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Simple Summary: Chagas disease is an infectious condition caused by Trypanosoma cruzi that espe-
cially affects the heart; the infected patient may present alterations in heartbeat and an increase in
heart volume. When the infection is not treated and remains active for a long time, it can lead to
heart failure and death. In many cases, microscopic heart analysis reveals many defense cells that
characterize inflammation and several scars in the organ—called fibrosis. Multiple components are
involved in inflammation and fibrosis development; for example, an increased blood vessel number
contributes to the process as it allows for a greater quantity of cell arrival. VEFG-A is a potent vessel
formation inducer. In this context, we investigated the effect of inhibition of VEGF in T. cruzi-infected
mice, and we found that the VEGF blockage significantly increased survival, reduced inflammation,
improved cardiac electrical function, diminished the vessel formation and reduced cardiac fibrosis.
This work shows that VEGF is involved in cardiac alterations observed in Chagas disease and the
inhibition of this factor could be a potential treatment for T. cruzi-infected patients.

Abstract: Chagas disease (CD) caused by Trypanosoma cruzi is a neglected illness and a major reason
for cardiomyopathy in endemic areas. The existing therapy generally involves trypanocidal agents
and therapies that control cardiac alterations. However, there is no treatment for the progressive
cardiac remodeling that is characterized by inflammation, microvasculopathy and extensive fibrosis.
Thus, the search for new therapeutic strategies aiming to inhibit the progression of cardiac injury and
failure is necessary. Vascular Endothelial Growth Factor A (VEGF-A) is the most potent regulator
of vasculogenesis and angiogenesis and has been implicated in inducing exacerbated angiogenesis
and fibrosis in chronic inflammatory diseases. Since cardiac microvasculopathy in CD is also charac-
terized by exacerbated angiogenesis, we investigated the effect of inhibition of the VEGF signaling
pathway using a monoclonal antibody (bevacizumab) on cardiac remodeling and function. Swiss
Webster mice were infected with Y strain, and cardiac morphological and molecular analyses were
performed. We found that bevacizumab significantly increased survival, reduced inflammation,
improved cardiac electrical function, diminished angiogenesis, decreased myofibroblasts in cardiac
tissue and restored collagen levels. This work shows that VEGF is involved in cardiac microvasculopa-
thy and fibrosis in CD and the inhibition of this factor could be a potential therapeutic strategy for CD.
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1. Introduction

Chagas disease (CD) is caused by the Trypanosoma cruzi parasite; it is endemic in
Latin America and affects 7 million people worldwide [1]. The acute phase of CD is char-
acterized by high parasitemia and unspecific symptoms, including fever and sickness.
Cardiomyopathy and meningoencephalitis can be observed in more severe acute cases [1].
The immunological control of infection results in evolution to the chronic phase of CD;
this stage can be asymptomatic (indeterminate) or symptomatic, which represents 30% of
patients with cardiomyopathy being the major clinical manifestation [1]. CD is a neglected
disease and little investment is made by the industry and governmental agencies to develop
more effective therapies. Benznidazole and Nifurtimox are trypanocidal compounds that
are highly effective during the acute phase of CD with an 80% cure rate. However, during
the chronic stage, only 20% of treated patients are cured [2]. Moreover, the difficulties of
managing adverse effects in remote areas, where access to health systems is difficult, can
result in abandonment of treatment. The management of chagasic cardiomyopathy pri-
marily involves diuretics, aldosterone antagonists, angiotensin-converting enzyme (ACE)
inhibitors and antiarrhythmic agents (beta adrenergic blockers or amiodarone), which
improve patients’ quality of life [3]. However, these treatments cannot reverse the car-
diac remodeling caused by microvasculopathy, chronic inflammation, progressive fibrosis
and hypertrophy.

In CD patients’ hearts, vascular constrictions, microaneurysms, dilatation and occlu-
sive thrombi are consequences of vasoactive substances such as endothelin-1 and throm-
boxane [4–6]. Cardiac exacerbated angiogenesis occurs both in the experimental T. cruzi
infection in mice [7,8] and in chronic chagasic cardiomyopathy in humans [9]. However,
the role of microvascular growth in chagasic cardiomyopathy is unknown.

Angiogenesis is a multistep process involving vascular instability that is caused by
the detachment of α-smooth muscle actin (α-SMA)-positive mural cells from the vascular
wall [10,11]. In inflammatory disorders, angiogenesis is exacerbated and abnormal, con-
tributing to tissue remodeling and pathogenesis, because of mural cell differentiation to
myofibroblasts; these changes generate and maintain chronic fibrotic processes [12,13]. This
hypothesis is also supported by studies of fibrogenesis in the liver [14,15] and kidneys [16]
and showed that mural cells are a source of myofibroblast and strongly strengthen the role
of angiogenesis in fibrosis [15,17].

Vascular endothelial growth factor-A (VEGF-A) is a powerful polypeptide regulator
of blood vessel function [18,19]. It is a key proangiogenic factor and inducer of vascular
hyperpermeability that contributes to inflammatory cell migration [20]. VEGF-A activates
the receptor tyrosine kinase VEGFR-2/Flk-1, inducing extracellular signal-regulated protein
kinase (ERK) 1/2 phosphorylation, cellular proliferation and vascular growth [19,21].

Bevacizumab is a VEGF inhibitor and antiangiogenic agent that is clinically used to
treat some malignant tumors and chronic inflammatory diseases [22,23]. VEGF inhibition
has also shown anti-fibrotic effects in experimental models of urethral, hepatic, articular
and spinal epidural fibrosis [24–27]. In this context, we hypothesized that the inhibition of
VEGF using bevacizumab could help to alleviate chagasic cardiomyopathy. Here, we tested
the effect of VEGF inhibition with bevacizumab in an experimental model of acute CD in
mice. Our results showed that the T. cruzi infection increased cardiac VEGF expression and
that bevacizumab treatment reduced cardiac angiogenesis and fibrosis, improved cardiac
electrical activity and increased survival in treated T. cruzi-infected animals.
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2. Materials and Methods
2.1. Infection of Animals with Trypomastigote Forms of T. cruzi

Male Swiss Webster mice (age 6–8 weeks; weight 18–20 g) bred in-house in the Institute
of Science and Technology in Biomodels (ICTB) from Oswaldo Cruz Foundation were
infected intraperitoneally with 104 blood forms trypomastigotes of T. cruzi (Y strain) that
were maintained through Swiss Webster mice infections. The animals were separated into
the following groups: non-infected and not-treated (NI NT), non-infected and treated with
anti-VEGF (NI T), infected and not-treated (Y NT) and infected and treated with anti-VEGF
(Y T) and euthanized on day 8 and 15 post-infection (dpi).

2.2. Anti-VEGF Antibody Treatment

Treated mice received 5 mg/kg of Avastin® (bevacizumab from Roche, Basel, Switzer-
land) intraperitoneally (i.p.) (previously described as the dose having an antiangiogenic
effect [28–30]) 3 times a week starting at 3 dpi until reaching 15 dpi. The control group
received the vehicle phosphate-buffered saline (PBS) [0.01 M phosphate buffer, 0.0027 M
potassium chloride and 0.137 M sodium chloride].

2.3. Parasitological Parameters

Parasitemia was performed with Pizzi–Brener method [31] in which 5 µL of fresh blood
taken from a mouse’s tail were placed on a glass slide, covered with an 18 × 18 mm glass
coverslip, and the parasite’s number was quantified in 50 randomly observed microscopical
fields, covering the entire area of the coverslip under overall magnification of 400. The
number of parasites/mL was obtained by multiplying the number by the correction factor,
which was 0.72 × 104 in our microscope. Mortality and body weight were monitored
regularly for 15 days.

2.4. Electrocardiographic Studies

Mice were i.p. tranquilized with diazepan (20 mg/kg) and transducers were carefully
placed under the skin in accordance with chosen preferential derivation (DII). Traces were
recorded using a digital system (Power Lab 2/20) connected to a bio-amplifier in 2 mV for
1 s (AD Instruments Company, Sydney, Australia). Filters were standardized between 0.1
and 100 Hz and traces were analyzed using the LabChart for Windows v8.1.23 Software
(AD Instruments Company). We continuously measured for the automatic traces using
LabChart Reader v8.1.22 software for 30 min (AD Instruments Company). The parameters
evaluated by the software comprised heart rate (beats per minute—bpm), duration of
the PR, QRS, QT intervals and P wave in ms (millisecond) at 14 dpi. The relationship
between the QT interval and RR interval was individually assessed. However, due to
the physiologically accelerated heart rate, QT interval was corrected (QTc) with Hodges
formula [32]. We qualified and classified the possible arrhythmia types by evaluating each
murine trace. In addition, the LabChart Reader v8.1.22 showed irregular (time) intervals
during the murine ECG. This indicated arrhythmia in the trace.

2.5. Histopathology and Immunofluorescence

Half of the heart was processed for microscopy analysis in optimal cutting temper-
ature compound (OCT), sectioned (5 µm thick) in Leica -CM1850 cryostat at −22 ◦C and
collected in poly-L-lysine-coated glass slides. The sections were stained with sirius red
(Sigma–Aldrich, St. Louis, MI, USA) or with hematoxylin/eosin (EasyPath, Indaiatuba,
Brazil) and examined using light microscopy, especially focusing on the left ventricle. A
total of 3–5 animals samples were analyzed for each experimental group in Zeiss Axioplan
2 (Carl Zeiss, Jena. Germany) microscope at an overall magnification of 400.

The software ImageJ (National Institutes of Health, USA available at https://imagej.
nih.gov/ij/index.html, accessed on 10 July 2023) was used for the quantification of tissue
parasitism, inflammation and collagen area as a percentage of the total area as described

https://imagej.nih.gov/ij/index.html
https://imagej.nih.gov/ij/index.html


Biology 2023, 12, 1414 4 of 15

by Grishagin, 2015 [33]. The analyses were carried out in at least 15 fields per slice from
5 animals per group.

For immunofluorescence, heart sections were stained with specific primary mouse
anti-α-SMA (Sigma–Aldrich, USA) antibody 5 µg/mL overnight at 4 ◦C and secondary goat
anti-mouse Alexa Fluor 594 antibody at 1 µg/mL (Thermo Fisher Scientific, Waltham, MA,
USA) was incubated for 1 h at room temperature. FITC-conjugated Griffonia simplicifolia I
lectin at 50 µg/mL was used to stain endothelial cells for 30 min at room temperature and
4′,6-diamidino-2-phenylindole [(DAPI) Thermo Fisher Scientific, Waltham, MA, USA] at
0.2 µg/mL was used for DNA visualization. Slides were examined with the Zeiss Axioplan
2 microscope equipped with epifluorescence. Further image processing was performed
with Adobe Photoshop software version 13.0 x32 (Adobe Systems Inc., San Jose, CA, USA).

2.6. Immunoblotting

Ventricular heart proteins from each group were extracted from 100 mg tissue/mL of
phosphate-buffered saline to which 0.4 M sodium chloride, 0.05% Tween 20 and protease
inhibitors [0.1 mM phenylmethylsulfonyl fluoride (Sigma Aldrich, USA) and protease
(Roche, Indianapolis, IN, USA) and phosphatase inhibitors cocktail (Sigma Aldrich, USA)]
were added. The samples were sonicated twice and centrifuged for 10 min at 3000× g,
and the supernatant was stored at −80 ◦C. Total proteins in the lysates (20–40 µg/lane)
were separated by SDS-PAGE (10%) and transferred to nitrocellulose membranes (Bio-Rad,
Hercules, CA, USA). Non-specific binding sites were blocked by incubating the membranes
with 5% (w/v) nonfat milk/TBS/0.1% Tween-20 for 1 h at room temperature.

The membranes were probed with the specific primary antibody rabbit anti-VEGF
(42 kDa) (ABCAM, Cambridge, UK) at 1 µg/mL overnight at 4 ◦C. For a loading control, a
mouse anti-Glyceraldehyde 3-phosphate dehydrogenase (GAPDH, 36 kDa) monoclonal
antibody from Fitzgerald (Acton, MA, USA) was incubated for 1 h at room temperature.
The membranes were incubated with secondary goat anti-rabbit IgG or goat anti-mouse IgG
HRP-labeled antibody (Thermo Fisher Scientific, Waltham, MA, USA) at 0.08 µg/mL for
1 h at room temperature, followed by treatment using the Supersignal chemiluminescent
kit (Pierce, Rockford, IL, USA) and exposition by X-ray film. Densitometric analysis of the
bands was performed with the Image Studio Lite version 4.0 software.

2.7. Ethics Statement

The use of animals and experimental procedures was in accordance with Brazilian
Law 11.794/2008 and regulations of the National Council of Animal Experimentation
Control (CONCEA). The mice were housed at a maximum of 6 individuals per cage,
kept in a specific pathogen-free (SPF) room at 20 to 24 ◦C under a 12 light and 12 h dark
cycle and were provided sterilized water and chow ad libitum. All experimental animal
procedures were performed following the license (LW—40/13) approved by the Ethics
Committee for Animal Use the Oswaldo Cruz Foundation (CEUA/FIOCRUZ). All animals
were euthanized using an anesthetics overdose followed by cervical dislocation on the 8th
and 15th day after experimental infection was carried out with T. cruzi.

3. Results
3.1. Anti-VEGF Treatment Improves Survival Rate and Inflammation

We treated the infected mice with anti-VEGF (bevacizumab) i.p. 3 times a week starting
at 3 dpi; evaluation of parasitemia revealed typical T. cruzi trypomastigote peak at 8 dpi
(Figure 1A). T. cruzi-infected mice exhibited weight loss beginning at 10 dpi (Figure 1B).
Anti-VEGF administration significantly increased the survival rate, which was 60% in
the treated mice compared to 25% in the not-treated and infected group (Figure 1C), and
reduced parasitemia at 8 dpi (Figure 1A) but no differences in weight were observed
(Figure 1B).
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we observed a lower percentage of inflammation in the tissues from infected and anti-

VEGF-treated mice (Figure 2F). At 15 dpi, in addition to the decrease in inflammation, a 

Figure 1. Anti-VEGF treatment of Swiss Webster mice infected with the Y strain of T. cruzi. Mice were
intraperitoneally infected with 104 blood trypomastigote forms and anti-VEGF antibody (5 mg/kg)
or PBS buffer was administered intraperitoneally at 3 dpi, 3 times a week for 15 days. The following
parameters were evaluated in a kinetic study: (A) parasitemia, (B) body weight and (C) survival
rate in non-infected and not-treated (NI NT) mice, non-infected mice treated with anti-VEGF (NI
T), and infected and not-treated (Y NT) and treated (Y T) mice. (A) The parasitemia peak occurred
at 8 dpi. (B) Body weight loss started at 10 dpi in infected mice. (C) At 15 dpi, 60% of infected and
treated mice survived compared to 25% of the infected animals. Mean ± SEM. Two-way ANOVA test
(parasitemia and weight) or Log-rank test (survival). ### p < 0.001 versus NI NT; §§§ p < 0.001 versus
NI T; *** p < 0.001 versus Y T. n = 10 animals/group.

Cardiac parasitism and inflammation were evaluated at 8 and 15 dpi (Figure 2A–D).
The peak of tissue parasitism and inflammation occurred at 15 dpi (Figure 2E,F). At 8 dpi,
we observed a lower percentage of inflammation in the tissues from infected and anti-
VEGF-treated mice (Figure 2F). At 15 dpi, in addition to the decrease in inflammation, a
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significant reduction in amastigote number was observed in the myocardium of infected
and anti-VEGF-treated mice (Figure 2E,F).
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Figure 2. Heart histopathology. Hematoxylin/eosin staining of heart samples from intraperitoneally
infected mice with 104 Y blood trypomastigote forms and anti-VEGF antibody (5 mg/kg) or PBS
buffer was administered intraperitoneally at 3 dpi, 3 times a week. (A) Infected and not-treated (Y NT)
mice at 8 dpi; (B) infected and treated with anti-VEGF (Y T) mice at 8 dpi; (C) infected and not-treated
(Y NT) mice at 15 dpi; and (D) infected and treated (Y T) mice at 15 dpi. (E) Quantification of the
number of parasites (arrowhead). (F) Evaluation of the percentage of inflammation area (arrow). The
peak of tissue parasitism and inflammation can be observed in infected and non-treated mice at 15 dpi.
At this time, anti-VEGF treatment reduced both parameters. Bar = 20 µm. Mean ± SEM. One-way
ANOVA test, † p < 0.05; †† p < 0.01; ††† p < 0.001 versus Y NT at 8 dpi; && p < 0.01; &&& p < 0.001
versus Y T at 8 dpi; * p < 0.05; ** p < 0.01; *** p < 0.001 versus Y T at 15 dpi. n = 5 animals/group.

3.2. VEGF Protein Expression in Cardiac Tissue

Next, we determined the expression of VEGF in cardiac tissue with immunoblotting
(Figure 3). At 15 dpi, the infected and non-treated group presented a 2.2-fold increase
in cardiac VEGF expression when compared to non-infected controls (p < 0.01), and we
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did not observe changes in VEGF levels at 8 dpi when compared to non-infected controls
(Figure 3A,B). The treatment with bevacizumab did not change VEGF levels at 8 dpi;
however, at 15 dpi, treatment with bevacizumab induced a 3.6-fold reduction in VEGF
expression compared to the infected non-treated group (p < 0.001) (Figure 3C,D).
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Figure 3. Western blotting of cardiac VEGF from mice intraperitoneally infected with 104 Y strain
blood trypomastigote forms and anti-VEGF antibody (5 mg/kg) or PBS buffer was administered
intraperitoneally at 3 dpi, 3 times a week for 8 or 15 days. Representative immunoblotting of VEGF
(42 kDa) expression at 8 and 15 dpi (A,B). Cardiac tissues were harvested, and protein lysates were
probed with an anti-VEGF antibody. GAPDH (36 kDa) was used as a loading control. It is possible to
observe expression levels of VEGF in the following distinct experimental groups: non-infected and
non-treated (NI NT), non-infected and treated (NI T), infected and non-treated (YN NT) and infected
and treated (Y T). Notice the increase in VEGF expression levels in infected animals compared to
non-infected controls and the reduction in VEGF levels induced with bevacizumab (C,D). Values are
expressed as fold change. ## p < 0.01 versus NI; †† p < 0.01 versus Y NT at 8 dpi; && p < 0.01 versus
Y T at 8 dpi; *** p < 0.001 versus Y T at 15 dpi. One-way ANOVA test. n = 5–10 animals/group.

3.3. Anti-VEGF Treatment Reduces the Blood Vessel Abundance in Cardiac Tissue

We further investigated the blood vessel abundance in hearts under normal and T.
cruzi-infected conditions at 8 and 15 dpi. Heart tissues were stained with FITC-conjugated
Griffonia simplicifolia I lectin to determine the number of blood vessels and with antibody
against α-smooth muscle actin (α-SMA) to evaluate vascular maturity in non-infected
and non-treated (Figure 4A), non-infected and treated (Figure 4B), T. cruzi-infected and
non-treated (Figure 4C), T. cruzi-infected and treated samples at 8 dpi (Figure 4D), T. cruzi-
infected and non-treated (Figure 4E) and T. cruzi-infected and treated samples at 15 dpi
(Figure 4F). Quantification analysis showed a significant increase in areas stained with
lectin (Figure 4G) and α-SMA (Figure 4H) in cardiac tissue of the T. cruzi-infected and
non-treated group at 15 dpi (34.35% and 13%, respectively) compared to the non-infected
group (19.7% and 0.36%, respectively). We observed that the treatment with bevacizumab
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reduced (23%) the lectin-stained area (green in Figure 4E,F), showing a reduction in the
number of blood vessels. The treatment did not change the α-SMA-stained area.

Biology 2023, 12, x FOR PEER REVIEW 8 of 16 
 

 

reduced (23%) the lectin-stained area (green in Figure 4E,F), showing a reduction in the 

number of blood vessels. The treatment did not change the α-SMA-stained area.  

 

Figure 4. Immunofluorescence of α-SMA and vessels in cardiac tissue from mice intraperitoneally 

infected with 104 Y blood trypomastigote forms and anti-VEGF antibody (5 mg/kg) or PBS buffer 

was administered intraperitoneally at 3 dpi, 3 times a week for 8 or 15 days. Immunofluorescence 

of cardiac vessels (green), α-SMA (red) and DNA (blue) of (A) non-infected and not-treated (NI NT); 

(B) non-infected and treated (NI T); (C) and infected and not-treated (Y NT) samples at 8 dpi; (D) 

infected and treated (Y T) samples after 8 days; (E) infected and not-treated (Y NT) samples at 15 

dpi; and (F) infected and treated (Y T) samples after 15 days. (E,F) After 15 days of infection, an 

increase in cardiac vessels and α-SMA staining was observed, and the treatment minimized these 

alterations. Bar graph shows the quantification of the percentage of the stained areas of (G) lectin 

and (H) α-SMA. An increase in lectin and α-SMA levels was observed in T. cruzi-infected animals 

after 15 days. Anti-VEGF treatment reduced the lectin-stained area. Bar = 20 µm. Mean ± SEM. One-

way ANOVA test, # p < 0.05; ### p < 0.001 versus NI NT; §§§ p < 0.001 versus NI T; †† p < 0.01; ††† p 

< 0.001 versus Y NT at 8 dpi; &&& p < 0.001 versus Y T at 8 dpi; * p < 0.05 versus Y T at 15 dpi. n = 3 

animals/group. 

3.4. Treatment Prevents Heart Fibrosis Development in T. cruzi-Infected Mice 

We evaluated heart fibrosis by picrosirius red staining of heart sections. After infec-

tion, we observed a progressive increase in collagen deposition, which was visualized in 

red in sections from infected and not-treated mice (Figure 5C,E) compared to hearts from 

non-infected mice (Figure 5A,B). Treatment with anti-VEGF prevented this collagen dep-

osition (Figure 5D,F). Quantification analysis revealed a reduction in the percentage of 

areas with collagen in infected and treated samples (1.15%) compared to infected and not-

treated samples (35.9%) at 15 dpi (Figure 5G). 

Figure 4. Immunofluorescence of α-SMA and vessels in cardiac tissue from mice intraperitoneally
infected with 104 Y blood trypomastigote forms and anti-VEGF antibody (5 mg/kg) or PBS buffer
was administered intraperitoneally at 3 dpi, 3 times a week for 8 or 15 days. Immunofluorescence
of cardiac vessels (green), α-SMA (red) and DNA (blue) of (A) non-infected and not-treated (NI
NT); (B) non-infected and treated (NI T); (C) and infected and not-treated (Y NT) samples at 8 dpi;
(D) infected and treated (Y T) samples after 8 days; (E) infected and not-treated (Y NT) samples at
15 dpi; and (F) infected and treated (Y T) samples after 15 days. (E,F) After 15 days of infection, an
increase in cardiac vessels and α-SMA staining was observed, and the treatment minimized these
alterations. Bar graph shows the quantification of the percentage of the stained areas of (G) lectin
and (H) α-SMA. An increase in lectin and α-SMA levels was observed in T. cruzi-infected animals
after 15 days. Anti-VEGF treatment reduced the lectin-stained area. Bar = 20 µm. Mean ± SEM.
One-way ANOVA test, # p < 0.05; ### p < 0.001 versus NI NT; §§§ p < 0.001 versus NI T; †† p < 0.01;
††† p < 0.001 versus Y NT at 8 dpi; &&& p < 0.001 versus Y T at 8 dpi; * p < 0.05 versus Y T at 15 dpi.
n = 3 animals/group.

3.4. Treatment Prevents Heart Fibrosis Development in T. cruzi-Infected Mice

We evaluated heart fibrosis by picrosirius red staining of heart sections. After infection,
we observed a progressive increase in collagen deposition, which was visualized in red in
sections from infected and not-treated mice (Figure 5C,E) compared to hearts from non-
infected mice (Figure 5A,B). Treatment with anti-VEGF prevented this collagen deposition
(Figure 5D,F). Quantification analysis revealed a reduction in the percentage of areas with
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collagen in infected and treated samples (1.15%) compared to infected and not-treated
samples (35.9%) at 15 dpi (Figure 5G).
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Figure 5. Histochemical analysis of fibrosis in heart from mice intraperitoneally infected with
104 Y strain blood trypomastigote forms and anti-VEGF antibody (5 mg/kg) or PBS buffer was
administered intraperitoneally at 3 dpi, 3 times a week for 8 or 15 days. Picrosirius red staining
shows the collagen distribution in (A) non-infected and not-treated (NI NT); (B) non-infected and
treated (NI T); (C) infected and not-treated (Y NT) at 8 dpi; (D), infected and treated (Y T) at 8 dpi;
(E) infected and not-treated (Y NT) at 15 dpi; and (F) infected and treated (Y T) at 15 dpi samples.
(G) Quantification of the percentage of collagen area. A progressive increase in collagen staining is
observed in T. cruzi-infected and not-treated hearts, and anti-VEGF treatment reduced the percentage
of the collagen area. Bar = 20 µm. Mean ± SEM. One-way ANOVA test, # p < 0.05 versus NI
NT; § p < 0.05 versus NI T; & p < 0.05 versus Y T at 8 dpi; * p < 0.05 versus Y T at 15 dpi. n = 5
animals/group.

3.5. VEGF Blockage Ameliorates Electrocardiographic Alterations Caused by T. cruzi

The cardiac electrical conduction system was evaluated using ECG analysis (Figure 6).
ECG demonstrated increased PR interval time in T. cruzi-infected animals (57.0 ms) com-
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pared to the non-infected control group (28.5 ms), and anti-VEGF treatment minimized the
PR time conduction in the experimental model (45.3 ms) (Figure 6B). Furthermore, the heart
rate was reduced in infected and non-treated mice (341.4 bpm) compared to NI controls
(765 bpm), and treatment significantly improved the heart rate (448.1 bpm) (Figure 6E). QTc
interval times (NI NT: 26.2 and NI T: 26.9 ms) were decreased in infected and not-treated
mice (24.4 ms) and infected and treated mice (15.9 ms) compared to non-infected mice (NI
NT: 26.2 ms) (Figure 6D). No difference was observed in the QRS parameter between the
groups (Figure 6C).
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Figure 6. Electrocardiographic alterations in mice intraperitoneally infected with 104 Y blood trypo-
mastigote forms and anti-VEGF antibody (5 mg/kg) or PBS buffer treatment administered intraperi-
toneally at 3 dpi, 3 times a week for 15 days. (A) Representative electrocardiographic traces of groups
at 15 dpi. The cardiac electric conduction system was calculated. ECG parameters were evaluated in
time conduction (millisecond) during experimental acute CD. (B) PR interval, (C) QRS wave, (D) QTc
interval and (E) HR were evaluated in non-infected and not-treated (NI NT), non-infected and treated
(NI T), infected and not-treated (Y NT) and infected and treated (Y T) mice. Mean ± SEM. One-way
ANOVA test, ## p < 0.01; ### p < 0.001 versus NI NT; § p < 0.05 §§ p < 0.01; §§§ p < 0.001 versus NI T;
* p < 0.05; ** p < 0.01 versus Y T at 15 dpi. n = 10 animals/group.

Cardiac dysfunction, such as atrioventricular block (AVB, dashed circle), sinusal
arrhythmia (ART, dashed line) and sinusal bradycardia (BRD, black line), was detected
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in T. cruzi-infected mice (Figure 7C,D). Anti-VEGF treatment decreased the incidence and
severity of BRD in the treated groups (Figure 7E).
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Figure 7. Conduction disorders in acute CD and anti-VEGF antibody (5 mg/kg) of intraperitoneally
administered treatment at 3 dpi, 3 times a week for 15 days. Electrical conduction disturbances
are highlighted in the representative electrocardiographic tracings at 15 dpi. (A) non-infected and
not-treated (NI NT), (B) non-infected and treated (NI T), (C), infected and not-treated (Y NT) and
(D) infected and treated (Y T) groups. (E) The number of electrical conduction disturbances in the
groups. The compromise of cardiac electrical conduction was promoted by T. cruzi during the acute
experimental phase. The treatment promotes better incidence of sinus bradycardia in infected mice
n = 5–10 animals/group.

4. Discussion

In this study, we investigated the effect of the VEGF inhibition with bevacizumab,
an antiangiogenic monoclonal antibody, in an experimental murine model of acute CD.
The experimental model that was used is an important model for the study of the acute
Chagas disease that gives a rapid assessment of the experimental acute infection kinetics
and enables to conduct pathogenicity and chemotherapy (among others) investigations
in this field [34–37]. We were the first to show that VEGF blockage significantly increased
the survival of mice, reduced VEGF levels, decreased angiogenesis, and inhibited inflam-
mation, fibrosis and alterations in cardiac electrical function. Vascular injury is one of
the first alterations observed in chagasic myocardiopathy [38,39]. Vascular injuries in the
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hearts of patients with CD such as vascular constrictions, microaneurysms, dilatation and
occlusive thrombi are consequences of vasoactive substances such as endothelin-1 and
thromboxane [4–6].

In general, angiogenesis occurs in response to ischemia, improving the oxygen and
nutrient delivery [26]; however, angiogenesis is also involved in fibrosis in some inflam-
matory disorders [15,17], and, in CD, the inflammatory process contributes to cardiac
remodeling [40,41]. Furthermore, we also described cerebral vasculopathy in mice during
acute CD which was characterized by obstructive plugging, microvascular inflammation
and functional capillary rarefaction [42], corroborating with other data in the literature that
demonstrated vascular damage and microvasculopathy in Chagas disease [43–45].

Once we identified increased VEGF protein expression in cardiac tissue of Swiss
Webster mice during acute infection, we decided to investigate whether the modulation
of this factor would have a beneficial effect on the development of experimental Chagas
disease and cardiac alterations. VEGF-A is a proangiogenic factor and induces vascular
hyperpermeability that could contribute to inflammation [18]. Previous studies showed
that the expression and production of cardiac angiogenic mediators depend on the T. cruzi
genetic population. The authors observed that in the experimental C57BL/6 mice infection,
cardiac angiogenic mediators are increased during T. cruzi Y strain infection. Elevated
expression of cardiac VEGF, Ang-1 and Ang-2, and reduced production of TNF and CCL5
were observed in the Y strain infection compared to the infection with the Colombian
strain [8].

Our findings show that the inhibition of the VEGF pathway by bevacizumab-modulated
angiogenesis, inflammation and fibrosis were also described in other tissues in chronic
inflammatory conditions, such as during the treatment of rheumatoid arthritis [46]. More-
over, we show that the VEGF neutralization with bevacizumab reduced the VEGF levels
and the parasitism in infected animals, suggesting a direct effect of VEGF on the parasite;
however, further studies need to be conducted.

Another molecule that plays an important role in Chagas’ cardiopathy and in the life
cycle of the parasite is TGF-β [40,45,47]. Interestingly, our group have been studying the
role of TGF-β on the T. cruzi infection and Chagas disease development. We demonstrated
that the TGF-β inhibition also impairs the T. cruzi infection in cardiomyocytes and parasite
cycle completion [48]. Although we did not evaluate the effect of TGF-β modulation on
the development of cardiac angiogenesis during Chagas disease, inhibition of its signaling
pathway reduces fibrosis and improves cardiac function [40,45,47], as observed in the
present study by inhibition of the VEGF pathway.

To verify the effect of the T. cruzi infection and the effect of bevacizumab treatment on
angiogenesis, we stained the cardiac tissue with FITC-conjugated Griffonia simplicifolia. This
lectin binds specifically to endothelial cells, allowing evaluation of the vascular bed [49].
Concomitantly, we stained α-smooth muscle actin-positive cells to verify the distribution of
myofibroblasts in cardiac tissue. Mural cells that detach from the vascular wall during the
angiogenic process could differentiate in myofibroblasts and contribute to fibrosis [12,13].
Studies of fibrogenesis in the liver [15] and kidneys [16] showed that mural cells are a source
of myofibroblast progenitors that contribute to fibrosis and tissue remodeling [15,17].

We observed a significant increase in the vascular and myofibroblast-stained areas in
T. cruzi-infected heart tissue. Bevacizumab treatment significantly reduced the vascular
area and resulted in a decreased trend of α-smooth muscle actin-positive cells. Next, we
evaluated the collagen levels in cardiac tissue by sirius red staining, which is the standard
method to evaluate the organization of collagen fibers in tissues [50]. We found an increase
in the stained areas of infected animals and a significant reduction in cardiac fibrosis after
bevacizumab treatment. Huang et al. (2013) evaluated the effects of bevacizumab on the
formation of fibrosis and also described that this antibody could alleviate liver fibrosis by
blocking the effect of VEGF on hepatic stellate cells [25]. Another study demonstrated the
effect of bevacizumab on peritoneal fibrosis in a rat model. Regarding the histopathological
findings, fibrosis also significantly decreased in bevacizumab groups [51].
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Finally, we evaluated the ECG murine traces. Compromise in the cardiac conduction
system during the experimental T. cruzi infection caused an inflammatory response in the
humoral and cellular immune system and others. Consequently, it also promotes changes
in the cardiac conduction system and extracellular matrix remodeling. We observed an
increase in the PR interval and cardiac arrhythmia presence, demonstrated by synusal
bradycardia. QTc time decrease was not relevant to the ECG. The bevacizumab treatment
inhibited these electrical alterations in the heart, suggesting a cardiac protective effect of
this VEGF-neutralizing antibody in infected animals.

Contradictory to our data, it was described that a higher cardiovascular risk factor is
present in bevacizumab-treated cancer patients [52,53]. However, the mechanisms are not
fully understood but may be the result of exacerbated inhibition of VEGF, decreasing nitric
oxide NO and/or increasing proinflammatory gene expression which induces vasocon-
striction and platelet aggregation. Nevertheless, these different effects could be explained
as they were correlated to the bevacizumab dose [52,53] and thus close monitoring of
treatment should be carried out.

Considering that a major problem with Chagas disease is chronic cardiomyopathy, in
which there is well-established fibrosis, the VEGF blockage could be beneficial to minimize
this aspect; however, further studies are necessary to understand the VEGF role at this stage.
We recognize the high cost of the antibody and the consequent difficulty of its broad use as
a treatment for Chagas disease; however, once the participation of VEGF is demonstrated,
we hope that it will provoke the investigation of low-cost and accessible inhibitors.

5. Conclusions

In conclusion, this study shows that VEGF is involved in cardiac collagen deposition
and cardiac conduction system dysfunction during T. cruzi infection. Altogether, our data
suggested that the therapeutic effects of VEGF inhibition could be a potential strategy for
the inhibition of the progression of chagasic cardiomyopathy.
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