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Abstract: Introduction: Antimicrobial resistance (AMR) is currently a growing concern among health-
care providers, underscoring the importance of describing the regional susceptibility profile for
common microorganisms that are associated with urinary tract infections (UTIs). This knowledge
serves as the foundation for proper empirical therapeutic recommendations tailored to local sus-
ceptibility patterns. Results: We found a high prevalence of ESBL-producing strains (36.9%), with
Escherichia coli and Klebsiella spp. being the most prevalent isolated bacteria. Among the catheterized
patients, Klebsiella spp. emerged as the primary etiology, with a significant correlation between
catheterization and Proteus spp. (p = 0.02) and Providencia stuartii (p < 0.0001). We observed significant
correlations between urinary catheterization and older age (68.9 ± 13.7 years vs. 64.2 ± 18.1 years
in non-catheterized patients, p = 0.026) and with the presence of an isolate with extensive drug
resistance (p < 0.0001) or even pandrug resistance (p < 0.0001). Susceptibility rates significantly
decreased for almost all the tested antibiotics during the study period. Notably, susceptibility was
markedly lower among catheterized patients, with the most pronounced differences observed for
carbapenems (59.6% versus 83.4%, p < 0.0001) and aminoglycosides (37.1% versus 46.9%, p = 0.0001).
Materials and Methods: We conducted a retrospective study analyzing the susceptibility profiles
of 724 extended-spectrum beta-lactamases (ESBL)-producing Enterobacterales isolated from urine
cultures. Our focus was on highlighting susceptibility profiles among isolates associated with urinary
catheterization and assessing the shifts in the susceptibility rates over time. Conclusions: The constant
rise in AMR rates among Enterobacterales presents significant challenges in treating severe infections,
particularly among urinary catheterized patients. This trend leaves clinicians with limited or no
effective treatment options. Consequently, the development and implementation of personalized
treatment protocols are imperative to ensure efficient empirical therapies.
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1. Introduction

Infections caused by Gram-negative bacteria continue to impose a significant burden
on the public health system, profoundly affecting patients’ prognosis [1]. The alarming rise
in the production and widespread dissemination of extended-spectrum beta-lactamases
(ESBLs) represent the foremost mechanism of beta-lactam resistance. ESBLs, typically
encoded on plasmids, confer resistance to a broad spectrum of antibiotics, including
most penicillins, cephalosporins, and aztreonam, through their enzymatic hydrolysis [2].
Additionally, while ESBLs do not directly deactivate non-beta-lactam agents, microorgan-
isms carrying ESBLs often harbor genes that confer resistance to other antibiotics such as
ciprofloxacin, gentamicin, or trimethoprim–sulfamethoxazole [3,4].

Catheter-associated urinary tract infections (CAUTIs) caused by Gram-negative bacilli,
particularly from the Enterobacterales family, are of paramount importance, due to the
high antimicrobial resistance (AMR) rates associated with these microorganisms [5,6]. This
aspect is noteworthy in Eastern Europe, particularly in Romania, where the AMR rates
are among the highest in Europe. A report published in 2022 by the Institute for Health
Metrics and Evaluation from the Global Research on Antimicrobial Resistance (GRAM)
project states that, in Romania, in 2019, there were 16,500 deaths associated with AMR, and
4300 were directly attributable to AMR [7].

The leading pathogen incriminated on this issue is Escherichia coli, followed by Staphy-
lococcus aureus; Klebsiella pneumoniae; Streptococcus pneumoniae; and non-fermenters,
such as Acinetobacter baumanii and Pseudomonas aeruginosa. It is important to note that
antibiotic resistance is the third leading cause of mortality in Romania, after cardiovascular
diseases and neoplasms; remarkably, it surpasses the mortality rates of other prevalent
conditions such as stroke, liver cirrhosis, or chronic kidney disease. This highlights the
severity of the issue and the need for urgent action to combat it [8].

AMR dynamic variability rates among Enterobacterales strains across different geo-
graphical regions, or even among hospitals within the same region, result in resistance
data that possess low spatial and temporal reproducibility [9,10]. Consequently, it is more
prudent to concentrate concerns regarding the evolution of AMR levels on regional trends
rather than fixating on recorded absolute values. Acquiring such data can serve as the
foundation for crafting therapeutic recommendations customized to the local susceptibility
profile. This approach supplants the reliance on personal experience and international
guidelines as primary working tools in clinical practice [11].

Therefore, the objective of this study was to evaluate the incidence of CAUTIs caused
by ESBL-producing Enterobacterales among inpatients from northeastern Romania. Addi-
tionally, we aimed to delineate the AMR trends of these isolates and discern differences in
the susceptibility profiles of isolates associated with urinary catheterization compared to
those without. By conducting this assessment, we sought to contribute to the understand-
ing of the epidemiology and antimicrobial resistance patterns of CAUTIs in our region. This
knowledge could inform strategies for infection prevention and control, as well as guide
empirical antibiotic therapy decisions, ultimately improving patient care and outcomes.

2. Results

During the analyzed timespan, there were 2281 UTIs, of which 1959 had a strain of
Enterobacterales as an etiological agent. Of these, we identified 724 (36.9%) positive urine
cultures with ESBL-producing Enterobacterales. Notably, although we observed a decrease
in the total number of UTIs, at the same time, the share of ESBL-producing isolates steadily
increased (Figure 1).

The most commonly identified agent was E. coli, with a total of 339 strains, fol-
lowed by Klebsiella spp., with 271 strains, and Enterobacter spp., with 36 strains; other
less prevalent microorganisms were Proteus spp.—34 strains, Providencia spp.—27 strains,
Serratia spp.—11 strains, and M. morganii—6 strains (Figure 2).
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Figure 1. All UTI incidence versus UTIs caused by an ESBL-producing isolate.
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Figure 2. Incidence of ESBL-producing microorganisms during 2016–2019.

We observed an association between patients’ age and the presence of an ESBL-
producing strain, with 83.3% of the total number of patients aged over 50 years, while al-
most half (44.8%) of them were over 70 years old, with no significant year-to-year variations.
We identified an overall predominance of female patients, accounting for 417 participants
(57.6%), compared to 307 (42.4%) men. The largest difference in this regard was recorded in
2019, when out of the total 204 patients, 127 (62.5%) were females (p < 0.0001, OR = 2.7204,
CI = 1.8229–4.0597) (Figure 3).
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We identified 138 (19%) urinary catheterized patients, with the majority of cases
occurring in 2019 (42 cases—20.5%) and 2018 (43 cases—21.8%), with only 30 (17.7%)
cases in 2017 and 23 (14.9%) in 2016. The presence of an indwelling urinary catheter was
correlated with patients’ age (Table 1); moreover, we observed a significant difference
between the mean age of urinary catheterized patients compared to non-catheterized
patients (68.9 ± 13.7 years vs. 64.2 ± 18.1 years, p = 0.026).

Table 1. Correlations between urinary catheterization and patient’s age and gender.

Age Male Gender
Correlation
Coefficient 0.083 * 0.053

Spearman’s rho
Urinary

catheterization Sig. (2-tailed) 0.026 0.152
* Spearman correlation is significant at the 0.05 level (2-tailed). Green—positive correlation

We observed an increasing trend concerning UTIs associated with urinary catheteri-
zation in both men and women, starting from 23 (14.9%) cases in 2016 and subsequently
increasing to 42 (20.5%) cases in 2019 (Figure 4).

We noted significant shifts in the etiology of UTIs among catheterized patients. While
E. coli and K. pneumoniae remained the predominant pathogens responsible for these infec-
tions, we observed a reversal in their ranking over time. Specifically, in 2016, E. coli was the
primary etiological agent, with a ratio of E. coli to K. pneumoniae exceeding 2:1. However,
by 2019, K. pneumoniae emerged as the most frequent etiology, occurring twice as often as
E. coli (Figure 5).

In Figure 6, we can see the evolution of antibiotic susceptibility over the period
2016–2019; basically, with one exception—trimethoprim–sulfamethoxazole susceptibility,
which remained relatively constant—we observed a significant decrease in susceptibility to
all the tested antibiotics.

Susceptibility to nitrofurantoin and fosfomycin was routinely determined only for
E. coli strains since EUCAST provides breakpoints for the diameter of inhibition zones only
for this microorganism. We identified high fosfomycin susceptibility rates, above 97%, with
only four strains resistant to this antibiotic (two in 2017 and two in 2019); in contrast, we
found a significant decrease (p = 0.0003, OR = 9.8354, CI = 2.2285–43.4092) in susceptibility
to nitrofurantoin, from 97.3% in 2016 to 79% in 2019 (Table 2).
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Table 2. E. coli’s susceptibility to nitrofurantoin and fosfomycin.
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Figure 6. Antibiotic susceptibility rates of ESBL-producing Enterobacterales strains, 2016–2019.
AMC—amoxicillin–clavulanic acid; TMT SMX—trimethoprim–sulfamethoxazole; GM—gentamicin;
AK—amikacin; CIP—ciprofloxacin; TZP—piperacillin–tazobactam; IMI—imipenem; MEM—meropenem;
ETP—ertapenem.

Urinary catheterized patients had significantly higher rates of isolated PDR/XDR
strains (p < 0.0001), in contrast with MDR/UDR isolates, which were negatively correlated
with the presence of a urinary catheter; in addition, we observed an important negative
correlation between male gender and the UDR pattern, thus mirroring the result that
women were more likely to have an infection with a UDR isolate (Table 3).

Table 3. Correlations between antibiotic susceptibility patterns and demographic aspects or the
presence of a urinary catheter.

Age Urinary
Catheterization

Male
Gender

Correlation Coefficient 0.022 0.193 ** −0.003
PDR Sig. (2-tailed) 0.559 <0.0001 0.927

Correlation Coefficient 0.037 0.145 ** 0.080 *
XDR Sig. (2-tailed) 0.318 <0.0001 0.030

Correlation Coefficient −0.011 −0.206 ** −0.015
MDR Sig. (2-tailed) 0.758 <0.0001 0.692

Correlation Coefficient −0.043 −0.069 −0.106 **

Spearman’s rho

UDR Sig. (2-tailed) 0.248 0.063 0.004
** Spearman correlation is significant at the 0.01 level (2-tailed). * Spearman correlation is significant at the 0.05 level
(2-tailed). Green—positive correlation; Red—negative correlation. MDR—multidrug resistance, XDR—extensive
drug resistance, PDR—pandrug resistance, UDR—usual drug resistance.
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When assessing the same parameters in correlation with the isolated microorganism,
we found that catheterized patients were more likely to have an infection with Proteus spp.
or Providencia stuartii, while E. coli had a significant negative correlation with catheterization,
male gender, and older age. The only microorganism with significant positive correlations
with these parameters was Klebsiella spp. (Table 4).

Table 4. Correlations between the isolated microorganism and the demographic aspects of
urinary catheterization.

Male
Gender

Urinary
Catheterization Age

Pearson Correlation −0.139 ** −0.159 ** −0.117 **
E. coli Sig. (2-tailed) <0.0001 <0.0001 0.002

Pearson Correlation 0.086 * 0.056 0.143 **
Klebsiella spp.

Sig. (2-tailed) 0.020 0.131 <0.0001
Correlation Coefficient −0.013 −0.039 −0.039

Enterobacter spp.
Sig. (2-tailed) 0.721 0.300 0.297
Correlation Coefficient 0.092 * 0.087 * 0.015Proteus spp.
Sig. (2-tailed) 0.013 0.020 0.696
Correlation Coefficient 0.045 0.072 0.052

Morganella morganii
Sig. (2-tailed) 0.228 0.053 0.159
Correlation Coefficient 0.053 −0.003 −0.056

Serratia marcescens Sig. (2-tailed) 0.151 0.940 0.133
Correlation Coefficient −0.007 0.183 ** −0.057

Providencia stuartii Sig. (2-tailed) 0.859 <0.0001 0.125
** Spearman correlation is significant at the 0.01 level (2-tailed). * Spearman correlation is significant at the 0.05
level (2-tailed). Green—positive correlation; Red—negative correlation.

Moreover, Klebsiella spp. and Providencia stuartii had significant correlations with the
PDR pattern, while E. coli was more likely to be MDR or even UDR (Table 5).

Table 5. Correlations between the resistance pattern and the isolated microorganism.

Correlations

PDR XDR MDR UDR
Correlation Coefficient 0.466 ** 0.031 −0.280 ** −0.047

Providencia stuartii Sig. (2-tailed) <0.0001 0.398 <0.0001 0.207
Correlation Coefficient −0.269 ** −0.332 ** 0.359 ** 0.119 **

E. coli Sig. (2-tailed) <0.0001 <0.0001 <0.0001 0.001
Correlation Coefficient −0.068 0.016 0.045 −0.030Proteus spp.
Sig. (2-tailed) 0.066 0.667 0.225 0.423
Correlation Coefficient 0.136 ** 0.277 ** −0.257 ** −0.082 *

Klebsiella spp.
Sig. (2-tailed) <0.0001 <0.0001 <0.0001 0.027
Correlation Coefficient 0.007 −0.015 0.023 −0.030

Serratia marcescens Sig. (2-tailed) 0.851 0.690 0.539 0.426
Correlation Coefficient −0.038 0.111 ** −0.065 0.007

Enterobacter spp.
Sig. (2-tailed) 0.312 0.003 0.080 0.861
Correlation Coefficient 0.031 0.010 −0.015 −0.022

Morganella morganii
Sig. (2-tailed) 0.400 0.797 0.694 0.558

** Spearman correlation is significant at the 0.01 level (2-tailed). * Spearman correlation is significant at the 0.05 level
(2-tailed). Green—positive correlation; Red—negative correlation. MDR—multidrug resistance, XDR—extensive
drug resistance, PDR—pandrug resistance, UDR—usual drug resistance.

Further, we aimed to perform a comparative analysis of the susceptibility profile of
the identified bacteria, taking into account the presence of a urinary catheter.

Among those patients who did not have a urinary catheter at the time of urine sample
collection, we observed a preserved sensitivity to carbapenems of over 85%, with the
exception of ertapenem, for which we identified a sensitivity of 74.9%. Sensitivity to the
other beta-lactams was low, except for the combination of piperacillin and tazobactam
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(50.5%), with the highest sensitivity rates found among E. coli strains. In addition, a
considerable number of strains were sensitive to aminoglycosides, especially amikacin
(73.3%, with the highest sensitivity in Proteus spp. and E. coli strains) (Table 6).

Table 6. Antibiotic susceptibility for strains isolated from non-catheterized patients.

Antibiotic
Tested E. coli Enterobacter

spp.
Klebsiella

spp.
Proteus

spp.
Providencia

spp.
M.

morganii
S.

marcescens Total

AMC 26.5% IR 13.3% 14.2% IR IR IR 18.7%
SAM 28.9% IR 6.1% 14.2% IR IR IR 17.4%

TMT-SMX 33.3% 14.7% 19% 4.7% 0 0 22.2% 25%
CXM 1% 2.9% 0.4% 4.7% 0 0 IR 1%
CAZ 7.7% 2.9% 1.9% 4.7% 0 0 0 4.9%
FEP 5.7% 11.7% 3.8% 52.3% 9% 0 0 6.9%
GM 47.8% 26.4% 28.5% 52.3% 9% 33.3% 55.5% 39%
TOB 38% 14.7% 20.4% 14.2% 18.1% 0 11.1% 28.4%
AK 84.8% 58.8% 60.9% 95.2% 18.1% 33.3% 77.7% 73.3%
CIP 13.1% 20.5% 11.9% 4.7% 0 0 11.1% 12.4%
TZP 60.2% 38.2% 37.1% 85.7% 27.2% 66.6% 33.3% 50.5%
IMI 99.6% 76.4% 78.5% 66.6% 18.1% 66.6% 77.7% 87.3%

MEM 100% 76.4% 77.6% 95.2% 18.1% 66.6% 77.7% 88.2%
ETP 90.5% 47% 60.4% 70.8% 18.1% 66.6% 66.6% 74.9%

AMC—amoxicillin–clavulanic acid; SAM—ampicillin–sulbactam; TMT-SMX—trimethoprim–sulfamethoxazole;
CXM—cefixime; CAZ—ceftazidime; FEP—cefepime; GM—gentamicin; TOB—tobramycin; AK—amikacin;
CIP—ciprofloxacin; TZP—piperacillin–tazobactam; IMI—imipenem; MEM—meropenem; ETP—ertapenem;
IR—intrinsic resistance. Red—susceptibility < 50% (antibiotics firmly not recommended as empirical therapy);
Orange—susceptibility between 50% and 70% (antibiotics that should be avoided as empirical therapy); Yellow—
susceptibility between 70.1% and 90% (antibiotics that can be prescribed empirically in mild to moderate infection);
Green—susceptibility > 90% (antibiotics that can be selected as empirical therapy even in severe infections);
Gray—N/A.

Analyzing the susceptibility profile of urinary catheterized patients, we identified
lower susceptibility rates, especially to carbapenems, with less than half of the Klebsiella
spp. isolates susceptible to these antimicrobials (Tables 7 and 8).

Table 7. Antibiotic susceptibility for strains isolated from urinary catheterized patients.

Antibiotic
Tested E. coli Enterobacter

spp.
Klebsiella

spp.
Proteus

spp.
Providencia

spp.
M.

morganii
S.

marcescens Total

AMC 28.5% IR 5% 7.6% IR IR IR 4.3%
SAM 11.9% IR 1.6% 7.6% IR IR IR 5%

TMT-SMX 38% 25% 22% 30.7% 6.6% 33.3% 0 24.6%
CXM 0 0 0 0 0 0 IR 0
CAZ 7.1% 0 1.6% 7.6% 0 33.3% 0 4.3%
FEP 2.3% 0 1.6% 38.4% 0 33.3% 0 5.7%
GM 52.3% 0 18.6% 53.8% 0 33.3% 50% 30.4%
TOB 38% 0 11.8% 30.7% 0 0 0 19.5%
AK 90.4% 50% 50.8% 76.9% 6.6% 100% 50% 61.5%
CIP 4.7% 25% 5% 15.3% 0 33.3% 0 6.5%
TZP 66.6% 25% 13.5% 92.3% 6.6% 33.3% 50% 30.4%
IMI 100% 100% 44% 76.9% 0 0 50% 60.1%

MEM 100% 100% 42.3% 100% 0 66.6% 100% 63.7%
ETP 92.8% 75% 32.2% 100% 0 33.3% 50% 55%

AMC—amoxicillin–clavulanic acid; SAM—ampicillin–sulbactam; TMT-SMX—trimethoprim–sulfamethoxazole;
CXM—cefixime; CAZ—ceftazidime; FEP—cefepime; GM—gentamicin; TOB—tobramycin; AK—amikacin;
CIP—ciprofloxacin; TZP—piperacillin–tazobactam; IMI—imipenem; MEM—meropenem; ETP—ertapenem;
IR—intrinsic resistance. Red—susceptibility < 50% (antibiotics not recommended as empirical therapy);
Orange—susceptibility between 50% and 70% (antibiotics that should be avoided as empirical therapy);
Yellow—susceptibility between 70.1% and 90% (antibiotics that can be prescribed empirically in mild to moderate
infection); Green—susceptibility > 90% (antibiotics that can be selected as empirical therapy even in severe
infections); Gray—N/A.
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Table 8. Correlation between urinary catheterization and carbapenem-resistant microorganisms.

IMI MEM ETP
Correlation Coefficient 0.273 ** 0.249 ** 0.228 **

Spearman’s rho Urinary catheterization
Sig. (2-tailed) <0.0001 <0.0001 <0.0001

** Spearman correlation is significant at the 0.01 level (2-tailed). IMI—imipenem; MEM—meropenem;
ETP—ertapenem. Green—positive correlation.

In Figure 7, we can straightforwardly observe the variations in the antibiotic suscep-
tibility rates of isolates from urinary catheterized vs. non-catheterized patients. It can be
ascertained that, for all tested antibiotics, susceptibility was significantly lower among
catheterized patients, with the most important differences recorded in the case of carbapen-
ems regardless of whether we refer to imipenem (60.1% catheterized patients vs. 87.3%
non-catheterized patients, p < 0.00001, OR = 0.2181, CI = 0.1435–0.3316), meropenem (63.7%
vs. 88.2%, p < 0.00001, OR = 0.2349, CI = 0.1530–0.3605), or ertapenem (55% vs. 74.9%,
p < 0.00001, OR = 0.4105, CI = 0.2796–0.6026), but also for piperacillin–tazobactam (30.4%
vs. 50.5%, p = 0.00002, OR = 0.4286, CI = 0.2881–0.6376), ciprofloxacin (6.5% vs. 12.4%,
p = 0.0477, OR = 0.4903, CI = 0.2389–1.0061), amikacin (61.5% vs. 73.3%, p = 0.0059,
OR = 0.5818, CI = 0.3944–0.8584), gentamicin (30.4% vs. 39%, p = 0.05, OR = 0.6820,
CI = 0.4577–1.0162) as well as for combinations with beta-lactamase inhibitors, such as
ampicillin + sulbactam (5% vs. 17.4%, p = 0.0002, OR = 0.2536, CI = 0.1151–0.5585) or
amoxicillin + clavulanic acid (4.3% vs. 18.7%, p = 0.00003, OR = 0.1957, CI = 0.0846–0.4574).
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Figure 7. Antibiotic susceptibility (%) by the presence of a urinary catheter. AMC—amoxicillin–clavulanic
acid; SAM—ampicillin–sulbactam; TMT SMX—trimethoprim–sulfamethoxazole; FEP—cefepime;
GM—gentamicin; TOB—tobramycin; AK—amikacin; CIP—ciprofloxacin; TZP—piperacillin–tazobactam;
IMI—imipenem; MEM—meropenem; ETP—ertapenem.
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3. Discussion

ESBL-producing Enterobacterales have become a significant clinical and epidemio-
logical concern. These strains were first discovered in the early 1980s and since then have
ubiquitously spread, becoming endemic and related to both community-acquired and
hospital-associated infections. They are accompanied by increased medical costs and ad-
verse patient outcomes such as prolonged length of hospitalization, therapeutic failure, and
increased mortality. In 2017, more than 197,000 cases of ESBL-producing microorganism
infections were reported in the United States alone [12]. Broad-spectrum antibiotics, such
as carbapenems, are usually required for the treatment of these infections, but carbapenem
resistance is also on the rise [13–15], an alarming situation also confirmed by our findings.

The significant per capita antibiotic consumption in Romania, coupled with ineffective
measures in terms of intra-hospital infection prophylaxis, is the basis for the increased
rates of AMR in this geographical area. Both national and international multicenter studies
support this hypothesis, mentioning that for some antimicrobials, epidemiological alerts
have even been issued due to their alarming resistance rate [16–20].

Although UTIs in catheterized patients usually have lower morbidity and mortality
rates than other healthcare-associated infections (HAIs), the use of catheters is still a
significant burden on healthcare systems. Inappropriate use of catheters is rampant, with
estimates suggesting that 15% to 25% of hospitalized patients receive short-term urinary
catheterization [21–24]. Furthermore, every day a patient retains an indwelling catheter,
their risk of developing a CAUTI increases by 3–7% [25–27].

CAUTIs represent the most common device-accompanying HAIs, along with ventilator-
associated pneumonia or central-line-associated bloodstream infections [28]. Most of the
recent studies focusing on nosocomial infections point out that the incidence of CAUTIs
caused by Enterobacterales, particularly Klebsiella spp., has significantly increased [29,30].

An ample study that analyzed UTI incidence from 1990 to 2019, including data from
203 countries and territories, also showed a significant increase in UTI incidence, by 60.4%.
In addition, they also reported a significant increase in the severity of this pathology,
manifested in an increased UTI-attributable mortality rate by 140.1% but also an increase in
disability-adjusted life-years by 68.8% [31].

Antibiotic resistance poses a significant risk, potentially leading to the selection of
inappropriate therapy and the recurrence of infections, which is a common issue among
patients with UTIs [32,33]. Specifically, patients infected with ESBL-producing Gram-
negative bacilli experience over twice as many hospital readmissions within 30 days of their
initial discharge compared to those infected with non-ESBL-producing Enterobacterales
(26.8% versus 12.4%) [34]. Moreover, the inadequate empirical treatment of UTIs may
heighten the likelihood of systemic infections, resulting in substantially increased morbidity
and mortality rates [35,36]. For instance, in a study focusing on sepsis cases caused by
ceftriaxone-resistant E. coli or K. pneumoniae, the urinary tract was identified as the primary
source of infection in the majority of cases, accounting for 60.9% [37].

Also analyzing the evolution of the incidence of ESBL-producing Enterobacterales
strains on a pool of 876,507 isolates, Aronin et al. identified a significant increase in
microorganisms with an ESBL phenotype, from 8.9% in 2011 to 14.2% in 2020, with an
associated increase in ESBL-producing resistance rates per 1000 admissions from 3.7 in 2011
to 6.4 in 2020 [38]. This is consistent with our findings, as we found that the percentage of
ESBL-producing E. coli increased significantly between 2016 and 2019, from 19% to 27.8%
(p = 0.004). In their analysis of 876,507 isolates, Aronin et al. observed a noteworthy rise in
the incidence of ESBL-producing Enterobacterales strains over time. Specifically, they noted
a substantial increase in microorganisms exhibiting an ESBL phenotype, from 8.9% in 2011
to 14.2% in 2020 [38]. These findings align with our own research, where we observed a
significant increase in the percentage of ESBL-producing E. coli from 19% to 27.8% between
2016 and 2019 (p = 0.004).

The majority of strains were isolated from women, representing 57.6% of the total
number of tested patients, a figure that has even reached a peak of 62.5% in 2019. This
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aspect is supported by the fact that the female gender, due to its associated anatomi-
cal peculiarities, is considered an additional, non-modifiable risk factor for the develop-
ment of UTI, regardless of the etiological agent but especially among urinary catheterized
patients [39,40].

Our analysis of CAUTI etiology revealed notable variations depending on the year un-
der examination. While E. coli and K. pneumoniae remained the primary culprits, significant
shifts were observed. Initially, E. coli predominated in 2016; however, from 2018 onwards,
K. pneumoniae emerged as the predominant etiological agent, supplanting E. coli in this role.
This shift highlights dynamic changes in the microbial landscape of CAUTIs and under-
scores the importance of ongoing surveillance and the adaptation of treatment strategies.
Most studies in the literature classify E. coli as the main etiologic agent of CAUTIs [40–42],
although we also identified studies reporting K. pneumoniae as the most common Enterobac-
terales isolate [43,44]. In certain European countries, the incidence of CAUTIs attributed to
ESBL-producing E. coli currently stands at less than 5% [32]. However, in countries like
Spain, this figure can escalate to as high as 23.6%, while in Turkey, it reaches an even more
alarming rate of 38.2% [45].

It is also worth mentioning that among urinary catheterized patients, it has been
demonstrated that microorganisms often persist, despite catheter replacements or antimi-
crobial therapy, because of the formation of bacterial biofilms on the catheter and bacterial
communities within bladder epithelial cells [46]. Among Enterobacterales, the most impor-
tant pathogen involved in biofilm formation is Proteus spp. [46], positively correlated in our
study with urinary catheterization (p = 0.02). Moreover, biofilms aid in the exchange and
recycling of nucleic acids because cells remain in close proximity within the extracellular
polymeric substances matrix for extended periods, serving to protect microorganisms
in challenging environments [47]. Notably, genetic material is transmitted through both
vertical and horizontal gene transfer within biofilms. This mechanism has the potential to
convert innocuous bacteria into significant human pathogens [48].

A study by Albaramki et al. investigating the incidence and impact of UTIs caused by
ESBL-producing Enterobacterales revealed elevated rates of resistance to various antibiotics.
Specifically, resistance rates were notably high for amoxicillin + clavulanic acid (94.8%),
third-generation cephalosporins (98.7%), fluoroquinolones (54.5%), and gentamicin (54.5%).
However, resistance to amikacin (32.5%), and particularly, carbapenems (1.3%) remained
significantly lower [49]. Similarly, Vachvanichsanong et al. reported increased resistance
percentages to cephalosporins (99–100%) and aminopenicillins (99%), but with much lower
resistance rates to fluoroquinolones (44%), piperacillin + tazobactam (22%), or amikacin
(11%). Notably, none of the isolates were found to be resistant to carbapenems in their
study [50], as well as in Ziółkowski et al.’s study [51].

A recent study, conducted in China, analyzing the antibiotic susceptibility profile of
strains of E. coli strains isolated from patients with community-acquired UTIs showed
increased resistance rates to common cephalosporins (93.4% resistance to cefotaxime, 93.1%
to ceftriaxone, and 76.8% to cefepime), while only 8.1% resistance to the combination of
cefoperazone and sulbactam was observed. In addition, they reported very low resis-
tance to amikacin (3%), nitrofurantoin (2.7%), fosfomycin (8.4%), or carbapenems (0.3%
resistance to imipenem and 0.6% to ertapenem) [45]. As in our study, resistance to fluoro-
quinolones (72.3%) or trimethoprim–sulfamethoxazole (68.7%) was identified in increased
percentages [45].

In the analysis by Aronin et al., although they identified high resistance rates to the antibiotics
tested (64.6% to beta-lactams, 29.3% to fluoroquinolones, 26.3% to trimethoprim–sulfamethoxazole,
and 27.6% to nitrofurantoin), they found a lower percentage of resistant strains [38] over the
period 2011–2022, in contrast to our study, in which we recorded a decreased susceptibility rate
for almost all the tested antibiotics.

With the antibiotic drug development pipeline struggling to keep pace with rising
resistance rates, prevention and a deeper understanding of CAUTIs are fundamental in
addressing this challenge. By focusing on preventive measures such as minimizing catheter
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use, employing alternative catheterization methods, implementing strict infection control
practices, and promoting judicious antibiotic use, healthcare providers can significantly
reduce the incidence of CAUTIs [52]. Additionally, continued research into the pathogenesis
of CAUTIs and the mechanisms underlying antimicrobial resistance can inform targeted
interventions and improve patient outcomes [53]. There are several interventions aimed at
reducing the occurrence of CAUTIs. Among these, the duration of catheterization emerges
as the most crucial factor; therefore, the primary intervention to mitigate CAUTI risk is
minimizing the use of indwelling catheters and promptly removing them when medically
appropriate [54]. External catheters represent a viable alternative to indwelling catheters
and are recommended by the Centers for Disease Control and Prevention [55].

Our study is burdened by certain limitations. For example, the study population is
limited to a single region in Romania, and the findings may not reflect antibiotic resistance
patterns in other regions of the country. It should be mentioned that we are currently
working on a prospective multicenter analysis in which we study not only BLSE production
but also the prevalence and risk factors for carbapenemase production. Yet, another notable
limitation is the lack of genetic studies or sequencing of the isolated strains. Additional
sequencing and subsequent analyses would have offered a more comprehensive insight
into the epidemiology of CAUTIs in our region. Having incomplete patient data files was
another limitation, which is related to the retrospective design of the study.

4. Materials and Methods

In our retrospective study, our objective was to conduct a comprehensive analysis
of the incidence of ESBL-producing Enterobacterales in urine samples collected between
1 January 2016 and 31 December 2019 at the “St. Parascheva” Clinical Hospital of Infectious
Diseases in Iasi. This hospital is a 300-bed university setting and serves as the largest tertiary
center for infectious diseases in northeastern Romania. This region has an approximate
population of 4 million inhabitants.

Study population: Our study included all consecutive, non-duplicate ESBL-producing
Enterobacterales strains isolated from urine cultures with a bacterial count of ≥105 colony-
forming units per milliliter (CFU/mL). These criteria ensured the inclusion of clinically
significant infections while minimizing the inclusion of contaminant samples.

Antibiotic susceptibility testing was performed by the Kirby Bauer diffusimetric
method using EUCAST tables with breakpoints in effect at the time of strain isolation (v6.0
for 2016, v7.0 and v7.1 for 2017, v8.0 and v8.1 for 2018, and v9.0 for 2019) [56] for the inter-
pretation of MICs and inhibition zone diameters. The following antibiotic discs were used:
ampicillin (10 µg); ampicillin–sulbactam (10–10 µg); amoxicillin–clavulanic acid (20–10 µg);
piperacillin–tazobactam (30–6 µg); cefepime (30 µg); cefixime (5 µg); cefotaxim (5 µg);
cefoxitin (30 µg); ceftazidime (10 µg); ceftazidime–avibactam (10–4 µg); cefuroxime (30 µg);
ertapenem (10 µg); imipenem (10 µg); meropenem (10 µg); aztreonam (30 µg); ciprofloxacin
(5 µg); levofloxacin (5 µg); moxifloxacin (5 µg);) norfloxacin (10 µg); ofloxacin (5 µg);
amikacin (30 µg); gentamicin (10 µg); tobramycin (10 µg); fosfomycin (200 µg)—only for
E. coli; nitrofurantoin (100 µg)—only for E. coli; trimethoprim–sulfamethoxazole
(1.25–23.75 µg).

Isolates were classified as follows [57]:

• MDR—isolates non-susceptible to at least one agent from ≥3 antimicrobial classes;
• XDR—isolates non-susceptible to at least one antibiotic from all but a maximum of

two antimicrobial classes;
• PDR—isolates non-susceptible to all antibiotics from all classes;
• UDR—isolates not fully susceptible (wild types) but easily treated with standard

therapies [58].

Furthermore, we conducted a comparative analysis of patient characteristics based on
the presence of an indwelling urinary catheter, examining demographics, infection etiology,
and the susceptibility profile of isolated bacteria.
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Data collection: To collect data for our study, we accessed records from the Medical
Analysis Laboratory of the Infectious Diseases Hospital “Sf. Parascheva” in Iasi. These
records provided information on urine cultures performed during the study period. In
conjunction with statistical data, including diagnoses at discharge, we were able to identify
cases that met the criteria for UTIs, thereby excluding cases of asymptomatic bacteriuria or
colonization. These records allowed us to extract information on various demographic char-
acteristics of the patients, including age and gender, as well as the presence of a permanent
urinary catheter. Additionally, we obtained data on the etiological agent responsible for the
infection and the antibiotic susceptibility profile, specifically identifying ESBL-producing
strains. This comprehensive dataset enabled us to explore the potential correlations be-
tween catheterization status and infection characteristics, aiding in a deeper understanding
of UTIs in this patient population.

Statistical analysis: Categorical variables are presented as numbers and percentages,
with continuous variables being presented as means and standard deviations. We used the
95% confidence interval in parameter estimation. Independent t-tests were used to compare
continuous variables, while chi-squared tests were used to compare categorical variables.
A p-value < 0.05 was considered statistically significant. For initial data collection, we used
Microsoft Excel 2016 version (Microsoft Corporation, Redmond, WA, USA), while the data
analysis was performed with SPSS version 23 (IBM, Armonk, VA, USA).

5. Conclusions

Our study reflected the multifaceted clinical, microbiological, or epidemiological
aspects related to the dynamic trend of CAUTIs, shedding light on the challenges related
to multidrug resistance. Not only was the urinary catheterization per se correlated with
significant antibiotic resistance, but we also outlined a worrisome temporal trend, with a
decreasing susceptibility between 2016 and 2019. It is imperative to recognize the increasing
concern of antibiotic resistance as it relates to CAUTI management. Therefore, appropriate
measures should be taken to curb the inappropriate use of catheters and ensure that empiric
therapy is accurate, thereby reducing the risk of recurrent infections and systemic infections,
ultimately leading to improved patient outcomes.

There is a need for further advancement in the development of intraurethral options
as substitutes for indwelling catheterization in both men and women. Evaluations to deter-
mine whether these devices effectively decrease the risk of CAUTIs are essential. Significant
progress in preventing these infections will necessitate the development of biomaterials ca-
pable of preventing or restricting biofilm formation. Ultimately, a comprehensive approach
that prioritizes prevention and a detailed understanding of CAUTIs are essential aspects in
combating this increasingly prevalent public health issue.
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Abbreviation

AK amikacin
AMR antimicrobial resistance
AMC amoxicillin–clavulanic acid
CAUTIs catheter-associated urinary tract infections
CAZ ceftazidime
CFU Colony-forming units
CI confidence interval
CIP ciprofloxacin
CXM cefixime
ESBLs extended-spectrum beta-lactamases
ETP ertapenem
FEP cefepime
GM gentamicin
HAI healthcare-associated infection
IMI imipenem
IR intrinsic resistance
MDR multidrug resistance
MEM meropenem
OR odds ratio
PDR pandrug resistance
SAM ampicillin–sulbactam
TMT-SMX trimethoprim–sulfamethoxazole
TOB tobramycin
TZP piperacillin–tazobactam
UDR usual drug resistance
UTIs urinary tract infections
XDR extensive drug resistance
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