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Abstract: Binary transition metal oxide complexes (BTMOCs) in three-dimensional (3D) layered
structures show great promise as electrodes for supercapacitors (SCs) due to their diverse oxidation
states, which contribute to high specific capacitance. However, the synthesis of BTMOCs with 3D
structures remains challenging yet crucial for their application. In this study, we present a novel
approach utilizing a single-step hydrothermal technique to fabricate flower-shaped microspheres
composed of a NiCo-based complex. Each microsphere consists of nanosheets with a mesoporous
structure, enhancing the specific surface area to 23.66 m2 g−1 and facilitating efficient redox reactions.
When employed as the working electrode for supercapacitors, the composite exhibits remarkable
specific capacitance, achieving 888.8 F g−1 at 1 A g−1. Furthermore, it demonstrates notable electro-
chemical stability, retaining 52.08% capacitance after 10,000 cycles, and offers a high-power density of
225 W·kg−1, along with an energy density of 25 Wh·kg−1, showcasing its potential for energy storage
applications. Additionally, an aqueous asymmetric supercapacitor (ASC) was assembled using
NiCo microspheres-based complex and activated carbon (AC). Remarkably, the NiCo microspheres
complex/AC configuration delivers a high specific capacitance of 250 F g−1 at 1 A g−1, with a high
energy density of 88 Wh kg−1, for a power density of 800 W kg−1. The ASC also exhibits excellent
long-term cyclability with 69% retention over 10,000 charge–discharge cycles. Furthermore, a series
of two ASC devices demonstrated the capability to power commercial blue LEDs for a duration of at
least 40 s. The simplicity of the synthesis process and the exceptional performance exhibited by the
developed electrode materials hold considerable promise for applications in energy storage.

Keywords: binary transition metal oxides microspheres; hydrothermal synthesis; aqueous asymmetric
supercapacitors; specific energy; energy storage materials

1. Introduction

The combustion of fossil fuels and the resulting emission of pollutants have prompted
scientists worldwide to seek alternative energy storage methods, such as clean electrochem-
ical systems [1–3]. Extensive research and development have focused on emerging energy
storage technologies, including supercapacitors [4], fuel cells [5], secondary batteries (such
as Li, Na, K, and Li-S batteries) [6–9], and dual-battery systems for renewable energy gener-
ation [10]. These novel energy storage devices are gaining attention for their user-friendly
nature, simplicity, high efficiency, and environmental friendliness [11].
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Among the various kinds of energy storage devices, supercapacitors (SCs) have partic-
ular benefits due to their rapid charge and discharge rates [12]. Moreover, in comparison to
secondary batteries, it may provide extremely high power densities; at the same time, the
longer cycle stability and higher energy density are additional appealing advantages [1,2].
An essential component of SCs is the electrode material, whose composition, structure,
and shape all have a direct impact on its electrochemical characteristics [3]. To ensure
the optimal performance of supercapacitors, the electrode material must exhibit various
essential qualities, such as a large specific surface area, high electrical conductivity, rapid
ion transportation, and exceptional electrochemical stability [1].

In recent years, significant advancements have been made in the development of
binary electrode materials, particularly for energy storage applications [13]. These mate-
rials, including carbon-based substances, conductive polymers, and blends of transition
metals [14,15], show considerable promise for enhancing energy storage technologies. Tran-
sition metal complexes with diverse oxidation states and morphologies, such as Co-Fe,
Ni-Fe, Ni-Co, Ni-Mo, and Co-Mo, play a crucial role in increasing energy density and ex-
tending discharge periods through rapid Faraday redox processes [16–19]. However, these
materials often exhibit lower electrical conductivity and susceptibility to accumulation.
To address these challenges, researchers have explored the formation of layered binary
transition metal compounds (BTMCs) by combining transition metal compounds with
other electrode materials known for exceptional electrical conductivity and high specific ca-
pacitance, such as Ni-Fe MOF [20], Ni/Co-MOF@aminated MXene [21] NiCo-MOF/MXene
heterostructures [22], Ni–Cu nanocomposite-modified MXene [19], transition metal quan-
tum dots@ graphene composite [23], and dual-metal MOF-derived Co-Ni/rGO [24]. These
BTMC composites have shown remarkable results in supercapacitor applications, demon-
strating enhanced energy density, capacitance retention, and stability after numerous
cycles [24–27].

For example, Li et al. achieved remarkable results by fabricating CuO- and CoFe-
based BTMCs composites using the electrosynthesis method, which exhibited an energy
density of 1.857 mWh·cm−3 and a capacitance retention of 99.5% after 2000 cycles [28]. In a
similar manner, Zhang et al. utilized an in situ crystallization technique to fabricate hybrid
BTMCs composites consisting of NiMn-MB/MXene. The results showcased a remarkable
specific capacitance of 1575 F·g−1 at 0.5 A·g−1, along with a capacitance retention rate of
90.3%, after subjecting the composites to 10,000 cycles under a condition of 5 A·g−1 [29].
Later on, researchers utilized a hydrothermal method to successfully synthesize NiO/Ni
nanoparticles derived from Ni-MOF embedded on r-GO-based BTMC composites. These
materials exhibited a favorable specific capacity of 649.22 C g−1 at 3 A g−1 and maintained
81.1% of their initial capacity value even after 5000 cycles at 20 A g−1 [30]. Using solvent-
thermal and calcination processes, a fully encapsulated CoO-NiO (NiCo@Si1-C) BTMC-
based composite was synthesized on SiO2-modified carbon nanofibers (Si1-C). The specific
capacitance of NiCo@Si1-C composites reached 518.1 F g−1 at 0.5 A g−1, surpassing that
of NiCo@Si0-C (229.9 F g−1 at 0.5 A g−1) by more than 2.25 times [31]. Moreover, using
a one-step hydrothermal method, researchers recently succeeded in preparing a FeCoNi-
LDH-based BTMC composite featuring cross-braided nanoneedle flowers. The ternary
LDH utilized as the electrode material exhibits exceptional electrochemical properties,
including an impressive specific capacitance of 2163.3 F g−1 at 0.5 Ag−1 and a favorable
cycle retention rate of 93.8% after undergoing 5000 cycles at 20 Ag−1 [18].

Although BTMC-based composites significantly enhance supercapacitor performance,
it is more effective to improve the structure and properties of primary transition metals or
metal oxides (TMOs) through a facial-synthesis approach to create their complex structures
(BTMOCs) rather than combining them with other electrode materials. This approach is
favored due to the similar characteristics of TMs/TMOs, making their complexes easier to
control in terms of final morphological architecture and electronic band structures, which
are essential for various applications, including electrochemical energy storage. For exam-
ple, Biswal et al. devised a novel electrochemical method to synthesize cobalt–nickel-mixed
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oxide, yielding a nanoporous sea sponge structure with interconnected nanosheets. This
binary metal oxide exhibited excellent electrochemical behavior, achieving a capacitance
of 76 F g−1 with 98% efficiency after 1000 cycles in a hybrid capacitor configuration [32].
Therefore, considering BTMOCs as a suitable structure compared to BTMCs-based com-
posites, the selection and utilization of specific TMOs with exceptional electrochemical
characteristics, such as cobalt oxide (Co2O3) and nickel oxide (NiO), is crucial. As the
BTMOCs of these metals are rarely employed in supercapacitor applications due to the
complexity of synthesizing them in 3D flower-like architectures.

All phases of cobalt oxide, including Co2O3, serve as promising electrocatalysts for
various electrochemical activities, including energy storage applications [33–35]. They
demonstrated exceptional redox activity across pairs like Co2+/Co3+ and Co3+/Co4+, along-
side being electrochemically stable, cost-effective, and abundantly available in nature [36].
Additionally, they are electrochemically stable, cost-effective, and abundantly available in
nature [25]. Moreover, when shaped into nanostructures such as nanoflowers, nanosheets,
and nanoflakes, Co2O3 exhibits further enhanced electrochemical properties [26]. Con-
versely, NiO shows great potential for energy storage applications due to its ideal band-edge
potential for generating redox-active O2

− and OH− radicals, which enhance active sites
in electrochemical reactions [26]. However, the sluggish electrochemical kinetics of NiO
pose challenges for charge transfer, particularly due to slow ion storage kinetics and rapid
volume changes during charging/discharging processes [37]. These challenges can be
addressed by controlling crystal size and engineering NiO into three-dimensional (3D) ar-
chitectures [26,38]. As crystal size affects surface area, crucial for electrochemical reactions.
Meanwhile, different 3D structures, including cactus-like, spherical, hierarchical, porous,
and flower-like configurations, offer increased surface areas and active sites compared to
traditional nanorods, nanosheets, and nanoparticles. Thus, constructing both NiO and
Co2O3 with 3D structures would be a suitable strategy to enhance their surface area and
active sites, while maintaining their electrochemical stability. However, preparing both
NiO and Co2O3 with a 3D flower-like architecture, even in their single form, is challenging
and requires surfactants, reducing agents, and templates [39–41]. Additionally, the use of
these additional precursors necessitates precise control over synthesis conditions, as minor
changes in pressure, temperature, time, concentration, and a calcination environment can
lead to different structures in the final product [42]. Therefore, developing controllable
modification methods for reliably producing BTMOCs with 3D structures remains a key
area of research.

In this study, layered-structured 3D BTMOCs were successfully prepared using a
simple one-step synthesis method. The prepared composite consists of flower-shaped
microspheres, with each nanosheet exhibiting a mesoporous structure, enhancing the
specific surface area to 23.66 m2 g−1, and facilitating efficient redox reactions. Based on these
characteristics, the composite demonstrated outstanding supercapacitor performances,
achieving a specific capacitance of 686.4 F g−1 at 2 A g−1 and maintaining a retention
rate of 52.6% after 10,000 cycles. Additionally, as an aqueous asymmetric supercapacitor
(ASC) configuration, it exhibited high specific capacitance, energy density, and excellent
long-term cyclability, highlighting the potential of the developed electrode materials for
energy storage applications.

2. Materials and Methods
2.1. Synthesis of Flower-like CoNi Binary Micro-Balls

All reagents and chemicals were purchased from Aladdin (Shanghai, China) and
utilized without additional purification. Both the pure (NiO and Co2O3) and layered
BTMOCs-based samples (NiCo-95:5, NiCo-90:10, NiCo-85:15, NiCo-80:20, NiCo-75:25, and
NiCo-70:30) were efficiently synthesized through a facile hydrothermal method. For in-
stance, the preparation of NiCo-75:25 involved combining a mixed solvent (30 µL DMF
and 30 µL ethylene glycol) with 12 mmol Ni(NO3)2·6H2O, 4 mmol Co(NO3)3·5H2O, and
0.6 mmol NH4F, denoted as solution A. Solution B was formed by dissolving 1.24 g pure
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terephthalic acid in 30 mL DMF and 15 mL ethanol. Subsequently, solution A was added to
solution B, stirred for 1 h at 25 ◦C, and supplemented with 240 µL of ammonia solution. The
resulting mixture was then transferred into an 80 mL Teflon-lined stainless-steel autoclave,
heated at 120 ◦C for 12 h, and cooled to room temperature (25 ◦C). The product was col-
lected, centrifuged, washed with deionized water and pure ethanol, dried for 12 h at 80 ◦C,
and calcined for 3 h at 500 ◦C in a muffle furnace under ambient conditions. Following the
successful synthesis of each sample, the morphological analysis and elemental composition
assessment was performed using a field-emission scanning electron microscope (FESEM,
Zeiss Gemini 500, Jena, Germany) and a high-resolution transmission electron microscope
(HRTEM, JEM–2100 F, Tokyo, Japan) equipped with an EDS detector. The structural analy-
sis was validated through X-ray diffraction (XRD) patterns (Bruker AXS, Billerica, MA, USA
(D8, Advance, Cu Kα X-ray source) diffractometer with Cu Kα radiation (λ = 0.15418 nm)),
and the XRD scanning occurred at a rate of 0.2◦ s−1 within a 2θ range of 10◦ to 80◦. The
spectra of X-ray photoelectron spectroscope (XPS) were recorded using a Termo Scientific
Escalab 250xi instrument (Waltham, MA, USA) equipped with a monochromatic Al Kα

source. Additionally, we conducted a BET analysis (BET MicroActive ASAP 2460, Tokyo,
Japan) to determine the pore size and specific surface area of the BTMOCs.

2.2. Fabrication and Electrochemical Characterization of Supercapacitor

The slurries for each working electrode were prepared by mixing the active materials
(e.g., NiCo-75:25: 80%), along with 10% PVDF and 10% carbon black, in NMP as the
solvent. The resulting blends were ground using a mortar and pestle for 20 min. Coating of
the slurry was then carried out on commercially available nickel foam (effective coating
area = 1 × 3 cm2), followed by drying in an oven for 12 h. The loading mass was estimated
to be 2 mg.

The NiCo-75:25-based electrode served as the working electrode for individual elec-
trochemical assessments within a three-electrode system. A freshly prepared 3 M KOH
aqueous solution was used as the electrolyte, with a saturated AgCl/Ag electrode as
the reference electrode and a platinum plate as the counter electrode. The evaluations
included cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochem-
ical impedance spectroscopy (EIS) measurements conducted at room temperature.

The specific capacity (Cs: F/g) was quantitatively analyzed using GCD curves and
Equation (1): [43].

C =
I∆T

M∆V
(1)

where I/M represents the applied current density (A/g), ∆V is the voltage (V), and ∆T
denotes the discharge time (s).

An asymmetric supercapacitor (ASC) was fabricated using NiCo-75:25 and activated
carbon (AC) as the positive and negative electrodes, respectively, in a 3 M KOH electrolyte
with a separator. The fabrication method for the negative electrode was identical to that of
the positive electrode. The mass fraction of NiCo-75:25 to AC was determined using the
charge balance formula (q+ = q−) [43].

m+

m−
=

C− × ∆V−
C+ × ∆V+

(2)

where q, C, ∆V, and m denote the electrode’s charge, capacitance, potential window, and
mass. The optimal NiCo-75:25-to-AC mass ratio was approximately 1:1, with an overall
weight of about 3.1 mg cm−2.

The energy density (ED) in Wh kg−1 and power density (PD) in W kg−1 of the ASC
were calculated using specific relationships, as given in Equations (3) and (4) [44].

E =
1

7.2
Cs (∆V)2 (3)
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P =
E × 3600

∆T
(4)

3. Results and Discussion
3.1. Morphological Analysis

The SEM analysis was conducted at various resolutions to elucidate the morphology
of the BTMOCs, as depicted in Figure 1a–c. The lower magnification images (Figure 1a,b)
showcase the formation of distinct flower-shaped microspheres (MSs). To delve deeper
into the intricate details of the BTMOCs, higher magnification images were acquired
(Figure 1c), revealing the porous structure of the nanosheets constituting each BTMOC.
These nanosheets form a robust interconnected network, with their surfaces exhibiting a
terrace-like structure rather than a smooth and flat appearance (inset of Figure 1c). Further-
more, the average diameter of these hierarchical BTMOCs was measured at 2.2 ± 0.2 µm.
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Figure 1. (a–c) SEM images depict various magnitudes of the NiCo-75:25 BTMOCs, with the inset
image in (c) revealing the porous nanosheets. (d–f) Homogeneous and porous nanostructures
observed through HRTEM analysis, confirming the lattice fringe spacing of NiO and Co2O3. (g–i) EDS
mapping confirming the spatial distribution of Ni and Co components, along with oxygen.

The homogeneous and porous nature of the BTMOCs, along with the confirmation
of their structure and elemental composition, was further verified through an HRTEM
analysis, as depicted in Figure 1d–f. Figure 1d,e clearly illustrate the porous nanostructures
of each nanosheet and the overall homogeneity of the BTMOCs. To observe the structural
analysis and confirm the lattice fringe spacing, a high-resolution image was captured, as
depicted in Figure 1f, indicating that the BTMOCs are composed of NiO and Co2O3, as
evidenced by their lattice fringe spacing of approximately 0.73 nm and 0.83 nm, respectively.
This value aligns well with the (200) and (311) planes of NiO and Co2O3, respectively, which
were also observed in the XRD pattern of the BTMOCs, as discussed in subsequent sections.

Furthermore, elemental confirmation was substantiated through EDS mapping, as
presented in Figure 1g–i. These images illustrate a well-matched spatial distribution of
the prepared BTMOCs, consisting of a higher Ni content and lower Co content, along
with oxygen.
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3.2. Structural and Surface Analysis

Figure 2a displays the XRD analysis performed to characterize the microstructure of
pure Co2O3, bare NiO, Co-doped NiO composite (NiCo-95:5), and NiCo-75:25 BMTOCs
MSs. The diffraction peaks of the pure Co2O3 and pure NiO samples can be readily
indexed as JCPDS No. 43-1003 and JCPDS No. 78-0429, respectively [45,46]. Notably,
the absence of Co2O3 peaks and the significant shift of the two major peaks towards
higher diffraction angles in the XRD pattern of the NiCo-95:5 sample compared to the
pristine NiO pattern indicate successful Co ion doping within the NiO structure, rather
than the formation of a composite structure. Additionally, this suggests that the sample is
predominantly composed of NiO due to its well-defined crystalline structure and low Co
concentration. Furthermore, the XRD pattern of the NiCo-75:25 BTMOCs MSs matched well
with those of NiO and Co2O3, confirming the successful preparation of the NiCo BTMOC-
based composite structure. The absence of extra peaks indicates that all the samples were
synthesized without impurities.
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Given that the material’s surface is the primary interface with its environment, the
specific surface area becomes a pivotal parameter in understanding the behavior of func-
tional materials. In the context of supercapacitors, a substantial specific surface area
offers the potential for increased electron absorption, thereby enhancing capacitor perfor-
mance. To assess the specific surface area ratio and porosity of the layered BTMSs, N2
adsorption/desorption isotherms were employed (Figure 2b). The results indicate that the
NiCo-75:25 BTMOC exhibited a notably high specific surface area of 23.66 m2 g−1, surpass-
ing that of all other ratios used for preparing the NiCo-BTMOCs composite (Figure 2b).
This characteristic is attributed to the presence of numerous voids within hierarchical
nanostructures, and it aligns with the observations from the SEM and HRTEM analyses.
Furthermore, the Barrett–Joyner–Halenda (BJH) analysis revealed a pore size of 20 nm,
suggesting that the overall porosity of the sample primarily originates from mesopores.
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The chemical composition and bonding states of the NiCo-5 composite were meticu-
lously characterized through XPS analysis. The survey spectrum in Figure 3c provides a
comprehensive overview of the NiCo-75:25 sample, confirming the exclusive presence of
nickel (Ni), cobalt (Co), oxygen (O), and carbon (C), with no indication of any other elements.
The O 1s spectra (Figure 2d) reveal two deconvoluted peaks at 529.5 and 530.7 eV, indicative
of lattice oxygen (O-Ni and O-Co bonds) and chemisorbed oxygen, respectively [47,48].
Similarly, the peak observed at 532.60 eV confirm the presence of the absorbed water in the
material surface [49,50]. High-resolution Ni 2p spectra (Figure 2e) exhibit peaks at 855.2 and
871.9 eV, corresponding to Ni 2p3/2 and 2p1/2, respectively [51]. The presence of the NiO
phase is evident, as the Ni2+ and Ni3+ peaks contain two satellite peaks, 2p3/2 and 2p1/2,
at approximately 861.6 and 878.8 eV. Similarly, the Co 2p spectrum (Figure 2f) displays
two peaks at 779.7 and 794.5 eV, corresponding to the Co2+ valence states for Co 2p3/2
and Co 2p1/2, respectively [44]. These diverse oxidation states make both NiO and Co2O3
promising electrocatalysts for electrochemical activities. Therefore, they demonstrate ex-
ceptional redox activity across pairs like Co2+/Co3+ and Ni2+/Ni4+, while maintaining
electrochemical stability due to their robust 3D structure.
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Figure 3. (a) CVs of various NiCo-based electrodes and pure Co2O3, NiO, and Ni-foam. (b) CVs
of NiCo-75:25 electrode at different sweep rates. (c) Relationship between the square root of the
scan rate and cathodic/anodic peak current for the NiCo-75:25 electrode. (d) EIS measurements
comparing the solution resistance (Rs) of different electrodes, which was found by fitting with an
equivalent electrical circuit (inset plot). (e) GCD profiles of NiCo-based electrodes and pure Co2O3,
NiO at 1 A g−1. (f) GCD profiles of the NiCo-75:25 electrode at 1 A g−1. (g) Specific capacitance of the
NiCo-75:25 electrode at different current densities. (h) Cycling stability of the NiCo-75:25 electrode
over 10,000 cycles at 1 A g−1, with the inset plot showing the GCD at 1st and 10,000 cycles. (i) EIS
and CV (inset plot (ii)) analysis of the NiCo-75:25 electrode before and after cycling stability testing.
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3.3. Electrochemical and Supercapacitor Performance Analysis

The electrochemical characteristics of various electrode materials, including pure
Co2O3, pure NiO, and different NiCo ratios (95:5, 90:10, 85:15, 80:20, 75:25, and 70:30), were
comprehensively examined using CV, EIS, and GCD measurements, as depicted in Figure 3.

Figure 3a illustrates the CVs of different NiCo-based electrodes, along with pure
Ni-foam, pure Co2O3, and pure NiO, at a constant scan rate of 60 mV s−1. It is observed
that both NiO and Co2O3 exhibit distinct Faradaic redox peaks, representing their typical
redox characteristics. The potential faradic redox reaction mechanism associated with the
electrodes involves M-O/M-O-OH (M = Ni or Co ions) in the alkaline electrolyte. For
instance, in the Co2O3-based electrode, a singular pair of redox peaks is distinctly observed,
reflecting the reversible transformations of Co2+/Co3+ ions facilitated by anionic species
(2OH−). These transformations can be described by the following chemical reactions:
Co2O3 + H2O + OH− → CoOOH + H2O + e−, succeeded by CoOOH + OH− ⇔ CoO2 +
H2O + e− [52]. Similarly, the anodic and cathodic peaks in NiO arise from the oxidation of
NiO to NiOOH (charging) and the reduction of NiOOH to NiO (discharging), respectively.
This process follows the redox reaction, NiO + OH− ↔ NiOOH + e− [53,54]. Moreover,
it is observed that the NiCo-90:10-based electrode exhibits a single pair of redox peaks
attributed to NiO redox activity (confirming the doping of Co-ions), while NiCo-85:15,
NiCo-75:25, and NiCo-70:30 electrodes display two pairs of redox peaks, indicating Co2O3
redox activity. This suggests that electrodes with Co2O3 ratios above 10% exhibit more
pronounced reversible Faradic redox reactions between M–O and M–O–OH (M = Ni or
Co ions) in the alkaline electrolyte [55]. Remarkably, the NiCo-75:25 electrode shows
a significantly larger integrated CV area, indicating a superior capacitive behavior and
enhanced electrochemical properties. Figure 3b presents CVs of the NiCo-75:25 electrode at
various sweep rates (5 to 40 mV s−1), demonstrating slight shifts in cathodic and anodic
peaks due to enhanced ion diffusion resistance at higher sweep rates [56]. However, the CV
shapes remain consistent, indicating rapid redox reactions and reversible charge/discharge
capabilities [56]. To further understand ion diffusion on the electrode surface, the square
root of the scan rate and the cathodic/anodic peak current were plotted for the NiCo-75:25
electrode, revealing a linear relationship indicative of ion diffusion dominance over surface
absorption [57] (Figure 3c).

EIS measurements (Figure 3d) show that the NiCo-75:25 electrode exhibits signifi-
cantly lower solution resistance (Rs) of 1.76 Ω compared to other electrodes, owing to its
optimal Ni and Co ratio, which provides abundant active sites for electrochemical reactions.
Additionally, the NiCo-75:25 electrode demonstrates a shorter inclined line approaching
the imaginary axis, suggesting lower total resistance and diffusion length, facilitating
rapid ion diffusion into the nanostructured material [58]. The GCD profiles (Figure 3e)
further confirm the superior performance of the NiCo-75:25 electrode, with the longest
discharge time among all electrodes at a specific current of 1 A g−1, indicating the highest
specific capacitance. Nonlinear GCD shapes imply Faradaic redox characteristics in all
electrodes [59]. Furthermore, to quantify the Cs of the NiCo-75:25 electrode, GCD profiles
were recorded at various current densities (1 to 10 A g−1), revealing Cs values ranging
from 888.88 to 222.22 F g−1. The high Cs values are attributed to the abundant active sites
provided by Co2O3 in the optimal ratio, facilitating rapid ion/electron diffusion during
charge–discharge cycles. Long-term cycling stability tests (Figure 3h) demonstrate that the
NiCo-75:25 electrode retains 52.08% of its initial capacitance after 10,000 cycles at 1 A g−1.
Moreover, minimal variation in EIS and CV analysis (Figure 3i) before and after cyclic
stability testing confirms the outstanding stability of the electrode material. These results
highlight the excellent electrochemical behavior of the NiCo-75:25 electrode, positioning it
as a promising material for supercapacitor applications.

3.4. Asymmetric Supercapacitor Performance and Real-Time Application Analysis

The ASC configuration integrates the NiCo-75:25 electrode material as the positrode
and activated carbon (AC) electrodes as the negatrode, as illustrated in Figure 4. Combin-
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ing a Faradic redox electrode (NiCo-75:25) with an EDLC-type electrode (AC), the ASC
facilitates a redox reaction where cation (OH−) and anion (K+) adsorption and desorp-
tion occur at the positrode and negatrode, respectively [60]. AC was chosen for its high
specific surface area, excellent electrical conductivity, and good electrochemical stability.
This choice facilitates the formation of a larger number of double layers, facilitating the
transport of electrolyte ions and enhancing energy storage capacity and rate capability.
Balancing the mass between positrode and negatrode is crucial for achieving higher su-
percapacitive performance and better energy efficiency before assembling the ASC. The
optimal NiCo-75:25-to-AC mass ratio was approximately 1:1, with an overall weight of
about 3.1 mg cm−2. The stable working voltage window of the ASC was determined based
on the CVs of the NiCo-75:25 electrode (0–0.6 V) and AC electrode (−1.0 to 0 V) performed
at a sweep rate of 50 mV s−1, as depicted in Figure 4a. The plausible Faradic reactions that
take place in the NiCo-75:25-based BTMOCs electrode surface from the combined redox
behavior of Co and Ni+ ions could be described as follows [61]:

Ni+ + 3OH− ↔ NiOOH + H2O + 2e− (5)

Ni2+ + 3OH− ↔ NiOOH + H2O + e− (6)

NiOOH + OH− ↔ NiO2 + H2O + e− (7)

Co2+ + 3OH− ↔ CoOOH + H2O + e− (8)

Co3+ + 3OH− ↔ CoOOH + H2O (9)

CoOOH + OH− ↔ CoO2 + 2H2O + e− (10)

Meanwhile, for the AC electrode, its CV curve indicates the capacitive behavior of the
electrode where the charges are stored as electric double layer (EDL), and it is designated
as follows: AC + xOH− + yK+ ↔ AC||xOH− + yK+, where || indicates the double-
layer formation.

Notably, the stable operating window of the ASC extends to 1.6 V (Figure 4b). The
CVs of the ASC at different sweep rates within the voltage window of 0–1.6 V (Figure 4c)
demonstrate preserved CV shapes even at a sweep rate of 100 mV s−1, indicating a good
rate performance and fast charge/discharge behavior [62]. The GCD profile of the ASC at
various current densities (1–10 A g−1) within the voltage window of 0–1.6 V is shown in
Figure 4d, with symmetrical profiles indicating excellent electrochemical reversibility [62].

The Cs of the ASC, determined as a function of current density (Figure 4e), is estimated
at 250 F g−1 at a current density of 1 A g−1. Remarkably, the ASC retains 74% and 30%
of its initial capacitance even at current densities of 5 A g−1 and 10 A g−1, respectively,
demonstrating high-rate capability [63]. The ED and PD of the ASC, estimated using
Equations (3) and (4), are found to be 88.8 Wh Kg−1 and 800 W Kg−1, respectively, show-
casing its exceptional performance. Additionally, the cyclic lifetime of the ASC, evaluated
at a current density of 1 A g−1, demonstrates long-term cycling retention with less than
69% deterioration of its initial Cs over 10,000 continuous GCD cycles (Figure 4f). The
consistent CV analysis of the (inset plot in Figure 4f) pre- and post-cyclic stability testing
underscores the remarkable stability of the electrode material, affirming the exceptional
electrochemical performance of NiCo-75:25 as a viable candidate for ASC applications.
However, despite the enhanced electrochemical performance and stability attributed to
the excellent structural characteristics of the BTMOCs, such as their 3D morphology and
mesoporous sheet-like architecture, it is noteworthy that the retention capacitance was not
exceptionally high (69%). The observed degradation in capacity, beginning after the initial
ten cycles and persisting consistently throughout the 10,000 cycles, suggests the formation
of a solid electrolyte interface (SEI) layer on the surface of the BTMOCs during each charge
and discharge cycle. This SEI layer, estimated to be a few nanometers thick, likely impedes
ion accessibility, resulting in reduced capacitance. Furthermore, the electrochemical per-
formance of the fabricated ASC is compared relatively with recent reports, as shown in
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Table 1. To assess the practical applicability of the fabricated electrode for energy storage, a
real-world test was conducted using a commercial LED powered by two assembled ASCs
(NiCo-75:25//AC). To illustrate the setup, Figure 4g depicts the schematic diagram of the
assembled ASC device. After the ASC devices were charged with a 9 V battery, they were
promptly connected in series to power the blue LED for approximately 60 s, as presented in
Figure 4h. Notably, the LED’s luminosity gradually decreased from 20 s to 40 s, and beyond
60 s, the brightness diminished significantly. This practical demonstration underscores
the potential efficiency and suitability of the fabricated ASC for various energy storage
applications. However, a slight flaw in the demonstration was observed as the LED’s
luminosity diminished beyond 60 s, suggesting a limitation in prolonged power supply.
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densities. (e) Specific capacitance (Cs) as a function of current density. (f) Cycling stability of the ASC
with consistent CV analysis. (g) Schematic diagram of the assembled ASC device. (h) Real-world test
demonstrating LED illumination powered by two ASCs.
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Table 1. Comparing the asymmetric supercapacitors’ performance with other previous systems.

Materials Current
Density (A/g) Csp (F/g) ED (Wh/kg) PD (W/kg) Ref.

ZnO–NiO–CuO mixed
metal oxides 1 118 15.7 - [64]

Mesoporous NiO nanosheets 2 202.3 47.18 758.37 [65]

CoO@CuONanowire arrays 1 56.88 20.22 800 [66]

CoO@CoAl-LDH hierarchical
3D nanobouquet arrays 1 195.6 69.55 800 [67]

Ni-Co metal oxides 1 484.4 50.3 300.2 [68]

Tri-metallic MOF
nanoarchitecture 1 166.4 23.6 501.5 [69]

CuCo2O4/CuO//AC 1 115 28.12 874.84 [70]

NiCo-75:25//AC 1 250 88 800 This study

4. Conclusions

In conclusion, our study presents a facile method for synthesizing layered NiCo-
75:25 BTMOCs, presenting remarkable potential for high-performance supercapacitor
applications. The NiCo-75:25 BTMOCs exhibit a unique hierarchical nanostructure with
flower-shaped microspheres, resulting in a notably high specific surface area of 23.66 m2 g−1.
This enhancement facilitates efficient redox reactions and offers promising electrochemical
properties. The NiCo-75:25-based electrode demonstrates an impressive specific capacitance
of 888.8 F g−1 at a specific current of 1 A g−1, presenting its suitability for high-rate
applications. Moreover, the assembled ASC comprising NiCo-75:25 as the positive electrode
and AC as the negative electrode achieves a specific capacitance of 250 F g−1 at a specific
current of 1 A g−1. Additionally, the ASC exhibits a high energy density of 88 Wh Kg−1 at a
power density of 800 W kg−1 and excellent long-term cyclability with >69% retention over
10,000 charge–discharge cycles. These results underscore the importance of optimizing the
NiCo ratio in BTMOCs to achieve superior supercapacitor performance. Future research
directions may focus on further optimizing the synthesis process and exploring practical
applications of NiCo-75:25-based supercapacitors in energy storage systems.
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