the plasma-catalytic mechanisms
that take place during the degradation of antibiotics in water and to the establishment of
a highly effective, energy-efficient and rapid process for the destruction of this class of
emerging pollutants.

2. Materials and Methods
2.1. Materials

All reagents were of analytical grade: trimethoprim (TMP, C14H18N4O3, M = 290.32 g/mol),
ZnO (zinc oxide nanopowder, <100 nm particle size), TiO2 (titanium (IV) oxide nanopow-
der, 21 nm particle size), D-mannitol (D-man), p-benzoquinone (BQ), potassium phosphate
monobasic (MP), sodium pyruvate (SP), terephthalic acid (TA), and titanium oxysulfate
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Solutions were prepared using
Milli-Q water with a resistivity of 18.2 MΩ·cm, obtained by the purification of deionized
water, unless otherwise stated. Compressed dry air, oxygen and argon were supplied by
Linde (Athens, Greece).
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2.2. Experimental Setup, Electrical Diagnostics and Treatment Conditions

The experimental setup used to treat the TMP-polluted water and characterize the
plasma is illustrated in Figure 1. It consisted of (i) a DBD-based plasma bubble reactor
driven by (ii) a nanosecond pulsed voltage delivered by a power supply (NPG-18/3500),
(iii) a digital oscilloscope (Rigol MSO2302A) connected to voltage (Tektronix P6015A,
0–75 MHz) and current probes (Pearson electronics 2877, 300 Hz–200 MHz) for the dis-
charge power calculation, (iv) an optical characterization arrangement, and (v) a feeding
gas system. Details regarding the calculation of the power dissipated in the DBD-based
plasma reactor can be found elsewhere [24].
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Figure 1. The experimental setup used to treat water samples contaminated by trimethoprim (TMP)
and characterize the plasma.

The plasma reactor, based on a coaxial DBD column (Figure 1) capable of deliver-
ing plasma bubbles directly into the aqueous solution, was similar to that previously
reported [17,18]. Briefly, it consisted of a high voltage stainless-steel rod (5 mm diameter)
covered by an inner quartz tube (8.0 mm external diameter) forming a coaxial DBD col-
umn with an outer quartz tube (12.0 mm internal diameter). The latter was constructed
with 10 microholes uniformly distributed around its base so that the plasma gas, flowing
between these dielectric tubes at a constant flow rate (3.0 L/min), could provide plasma
bubbles in the solution. The microholes were constructed with a diameter of 400–500 µm
to ensure a small bubble size, and therefore a large gas–liquid interfacial area, as a means to
increase the mass transfer of short-lived plasma species from the gas to the liquid phase [25].
This coaxial DBD configuration was placed in the center of a quartz reaction tank (46 mm
inner diameter, 2 mm wall thickness, 70 mm height), which was filled with the water
sample to be treated. A copper tape was attached to the outer surface of the reaction tank
and acted as a grounded electrode.

An amount of 70 mL of TMP-polluted water was exposed to plasma treatment (20 s to
5 min) with an initial pollutant concentration ranging from 5 to 20 mg/L. Pulse voltage
and frequency were equal to 25.6 kV and 200 Hz, respectively. For the plasma-catalytic
experiments, the catalyst loading ranged from 0 to 0.4 g/L. The solutions containing the
catalyst were previously sonicated for 20 min at room temperature. To investigate the
effect of plasma chemistry on TMP degradation, different feed gases were introduced into
the reactor (air, oxygen and argon). All experiments were carried out in duplicate with
excellent reproducibility.
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2.3. Chemical Analysis of Water Samples

The concentration of TMP was evaluated by high-performance liquid chromatography
(HPLC, Shimadzu LC-2050C) equipped with a C18 column (4.6 mm × 50 mm, 3 µm particle
size) and a UV detector. According to Liang et al. [23], Aναφoρές the temperature was set
to 30 ◦C, detection wavelength to 271 nm and pressure to 100 bar. The flow rate was set to
1.0 mL/min and injection volume to 20 µL. The mobile phase was isocratic and consisted
of 0.2 mol/L NaH2PO4 solution and methanol (70%/30% v/v). The TMP degradation
efficiency, D(%), was calculated as follows:

D(%) =

[
C0 − Ct

C0

]
× 100 (1)

where C0 is the initial TMP concentration and Ct is its concentration after plasma treatment
for a given time.

The degradation rate was described by a pseudo-first-order reaction with respect to the
pollutant concentration, and thus, the experimental data were fitted to the following equation:

ln
(

C0

Ct

)
= kappt (2)

where kapp (min−1) represents the apparent rate constant.
The synergetic factor, namely the synergetic effect between plasma and catalysis, was

calculated by the following equation:

SF =
kplasma+catalyst

kplasma + kcatalyst
(3)

where kplasma+catalyst is the rate constant of TMP degradation in the plasma-catalytic system,
kplasma is the rate constant in the plasma-alone system, and kcatalyst is the rate constant of
TMP adsorption onto the catalyst.

The electrical energy per order is the energy required for the decrease in pollutant
concentration by one order of magnitude in a unit volume of water and defined as follows:

EEO =
Pt

Vlog
(

C0
Ct

) (4)

where P is the power dissipated in the plasma reactor, V stands for the volume of the
treated solution, and t refers to the treatment time.

Finally, a total organic carbon analyzer (Shimadzu, TOC-VCSH) was used to quantify
the mineralization of plasma-treated samples. The TOC removal efficiency was calculated
by the following equation:

TOC(%) =

[TOC0 − TOC f

TOC0

]
× 100 (5)

where TOC0 and TOC f indicate the TOC concentration (mg/L) before treatment and after
plasma treatment, respectively.

2.4. Identification of Reactive Species in Gas and Aqueous Phase and Use of Scavengers

The critical short- and long-lived reactive oxygen species in the absence and presence
of both catalysts were determined. The concentration of hydroxyl radicals (·OH) was
detected using a photoluminescence spectrometer (Hitachi F2500) Aναφoρές [26]. More
specifically, the fluorescent properties of 2-hydroxyterephthalic acid (HTA) were monitored,
which are produced from the reaction between ·OH and terephthalic acid (TA). When
the sample was irradiated by UV-A light of 310 nm wavelength, an intensity peak at
425 nm was observed. Furthermore, ozone (O3) was quantified by a Hanna multiparameter
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photometer (HI83399–2), using calibrated reagent kits. Concerning hydrogen peroxide
(H2O2), the titanium oxysulfate method was used [27]. Briefly, 1 mL of titanium oxysulfate
solution in 2 M sulfuric acid (25 g/L) was added to 2 mL of each sample, and the absorption
peak at 407 nm in the UV-Vis spectrum was quantified (Shimadzu UV-1900). The main
atomic and molecular excited plasma species in the gas phase were identified through
optical emission spectroscopy (OES) measurements by using a fiber optic spectrometer
(AvaSpec-ULS2048CL-EVO, Avantes) in the range of 200–900 nm.

The transient evolution of the physicochemical characteristics of the aqueous so-
lution during plasma treatment was evaluated. The conductivity and pH of the water
samples were measured using a Consort multiparameter (Benchtop meter C1020) and a
QUANTOFIX® Relax unit (Macherey-Nagel, GmbH), respectively. The initial conductivity
of the ultrapure water was equal to 4.6 µScm−1 and the pH was 6.5.

To investigate the role of plasma species on the degradation of TMP, scavenging exper-
iments were also conducted. Sodium pyruvate (SP), D-mannitol (D-man), monopotassium
phosphate (MP), and p-benzoquinone (BQ) were selected as scavenging agents of H2O2,
·OH, eaq

− and ·O2
−, respectively. The concentration of each scavenger varied from 0.2

to 6 mM to ensure the maximum inhibition of TMP degradation. The action efficiency of
plasma species was calculated as follows:

φ =

[
D0 − D1

D0

]
× 100% (6)

where D1 and D0 is the TMP degradation in the presence and absence of a scavenger,
respectively.

2.5. Catalyst Characterization

The crystallographic and pore structure of the catalysts were examined before and
after plasma treatment. Plasma-treated catalysts were collected after their exposure to
plasma bubbles in the absence of pollutant. The plasma-treated water including the catalyst
remained at 80 ◦C until complete evaporation. The resulting plasma-treated solid (ZnO,
TiO2) was collected and used for characterization purposes.

The crystal structure of pristine and plasma-treated ZnO and TiO2 nanopowder was
measured by X-ray powder diffraction (XRD) analysis in the range of 5–90◦ (2θ). A Bruker
D8 Advance diffractometer was used, applying Cu K-alpha radiation (X-ray wavelength
λ = 0.15418 nm). The specific surface area and pore size distribution of the pristine and
plasma-treated catalysts were measured using a Quantochrome Autosorb IQ-C-MP ap-
paratus. The samples were first degassed at 150 ◦C for 2 h, and afterwards, nitrogen
adsorption and desorption isotherms were obtained at relative pressure P/P0 = 0.05–0.99,
where P represents the absolute pressure and P0 the saturation vapor pressure. Using the
Brunauer–Emmett–Teller (BET) method, the specific surface area was determined from the
nitrogen adsorption (P/P0 in the range 0.05–0.25). Finally, the density functional theory
(DFT) method was employed to obtain the volume-based pore size distributions from the
whole nitrogen adsorption and desorption isotherms.

3. Results
3.1. TiO2 and ZnO Characterization (XRD, BET) before and after Plasma Treatment and TEM Images

The catalysts were characterized through XRD before and after the plasma bubble
treatment. TiO2 showed two crystalline phases with a characteristic tetragonal crystal
structure, rutile and anatase, as expected. Anatase was the dominant phase (~90%) with
apparent peaks at 2theta values of 25.32◦, 37.86◦, 48.06◦, 53.97◦, and 55.09◦, which are
attributed to the (101), (004), (200), (105), and (211) crystal planes, respectively. The ru-
tile phase was observed at minor peaks like 27.45◦, 35.98◦, and 41.25◦, assigned to the
(110), (101), and (111) crystal planes, respectively. After plasma treatment, there were no
alterations in the structure of TiO2 (Figure S1). The XRD pattern of ZnO confirmed its
hexagonal wurtzite structure, with the main diffraction peaks at 31.72◦, 34.44◦, and 36.26◦
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attributed to the (100), (002), and (101) crystal planes, respectively. Similar to TiO2, the
underwater plasma bubble treatment did not result in changes in the crystal structure of
ZnO (Figure S1).

The specific surface area of each catalyst after treatment with nanopulsed plasma
bubbles was almost identical to that of the pristine catalysts, with the surface area of TiO2
being ~4 times higher compared to that of ZnO (Table 1). Nevertheless, as will be presented
below (Section 3.3), the combination of plasma bubbles with ZnO was more effective in
degrading TMP than the combination of plasma bubbles with TiO2. Furthermore, the
plasma-catalytic synergy between the plasma bubbles and catalysts could not be attributed
to the modification of the ZnO or TiO2 pore structure during treatment, as the plasma
bubbles did not induce noticeable changes in the pore volume and pore size distribution of
the catalysts (Table 1 and Figure S2).

Table 1. Specific surface area and pore volume of TiO2 and ZnO before and after plasma bubble
treatment (pulse voltage: 25.6 kV, pulse frequency: 200 Hz, plasma gas: air, gas flow rate: 3 L/min,
treatment time: 5 min, catalyst loading: 0.2 g/L).

Specific Surface Area (m2/g)/Pore Volume (cm3/g)

Catalyst Pristine Plasma-Treated

TiO2 54.96/0.121 54.92/0.160
ZnO 13.18/0.024 13.01/0.026

Figure S3 displays representative TEM images of the TiO2 and ZnO samples, providing
insight into their respective sizes. The TiO2 nanoparticles exhibit a nearly spherical shape,
with a mean diameter of approximately 20 nm. Conversely, the ZnO particles display a
hexagonal wurtzite structure and possess a mean size of less than 100 nm.

3.2. Electrical and Optical Plasma Characterization

The electrical power dissipated in the reactor is a measure to evaluate the energy
efficiency of the present remediation process. Typical voltage and current nanopulses
monitored during TMP treatment by plasma bubbles and the resulting instantaneous
power are depicted in Figure 2a. The waveforms initially consist of a high-amplitude pulse
followed by smaller-amplitude pulses. The pulse rising time was approximately 4 ns, while
the current peak was ~50 A. Despite the applied voltage being a unipolar pulse, the current
exhibited bipolar characteristics, with positive pulses (primary discharge) and negative
pulses (secondary discharge), attributed to both conduction and displacement current.
Although the resulting instantaneous power peak (corresponding to the primary discharge)
was very high and equal to ~1.2 MW, the average power dissipated in the plasma bubble
reactor was quite low and equal to ~0.8 W due to the very low duty cycle. This is the
feature responsible for the better energy efficiency obtained when HV nanosecond pulses
are used to energize plasma reactors compared to HV microsecond pulses or sinusoidal
HV [18].

Optical emission spectroscopy (OES) was conducted to detect the main excited molec-
ular and atomic plasma species under air, oxygen, and argon atmospheres (Figure 2b).
Under O2–plasma, the main species identified include the following ROS: an ·OH emission
peak at 309 nm [28], ·O emissions at 777 and 844 nm [15], and weak O2

+ emissions [29].
Under argon–plasma, the spectrum is dominated by multiple argon transition lines (696 to
852 nm), ·OH, and weak ·O emissions [30]. The OES spectrum obtained during air–plasma
treatment is dominated by nitrogen molecules (N2—second positive system), nitrogen
cation (N2

+—first negative system), ·OH, and weak ·O and O2
+ emissions [31,32]. The

different OES spectra between the various plasma gases result in the generation of different
species within the aqueous solution, affecting the degradation of TMP in water (see the
results below in Section 3.5).
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3.3. Effect of Catalyst Addition on Plasma-Treated Water Characteristics
3.3.1. Plasma Species Formation

In dielectric barrier discharge (DBD) plasma, electrons are primarily generated through
photoionization and collisional ionization processes in the gas phase. Therefore, an electron
colliding with a neutral gas molecule transfers enough energy to ionize the molecule,
resulting in the creation of additional electrons and positively charged ions. Subsequently,
free radicals capture electrons from neighboring atoms or molecules, leading to the gener-
ation of several new chemically active species. The degradation of organic pollutants by
plasma lies mainly in the parallel action of reactive oxygen and nitrogen species (RONS).
Both short- and long-lived species can be crucial for TMP degradation, and therefore, the
concentrations of H2O2, O3, and ·OH in the plasma-treated water were measured. The
concentration of nitrogen-related species (nitrate, nitrite) was negligible, as previously
reported for plasma-treated water inside a DBD-based plasma bubble reactor driven by
HV nanopulses [18].



Nanomaterials 2024, 14, 815 8 of 20

H2O2 is considered representative among the long-lived plasma species, being mostly
formed by recombination reactions between radicals. It is noteworthy that H2O2 could
also lead to the formation of additional oxygen species (R1–R4). A detailed discussion
and reactions on the formation of plasma species during water treatment can be found
elsewhere [14]:

H2O + e− → ·H + ·OH + eaq
− (R1)

·OH + ·OH → H2O2 (R2)

·HO2 + ·HO2 → H2O2 + O2 (R3)

e− + H2O2 → ·OH + OH− (R4)

Compared to the plasma bubbles, the concentration of H2O2 was decreased in the
presence of ZnO and increased substantially in the presence of TiO2 (Figure 3a). In par-
ticular, after 5 min of treatment with air–plasma bubbles, the H2O2 concentration was
0.25 mg/L (plasma bubbles), 0.06 mg/L (plasma bubbles + ZnO), and 1.2 mg/L (plasma
bubbles + TiO2). Therefore, TiO2 promoted the reactions that led to the formation of H2O2,
in contrast to ZnO.
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Ozone plays a major role in the degradation of pollutants and, therefore, its formation
should be quantified. In all cases, O3 increased with the treatment time almost linearly,
while the presence of both catalysts in the plasma seemed to promote the decomposition of
O3 (Figure 3b). After 5 min of treatment, the O3 concentration decreased from 0.08 mg/L
(plasma bubbles) to 0.06 mg/L and 0.04 mg/L in the presence of ZnO and TiO2, respec-
tively. The presence of a catalyst may promote the decomposition of O3 through various
mechanisms: (i) O3 is adsorbed on the active sites of ZnO or TiO2 and decomposed by
the oxygen defects into highly reactive species, like atomic (R5) and singlet oxygen [33,34];
(ii) plasma radiation (hv) results in the decomposition of O3 into hydrogen peroxide (R6);
and (iii) the electrons generated by the irradiation of the photocatalysts by the UV emitted
by the plasma can react with O3 and reduce it to short-lived and highly reactive .O3

−, .O4
−,

1O2, .O2
−, and ·OH [21].

O3 + * → ·O + O2 (R5)

where * symbolizes the active sites of the catalyst

O3 + plasma (hv) + H2O → H2O2 + O2 (R6)

Among the various plasma species, short-lived ·OH is one of the most critical species
that interact rapidly with organic pollutants [35,36]. It is directly formed through water
dissociation by plasma electrons as well as from the consumption of the long-lived O3
and H2O2:

H2O + e− → ·H + ·OH + eaq
− (R7)

O3 + H2O2 → ·OH + ·HO2 + O2 (R8)

H2O2 + plasma (hv) → 2·OH (R9)

Compared to plasma alone, the presence of ZnO enhanced the production of ·OH,
in contrast to TiO2, which had the opposite effect (Figure 3c). For instance, after 5 min of
treatment, the concentration of ·OH in the aqueous phase treated by plasma bubbles was
23 mg/L and increased to 28 mg/L in the presence of ZnO (plasma bubbles + ZnO), but it
decreased to 16 mg/L in the presence of TiO2 (plasma bubbles + TiO2). The increase in ·OH
production under ZnO-catalyzed conditions may be attributed to the reaction between the
UV-plasma generated holes with water molecules (R10 and R11):

photocatalyst + plasma (hv) → ecb
− + hvb

+ (R10)

hvb
+ + H2O → ·OH + H+ (R11)

On the other hand, the decrease in ·OH production under TiO2-catalyzed conditions
may be attributed to its recombination to form H2O2 (R2). It is worth reminding here that
the concentration of H2O2 increased in the presence of TiO2 (Figure 3a). A possible explana-
tion could be as follows: Given that TiO2 has almost quadruple the specific surface area of
ZnO and its size is four times smaller than ZnO (Table 1, Figure S3), it is plausible to assume
that the active sites in TiO2 are more densely packed, making the recombination of ·OH to
form H2O2 (R2) more likely than in ZnO. In other words, in plasma-catalytic wastewater
treatment, the use of a photocatalyst with an increased surface area and very small size
may potentially lead to the increased production of H2O2 through the recombination of
·OH. This could explain why H2O2 increases and ·OH decreases under TiO2-catalyzed
conditions, while the opposite occurs with ZnO. However, in plasma-catalytic wastewater
treatment, the goal is to optimize the conditions that minimize radical recombination to
H2O2, thus maximizing pollutant degradation.

In conclusion, both catalysts promoted the decomposition of the plasma-generated
O3, probably to other oxygen radicals. The presence of TiO2 resulted in a decreased ·OH
concentration and more H2O2 compared to plasma alone. In contrast, regarding ZnO,
the ·OH concentration was enhanced and less H2O2 was produced compared to plasma
alone. It is worth noting that the oxidation potential of H2O2 is approximately +1.78 volts
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(V) under standard conditions, whereas the oxidation potential of ·OH is considerably
higher, often exceeding +2.8 volts (V) or even higher. These results could contribute to
understanding the degradation mechanism of TMP in the presence of either ZnO or TiO2.
Additionally, identifying the key species involved in degrading specific pollutants can help
in selecting the most suitable catalyst for each pollutant.

3.3.2. Physicochemical Water Properties

The aqueous solution’s pH is considered a critical parameter for the effectiveness
of plasma in water treatment. Neutral or alkaline pH levels increase the production
of ·OH due to O3 and H2O2 decomposition, thereby enhancing or reducing pollutant
degradation depending on the critical species for its degradation [37,38]. Additionally,
alkaline conditions may decrease the oxidation potential of O3. Significantly, no substantial
fluctuations were observed in the pH during the plasma bubble treatment in the presence or
absence of ZnO or TiO2 (Figure S4a). This pH stability (~6.5) was further supported by the
electrical conductivity of the aqueous solutions (Figure S4b), which showed an insignificant
gradual increase with treatment time (from 5 to 20 µS/cm) in all cases.

3.4. The Effect of Catalyst Loading on the Degradation of TMP

Numerous studies have investigated the potential synergy between plasma and cata-
lysts for antibiotic degradation [39–42]. In this study, to harness the UV radiation emitted by
plasma discharge, two photocatalysts, ZnO and TiO2, were selected. Comparisons of these
two catalysts are well documented in other applications and remediation methods [43–46].
The effect of catalyst loading on TMP degradation was thoroughly investigated by repeat-
ing the plasma experiments in the presence of different loadings of ZnO or TiO2 (Figure 4).
Initially, different loadings of TiO2 nanopowder were added (0.1, 0.2, 0.3, and 0.4 g/L).
The TiO2 catalyst did not appear to significantly enhance the degradation efficiency of
TMP (Figure 4a). However, slight changes were observed with varying loadings and when
compared to the plasma bubbles-alone system. In particular, there was no notable effect on
the degradation of TMP with the addition of 0.1 g/L TiO2, which removed approximately
~83.2% of the pollutant in 5 min, similar to the plasma bubbles-alone system. The other
three loadings exhibited better degradation efficiency, as depicted in Figure 4a, with the
pseudo-first-order degradation kinetics displayed in Figure 4c. Almost 87.4% degradation
was achieved, with an apparent rate constant of 0.42 min−1. It is worth noting that in terms
of TMP removal, 0.2 g/L TiO2 was the optimum loading, as higher loadings led to similar
TMP degradation. This may be due to agglomerations between TiO2 nanoparticles and the
potential coverage of its active sites.

Similar experiments were conducted in the presence of ZnO, revealing a different
behavior, as ZnO exhibited significant synergy with the plasma bubbles. All ZnO loadings
resulted in an enhancement in TMP degradation (Figure 4b). In particular, with the
addition of 0.1 and 0.2 g/L ZnO, TMP degradation increased from ~83.2% (plasma bubbles)
to ~93.7% and ~94.8%, respectively, after 5 min of treatment. Higher ZnO loadings resulted
in a less profound impact, reaching ~93.3% (0.3 g/L) and ~92.8% (0.4 g/L) degradation
of TMP. This could be attributed to the agglomeration of the ZnO particles, which are not
able to interact properly with the plasma bubbles. The corresponding pseudo-first-order
degradation kinetic constants increased from 0.35 min−1 (plasma bubbles) to 0.56, 0.59, 0.54,
and 0.53 min−1, respectively (Figure 4d), indicating that 0.2 g/L is the ideal ZnO loading.

A direct comparison between the two catalysts under their optimal loading is pre-
sented in Figure 5a. It is evident that TMP degradation under plasma bubbles + ZnO
was higher compared to the plasma bubbles + TiO2 system and plasma bubbles-alone
process. For instance, TMP degradation at the end of treatment (i.e., 5 min) was ~83.2%
(plasma bubbles), ~94.8% (plasma bubbles + ZnO), and ~87.4% (plasma bubbles + TiO2).
Additionally, negligible TMP adsorption onto both catalysts was observed under no plasma
conditions (only bubbles with a catalyst).
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degradation kinetics of (c) TiO2 and (d) ZnO (pulse voltage: 25.6 kV, pulse frequency: 200 Hz, plasma
gas: air, flow rate: 3 L/min, initial TMP concentration: 20 mg/L).

Utilizing the previously calculated apparent rate constant, the synergistic factor (SF)
was deduced for each catalyst at every loading, as depicted in Figure 5b. The corresponding
SF in the presence of ZnO was 1.56, 1.70, 1.54, and 1.53 for 0.1, 0.2, 0.3, and 0.4 g/L,
respectively, while the corresponding values for TiO2 were 1, 1.14, 1.17, and 1.17. Therefore,
the highest SF achieved was 1.7 with 0.2 g/L ZnO, which is approximately 1.5 times
higher than TiO2 at the same loading. Consequently, ZnO appears to be much more
beneficial when combined with plasma bubbles for the degradation of TMP. Interestingly,
ZnO exhibited increased plasma-catalytic performance compared to TiO2 despite its lower
surface area (Table 1). The superiority of ZnO can be rationalized by the vital role of plasma
species in the TMP degradation process (see discussion below in Section 3.7) and their
relative concentration, which in turn depends on the type of the catalyst (as discussed in
Section 3.3.1).
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3.5. The Effect of Plasma Gas and Initial TMP Concentration on Its Degradation by Plasma
Bubbles in the Absence and Presence of ZnO

The effectiveness of plasma for water treatment depends on numerous parameters
related to plasma conditions and chemistry [10]. Plasma chemistry is related to the nature
of the produced reactive oxygen and nitrogen species (RONS), which depend on the
gas used for the discharge formation [47]. Altering the plasma gas can result in the
production of different types and concentrations of RONS, which play a major role in
pollutant degradation. For this reason, the effect of plasma gas (air, oxygen, and argon)
on TMP degradation was investigated under the conditions of plasma bubbles in the
absence and presence of ZnO, which proved to be a more effective catalyst for TMP
degradation (Figure 6). When oxygen and argon were used instead of air as the feeding
gas, a different TMP degradation profile was observed. Under O2–plasma bubbles, very
high TMP degradation (i.e., ~94%) was recorded after only 2 min of treatment, whereas
the addition of ZnO further promoted this performance to ~96% (Figure 6a). This higher
performance of oxygen is related to the enhanced reactive oxygen species (ROS) production
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under an O2-containing atmosphere, indicating the significance of ROS over reactive
nitrogen species (RNS) in the TMP degradation process.
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On the other hand, under argon–plasma bubbles, a lower TMP degradation was
achieved (~57%) even after 5 min of treatment, while the addition of ZnO increased the
TMP degradation to 65% (Figure 6a). It could, therefore, be assumed that the reactions
and species promoted by argon, such as electrons, argon ions, and ·OH, are also involved
in TMP degradation but not as the major species. It is also interesting to note that the
impact of ZnO with the different gases was not the same. The apparent rate constant of
air–plasma bubbles + ZnO was ~1.6 times higher compared to that of air–plasma bubbles,
being 0.59 and 0.35 min−1, respectively (Figure 6b). Concerning argon, the apparent rate
constant increased from 0.16 to 0.21 min−1 (~1.3 times higher). In addition, considering the
already very high performance of O2–plasma bubbles, the presence of ZnO did not result
in a significant enhancement in the degradation rate of the parent TMP molecule (1.47
to 1.56 min−1). Nevertheless, the TOC measurements presented below (Section 3.8) are
indicative of the plasma-catalytic synergy between ZnO and O2–plasma bubbles. Based on
the apparent rate constants, the synergistic factor (SF) values for air–plasma bubbles + ZnO
and argon–plasma bubbles + ZnO were 1.70 and 1.31, respectively. A possible explanation
for why the effect of ZnO was more intense in the case of air could lie in the fact that the
absorption spectrum of ZnO (UVA/UVB region) overlaps with the corresponding radiation
emitted by air–plasma. On the other hand, the radiation emitted from argon is mainly in
the VUV/visible light region, meaning the photoactivation of the catalyst is less effective.

The effect of the initial pollutant concentration on its degradation was extensively
investigated. Nonetheless, from a practical standpoint, with the inclusion of this analysis
in the present study, we aimed to assess the efficacy of the current approach across a
range of pollutant concentrations in water, encompassing both higher and lower (and more
realistic) levels of TMP contamination in water. Therefore, the air–plasma bubbles process
was tested under various initial TMP concentrations, both with and without ZnO. For
this purpose, experiments were conducted using initial TMP concentrations of 20 mg/L,
10 mg/L, and 5 mg/L, with the results depicted in Figure 7. Evidently, the lower the
initial TMP concentration, the higher its degradation efficiency. For 20 mg/L TMP, 83.2%
degradation was achieved after 5 min of treatment, while complete degradation (99.9%)
was achieved at an initial concentration of 10 mg/L. For the lowest concentration (5 mg/L),
complete degradation was also achieved but with a lower treatment time (4 min). The
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addition of ZnO apparently enhanced the TMP degradation, as reflected in the apparent
degradation rate constants (Figure 7b). In particular, for 20 mg/L TMP, the rate increased by
~1.7 times from 0.35 min−1 to 0.59 min−1. At a lower concentration, 10 mg/L, it increased
from 0.82 min−1 to 0.95 min−1, whereas for an even lower concentration of TMP, 5 mg/L,
the constant was ~1.3 times higher with the addition of ZnO.
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3.6. Process Energy Efficiency

The energy efficiency of a process is a critical factor in determining its broader ap-
plicability as a treatment method. One measure used to evaluate process effectiveness is
electrical energy per order (EEO), which considers the discharge power, treated solution
volume, and treatment time needed to reduce the pollutant concentration by at least one
order of magnitude. In this study, the EEO for TMP degradation at two different initial
concentrations in water (5 and 20 mg/L) under air– and oxygen–plasma bubbles, in the
absence and presence of ZnO, is depicted in Figure 8.

For 20 mg/L TMP, the EEO under air– and O2–plasma bubbles combined with ZnO was
0.46 and 0.28 kWh/m3, respectively. The air–plasma bubbles-alone system failed to achieve
degradation higher than 90%, while the EEO under O2–plasma bubbles was also very low
(i.e., 0.31 kWh/m3). Even lower energy requirements were observed for an initial TMP
concentration of 5 mg/L under air–plasma bubbles combined with ZnO (0.23 kWh/m3),
which is significant considering its closer resemblance to real-life conditions. The EEO of
this study is compared to other AOPs (for TMP degradation) and to other plasma-catalytic
studies (for the treatment of water polluted by antibiotics) in Table 2, as this study is the
first attempt to combine plasma with catalysis for TMP degradation. Specifically, Chen et al.
investigated the degradation of amoxicillin by DBD plasma combined with a Ce0.5Bi0.5VO4
catalyst on a honeycomb ceramic plate, reporting an increase in amoxicillin degradation
from 30% (DBD alone) to 65%, with the corresponding EEO being 79.4 kWh/m3 [48].
Xiao et al. combined DBD with a ZnO/cellulose acetate film catalyst for the degradation of
sulfadiazine, reporting an EEO of 15.4 kWh/m3 [49]. Regarding TMP degradation, the EEO
achieved by the combination of plasma bubbles with ZnO is significantly lower compared
to other AOPs (Table 2), highlighting the potential of this combination for the rapid and
effective degradation of antibiotics in water.
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Figure 8. Electrical energy per order (EEO) for the TMP degradation in water under air– and oxygen–
plasma bubbles in the absence/presence of ZnO (pulse voltage: 25.6 kV, pulse frequency: 200 Hz,
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Table 2. Comparison of this study with other AOPs for the degradation of antibiotics in water.

Plasma Process Pollutant Degradation
Efficiency (%)

Treatment
Time (min)

EEO
(kWh/m3) Ref.

DBD plasma + Ce0.5Bi0.5VO4
Amoxicillin

50 mg/L 94.5 30 79.4 [47]

DBD plasma + ZnO on cellulose acetate films Sulfadiazine
20 mg/L 97.2 60 15.4 [48]

Plasma + graphene–TiO2–Fe3O4
Oxytetracycline

40 mg/L 98.1 60 - [49]

DBD + Cu-CeO2@CA Ciprofloxacin
200 mg/L 89.5 40 - [50]

UV–chloride (1 mM) Trimethoprim
2.9 mg/L 91 20 3.6 [51]

Photocatalysis (TiO2 film irradiated with
simulated solar radiation)

Trimethoprim
10 mg/L 90 101.5 8441.4 [52]

Nanopulsed air–plasma bubbles + ZnO Trimethoprim
20 mg/L 90.9 4 0.46 This study

Nanopulsed O2–plasma bubbles Trimethoprim
20 mg/L 94.3 2 0.31 This study

Nanopulsed O2–plasma bubbles + ZnO Trimethoprim
20 mg/L 95.5 2 0.28 This study

Nanopulsed air–plasma bubbles + ZnO Trimethoprim
5 mg/L 94.2 1.5 0.23 This study

3.7. The Role of Plasma Species in the Degradation of TMP by Plasma Bubbles

To understand the mechanism of TMP degradation by plasma bubbles, it was essen-
tial to determine the contribution of the main plasma species to its degradation. There-
fore, the role of ·OH, ·O2

−, eaq
−, and H2O2 was explored by using D-mannitol (D-man),

p-benzoquinone (BQ), monopotassium phosphate (MP), and sodium pyruvate (SP), re-
spectively, as suitable scavengers. The selected optimum concentration of each scav-
enger was the minimum concentration at which no further inhibition of TMP degradation
was observed.
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It is evident that the presence of all scavengers inhibited the degradation of TMP,
indicating that all these species contributed to its degradation (Figure 9a). For instance,
after 4 min of plasma bubble treatment, the degradation of TMP decreased from 74.7%
(no scavenger) to 69.5%, 59.4%, 39.7%, and 26.7% in the presence of MP, SP, D-man, and
BQ, respectively. Therefore, hydrated electrons and H2O2 contributed the least to TMP
degradation, while ·OH proved to play a considerable role in the process, with the most
significant contribution coming from ·O2

−. Depending on the treatment time, the calculated
action efficiency of ·O2

− ranged between ~53 and 74%, while the corresponding action
efficiencies of ·OH, H2O2, and eaq

− ranged between ~43 and 70%, ~9 and 26%, and ~3
and 15%, respectively (Figure 9b). The significantly more pronounced role of ·OH in the
degradation of TMP compared to H2O2 justifies the superior plasma-catalytic performance
of ZnO compared TiO2. It is worth reminding here that in the presence of TiO2, the
concentration of H2O2 was increased, while the concentration of ·OH was decreased
compared to plasma alone. Conversely, with ZnO, the presence of this substance led to a
decrease in H2O2 concentration and an increase in ·OH concentration (Figure 3a,c).
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Figure 9. (a) Effect of scavengers on TMP degradation by plasma bubbles and (b) action efficiency of
plasma species (pulse voltage: 25.6 kV, pulse frequency: 200 Hz, plasma gas: air, flow rate: 3 L/min,
initial TMP concentration: 20 mg/L, D-man concentration: 6 mM, BQ concentration: 1 mM, MP
concentration: 1 mM, SP concentration: 1 mM).
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3.8. The Mineralization of TMP under Plasma Bubbles in the Absence and Presence of ZnO

The effectiveness of this remediation approach for TMP degradation was explored in
terms of total organic carbon (TOC) removal. The samples tested were from the following
systems: air–plasma bubbles, air–plasma bubbles + ZnO, O2–plasma bubbles, and O2–
plasma bubbles + ZnO for 10, 20, and 30 min of plasma treatment. ZnO was beneficial
to TOC removal for both the air–plasma bubbles and O2–plasma bubbles treatments
(Figure 10). In particular, the TOC removal rate for air–plasma bubbles was 27% after 30 min,
while in the presence of ZnO, it increased significantly to 35% with a shorter treatment
time (i.e., 20 min). In the case of the O2–plasma bubbles treatment, the TOC removal
rate remained stable at ~30% regardless of the treatment time, while the addition of ZnO
resulted in a gradual increase with treatment time, reaching an impressive TOC removal
rate of 71% after 30 min of treatment. Therefore, ZnO-catalyzed plasma bubbles resulted in
the complete removal of the TMP parent molecule but also in noticeable TOC removal.
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TMP concentration: 20 mg/L, ZnO loading: 0.2 g/L).

4. Conclusions

In this study, a novel plasma-catalytic process was proposed for degrading trimetho-
prim (TMP) in water by combining underwater plasma bubbles with ZnO or TiO2 photocat-
alysts. The plasma bubbles were energized by high-voltage nanosecond pulses to enhance
the production yield of plasma species. Both catalysts maintained their pore structure after
plasma bubble treatment, and the physicochemical properties of water (pH and electrical
conductivity) remained unaffected.

ZnO and TiO2 both facilitated the decomposition of plasma-generated O3 in water
to other oxygen radicals. However, TiO2 led to a decrease in ·OH concentration and an
in-crease in H2O2, while ZnO resulted in an increased ·OH concentration and a decrease in
H2O2. ZnO-catalyzed plasma bubbles outperformed TiO2-catalyzed ones in TMP degrada-
tion, achieving 94.8% degradation compared to 87.4% with TiO2 after 5 min of treatment.
The synergetic factor was 1.70 for ZnO and 1.17 for TiO2, indicating that the synergy was
~1.5 times higher for ZnO.

TMP degradation was higher under oxygen– and air–plasma bubbles compared to
argon–plasma bubbles, with ZnO-catalyzed air–plasma bubbles showing effectiveness
across various initial TMP concentrations. The plasma-catalytic synergy was higher in
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air–plasma bubbles compared to argon–plasma bubbles (with synergistic factors of 1.70 and
1.31, respectively), which aligns with the wavelength of UV light produced by each plasma
gas and the UV absorption range of ZnO. ·O2

− and ·OH were the primary contributors to
TMP degradation, with ·OH playing a more significant role than H2O2. This justified the
superior plasma-catalytic performance of ZnO compared to TiO2.

The combination of HV nanopulses with plasma bubbles and ZnO proved to be
optimal for minimizing energy costs, with the calculated electrical energy per order (EEO)
ranging from 0.23 to 0.46 kWh/m3. The ZnO-catalyzed O2–plasma bubbles achieved a
remarkable 71% removal rate of TOC after 30 min of treatment. These findings underscore
the potential of this study in contributing to the development of highly effective processes
for antibiotic degradation in water.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano14100815/s1, Figure S1. The XRD patterns of (a) TiO2 and
(b) ZnO before and after plasma bubble treatment (pulse voltage: 25.6 kV, pulse frequency: 200 Hz,
plasma gas: air, flow rate: 3 L/min, treatment time: 5 min, catalyst loading: 0.2 g/L). Figure S2.
Pore size distribution of (a) ZnO and (b) TiO2 before and after plasma bubble treatment (pulse
voltage: 25.6 kV, pulse frequency: 200 Hz, plasma gas: air, flow rate: 3 L/min, treatment time: 5 min,
catalyst loading: 0.2 g/L). Figure S3. TEM images of (a) TiO2 nanoparticles and (b) ZnO nanopowder.
Figure S4. (a) pH and (b) conductivity of plasma-treated water as a function of plasma bubble
treatment time in the absence or the presence of catalysts (pulse voltage: 25.6 kV, pulse frequency:
200 Hz, plasma gas: air, flow rate: 3 L/min, catalyst loading: 0.2 g/L).
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