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Simple Summary: Chagas disease, caused by the protozoan Trypanosoma cruzi, is a neglected tropical
disease that affects 6–7 million people worldwide. It is a global disease, due to migration from Latin
America to other regions of the world, and a recognized worldwide public health problem. Clinical
treatment is based on two fifty-year-old drugs, nifurtimox and benznidazole. These drugs have
low efficacy in the chronic phase of the disease and have severe adverse effects, making the search
for new drugs essential. This study aimed to evaluate the trypanocidal potential of 1,2,3-triazole
analogs. Our data highlight three analogs with potent activity against trypomastigotes and similar
efficacy to benznidazole, the reference drug, against intracellular parasites. These analogs showed
high efficacy in 3D cardiac microtissue. However, despite potentially reducing parasite load, the
promising candidates did not inhibit the resurgence of the parasite in the absence of the drug. Newly
designed analogs will be screened against T. cruzi to identify potentially active and safe drugs for
Chagas disease therapy.

Abstract: Chagas disease therapy still relies on two nitroderivatives, nifurtimox and benznidazole
(Bz), which have important limitations and serious adverse effects. New therapeutic alternatives
for this silent disease, which has become a worldwide public health problem, are essential for its
control and elimination. In this study, 1,2,3-triazole analogues were evaluated for efficacy against
T. cruzi. Three triazole derivatives, 1d (0.21 µM), 1f (1.23 µM), and 1g (2.28 µM), showed potent
activity against trypomastigotes, reaching IC50 values 10 to 100 times greater than Bz (22.79 µM).
Promising candidates are active against intracellular amastigotes (IC50 ≤ 6.20 µM). Treatment of 3D
cardiac spheroids, a translational in vitro model, significantly reduced parasite load, indicating good
drug diffusion and efficacy. Oral bioavailability was predicted for triazole derivatives. Although
infection was significantly reduced without drug pressure in a washout assay, the triazole derivatives
did not inhibit parasite resurgence. An isobologram analysis revealed an additive interaction when
1,2,3-triazole analogs and Bz were combined in vitro. These data indicate a strengthened potential
of the triazole scaffold and encourage optimization based on an analysis of the structure–activity
relationship aimed at identifying new compounds potentially active against T. cruzi.
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1. Introduction

Neglected tropical diseases (NTDs), a group of 20 diseases recognized by the World
Health Organization (WHO), impact over 1 billion people in the world, mainly the poorer
population living with inadequate sanitation and poor social and economic conditions and
without access to adequate healthcare [1]. For decades, NTDs have been overlooked by
the pharmaceutical industry due to a lack of effective and safe drug treatment, stemming
from the high cost of drug development and an inherent risk of failure. Despite the success
in controlling and eradicating some NTDs in the period 2011–2020, such as Guinea worm
infection, which was eradicated from 42 countries, new prospective proposals have been
launched by the WHO for the period 2021–2030 [2]. In this challenging scenario, Chagas
disease deserves renewed attention.

This infectious, potentially fatal disease, caused by the protozoan Trypanosoma cruzi, is
the main cause of cardiomyopathy in endemic countries in Latin America and is responsible
for 41% of heart failures in endemic areas [3]. Usually asymptomatic and without classic
signs in the acute phase, it is difficult to diagnose and often goes unnoticed and progresses
to the chronic phase. Infected individuals may remain asymptomatic (indeterminate form)
or evolve after decades into the symptomatic form with cardiac, gastrointestinal (mega-
colon and megaesophagus), neurological, or cardio-digestive manifestations [4,5]. Chronic
Chagas cardiomyopathy (CCC), the main clinical manifestation, affects 20–30% of infected
individuals, manifesting as low-intensity myocarditis, fibrosis, and cardiac conduction
system damage, potentially leading to heart failure (HF) and sudden death [6]. Based on
the level of ventricular dysfunction and degree of HF in the chronic phase, cardiovascular
involvement is classified into five stages: A, B1, B2, C, and D. Individuals with no cardiac
alteration are classified as stage A. Stage B1 individuals are asymptomatic but present
electrocardiographic (ECG) alteration. Stage B2 individuals are asymptomatic with left ven-
tricular dysfunction and no HF. Stage C patients have left ventricular dysfunction and HF.
Stage D patients have symptoms of HF at rest, refractory to maximized medical therapy [7].
Sudden death is highlighted as a conspicuous feature (60%) in carriers of Chagas disease [8].
It is noteworthy that antiarrhythmic drugs effectively reduce ventricular arrhythmias but
are not successful in reducing mortality [9,10]. Prevention of transmission, expansion
of diagnostic testing, and access to treatment and clinical care remain important for the
management of the disease [11].

Effective new drugs for the treatment of Chagas disease are yet to be discovered,
however. Benznidazole (Bz) and nifurtimox (NFX), introduced more than 50 years ago,
are the only drugs currently used in clinical therapy. They have significant drawbacks,
including low tolerability, with adverse effects that often lead to discontinuation of treat-
ment [4], partial effectiveness in the acute phase (60–80%), probably due to the variable
drug susceptibility among T. cruzi strains, and low efficacy in the chronic phase of the
disease [12]. In addition, cardiomyopathy progression was not prevented in patients with
chronic Chagas cardiomyopathy treated with Bz [13]. The latest clinical trials revealed the
therapeutic failure of potential treatment candidates. Posaconazole and fosravuconazole (a
prodrug of ravuconazole) did not sustain parasite clearance in monotherapy [14,15], and
although the combination with Bz resulted in an effective antiparasitic response, it did
not improve Bz monotherapy efficacy [16,17]. Reduced dose and shorter course regimens
in a 2-week Bz treatment showed similar efficacy to the Bz standard regimen but with
lower serious side effects and treatment discontinuation, becoming a promising treatment
regimen for Chagas disease [17]. The recently released results from the fexinidazole clinical
trial, an FDA-approved drug for the treatment of human African trypanosomiasis [18],
revealed a rapid parasitological clearance but accompanied by serious adverse effects [19].
Thus, safe and more efficacious drugs to combat Chagas disease are still urgently needed.

Drug repurposing, new drug development, and optimization have been proposed to
identify potent candidate drugs against T. cruzi with prospects for advancing in preclinical
and clinical trials. Triazoles, a class of five-member nitrogen heterocyclic compounds with
broad and potent bioactivity, have been highlighted for their antifungal, antiviral, antiox-
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idant, anti-inflammatory, antitumor, and antiparasitic properties [20]. Triazole activity
has been reported in infectious diseases, including Chagas disease, malaria, tuberculo-
sis, and leishmaniasis [21]. Multiple mechanisms of action have been reported based
on triazole activity against T. cruzi, including cruzain, sterol 14α demethylase (CYP51),
and trans-sialidase inhibitors [21]. Nitrotriazole derivatives exhibit potent bioactivity
against many microorganisms, especially trypanosomatid parasites [22]. Analogs of 1,2,3-
triazole-2-nitroimidazole also demonstrated anti-T. cruzi activity, showing high potency and
selectivity [23]. In this study, in silico approaches and in vitro preclinical assays with more
predictive models of translational efficacy were used to evaluate the activity of 1,2,3-triazole
analogs against T. cruzi. Three active 1,2,3-triazole derivatives stood out in the data for
prospective hit-to-lead optimization.

2. Materials and Methods
2.1. Chemistry

The 1,4-disubstituted 1,2,3-triazoles (1a–n) structures were designed to investigate the
impact of electron-donating and electron-withdrawing functional groups on the triazole
ring and, consequently, their anti-T. cruzi activity. For this purpose, aryl azides ortho-
substituted with -CH3 and -Cl, as well as para-substituted with -CH3, -OCH3, -Br, and
NO2, along with aromatic and aliphatic alkynes containing an -OH group, were used. The
synthesis of all 1,2,3-triazoles was performed using the adjusted methodology of Shao and
co-workers [24]. In Scheme 1, 1.0 mmol of arylazide (4a–h), 1.1 mmol of alkyne (5a–e), and
5 mL of H2O were stirred with 50 µL of glacial acetic acid (HAC) for 60 s. Then, 1 mg of
Cu2O (0.7 mol%) was added to the mixture, which was stirred at room temperature for
30–60 min. Subsequently, the mixture was extracted with ethyl acetate (3 × 15 mL) and then
the combined organic phases were dried with Na2SO4 and concentrated under reduced
pressure to obtain the corresponding 1,4-disubstituted 1,2,3-triazole. The triazoles 1d, 1h,
1i, 1j, and 1k were crystallized from a mixture of acetonitrile and hexane (1:4). The purity of
the 1a–n triazoles was determined with absolute quantification using 1H NMR with methyl
methanesulfonate as an internal standard [25]. The detailed methodology and calculations
used to determine the purity of the compounds are provided in the Supplementary Material.
Melting points (mp) were determined using analog model equipment from Fisatom (São
Paulo, Brazil). Fourier transform infrared (FT-IR) spectra were acquired using a Bruker
ALPHA II spectrometer (Bruker, Rheinstetten, Germany) in the wavenumber range of 400 to
4000 cm−1, with a spectral resolution of 4 cm−1. Nuclear magnetic resonance (NMR) spectra
were obtained using a Bruker Avance instrument (Bruker, Rheinstetten, Germany) operating
at 400 MHz for 1H NMR and 100 MHz for 13C NMR at a temperature of 25 ◦C. High-
resolution mass spectrometry (HRMS) spectra were recorded using a Micromass/Waters
ZQ-4000 spectrometer (Waters, Milford, MA, USA) (Supplementary Figure S1).
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1.41 (m, 2H), 1.38–1.27 (m, 1H); 13C NMR (101 MHz, DMSO) δ 159.46, 157.01, 130.76, 121.93, 
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1.96 (t, J = 9.9 Hz, 2H), 1.80 (s, 2H), 1.77–1.63 (m, 3H), 1.59–1.24 (m, 4H); 13C NMR (101 
MHz, DMSO) δ 157.10, 140.05, 137.25, 130.10, 129.38, 120.73, 119.70, 117.36, 68.42, 38.13, 

Triazole 1h was isolated as a light white solid (yield 89%, purity: 99.8%). mp:188–190 ◦C;
FT-IR υ (cm−1): 3223, 3101 3056, 2927, 2906, 2851, 1597, 1498; 1H NMR (400 MHz, DMSO-
d6) δ 8.62–8.57 (m, 1H), 7.95–7.87 (m, 2H), 7.59 (t, J = 7.9 Hz, 2H), 7.51–7.45 (m, 1H), 5.02 (s,
1H), 2.02–1.90 (m, 2H), 1.83–1.72 (m, 3H), 1.68 (d, J = 10.5 Hz, 1H), 1.47 (s, 1H), 1.38–1.28
(m, 1H); 13C NMR (101 MHz, DMSO) δ 157.24, 137.29, 130.32, 128.80, 120.28, 119.73, 68.43,
38.13, 25.70, 22.16. HRMS (ESI): m/z [M+Na] calcd. for C14H17N3NaO: 266.126383, found:
266.127590.
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Triazole 1k was isolated as an orange solid (yield 89%, purity: 99.6%). mp: 201–203 ◦C;
FT-IR υ (cm−1): 3227, 3106, 3062, 2933, 1609, 1593, 1490; 1H NMR (400 MHz, DMSO-d6) δ
8.56 (s, 1H), 7.78–7.65 (m, 2H), 7.46 (t, J = 7.8 Hz, 1H), 7.28 (d, J = 7.6 Hz, 1H), 5.00 (s, 1H),
1.96 (t, J = 9.9 Hz, 2H), 1.80 (s, 2H), 1.77–1.63 (m, 3H), 1.59–1.24 (m, 4H); 13C NMR (101
MHz, DMSO) δ 157.10, 140.05, 137.25, 130.10, 129.38, 120.73, 119.70, 117.36, 68.42, 38.13,
25.70, 22.18, 21.38; HRMS (ESI): m/z [M+Na] calcd. for C15H19N3NaO: 280.142724, found:
280.142724.
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phere of 5% CO2. Confluent monolayers were dissociated with trypsin-EDTA solution 
(0.025%), and isolated cells were seeded on culture plates or flasks, depending on the ex-
perimental assay. The VERO cell cultures were used in cytotoxicity and phenotypic 
screening assays and for obtaining culture-derived trypomastigotes. 
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DMSO) δ 165.91, 142.53, 134.84, 134.04, 132.23, 131.02, 129.76, 129.56, 129.24, 129.01, 128.94,
128.92, 127.43, 58.21; HRMS (ESI): m/z [M+Na] calcd. for C16H12ClN3NaO2: 336.051025,
found: 336.050532.

Characterization of (1-(o-Tolyl)-1H-1,2,3-triazole-4-yl)methyl benzoate (1m) [28]:

Biology 2023, 12,  7 of 19 
 

 

25.70, 22.18, 21.38; HRMS (ESI): m/z [M+Na] calcd. for C15H19N3NaO: 280.142724, found: 
280.142724. 

Characterization of (1-(2-Chlorophenyl)-1H-1,2,3-triazole-4-yl)methyl benzoate (1l) 
[28]: 

 
Triazole 1l was isolated as a brown oil (yield 75%, purity: 92.8%). FT-IR υ (cm−1): 3227, 

3067, 2958, 2133, 2106, 1714, 1601, 1584, 1494, 1451; 1H NMR (400 MHz, DMSO-d6) δ 8.73 
(s, 1H), 8.01 (dd, J = 7.0, 1.5 Hz, 2H), 7.82–7.51 (m, 8H), 5.53 (s, 2H); 13C NMR (101 MHz, 
DMSO) δ 165.91, 142.53, 134.84, 134.04, 132.23, 131.02, 129.76, 129.56, 129.24, 129.01, 128.94, 
128.92, 127.43, 58.21; HRMS (ESI): m/z [M+Na] calcd. for C16H12ClN3NaO2: 336.051025, 
found: 336.050532. 

Characterization of (1-(o-Tolyl)-1H-1,2,3-triazole-4-yl)methyl benzoate (1m) [28]: 

 
Triazole 1m was isolated as a yellow solid (yield 95%, purity: 98.2%). mp: 150–152 °C; 

FT-IR υ (cm−1): 3147 3067, 2960, 2135, 2106, 1714, 1601, 1584; 1H NMR (400 MHz, DMSO-
d6) δ 8.64 (s, 1H), 8.05–7.95 (m, 2H), 7.68 (t, J = 7.4 Hz, 1H), 7.59–7.37 (m, 6H), 5.52 (s, 2H), 
2.17 (s, 3H); 13C NMR (101 MHz, DMSO) δ 165.94, 142.50, 136.59, 134.03, 133.53, 131.84, 
130.36, 129.80, 129.77, 129.29, 127.47, 126.81, 126.51, 58.34, 17.87; HRMS (ESI): m/z [M+Na] 
calcd. for C17H15N3NaO2: 316.105647, found: 316.106402. 

Characterization of (1-(4-Methoxyphenyl)-1H-1,2,3-triazole-4-yl)methanol (1n) 
[31,32]: 

 
Triazole 1n was isolated as an orange solid (yield 80%, purity 94,7%). mp: 127–129 °C. 

FT-IR υ (cm−1): 3173, 3116, 3073, 3000, 2929, 2833, 1607, 1590, 1517; 1H NMR (400 MHz, 
DMSO-d6) δ 8.56 (s, 1H), 7.84–7.75 (m, 2H), 7.18–7.09 (m, 2H), 5.33 (t, J = 5.6 Hz, 1H), 4.60 
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perimental assay. The VERO cell cultures were used in cytotoxicity and phenotypic 
screening assays and for obtaining culture-derived trypomastigotes. 

Triazole 1m was isolated as a yellow solid (yield 95%, purity: 98.2%). mp: 150–152 ◦C; FT-
IR υ (cm−1): 3147 3067, 2960, 2135, 2106, 1714, 1601, 1584; 1H NMR (400 MHz, DMSO-d6)
δ 8.64 (s, 1H), 8.05–7.95 (m, 2H), 7.68 (t, J = 7.4 Hz, 1H), 7.59–7.37 (m, 6H), 5.52 (s, 2H), 2.17
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(s, 3H); 13C NMR (101 MHz, DMSO) δ 165.94, 142.50, 136.59, 134.03, 133.53, 131.84, 130.36,
129.80, 129.77, 129.29, 127.47, 126.81, 126.51, 58.34, 17.87; HRMS (ESI): m/z [M+Na] calcd.
for C17H15N3NaO2: 316.105647, found: 316.106402.

Characterization of (1-(4-Methoxyphenyl)-1H-1,2,3-triazole-4-yl)methanol (1n) [31,32]:
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FT-IR υ (cm−1): 3173, 3116, 3073, 3000, 2929, 2833, 1607, 1590, 1517; 1H NMR (400 MHz,
DMSO-d6) δ 8.56 (s, 1H), 7.84–7.75 (m, 2H), 7.18–7.09 (m, 2H), 5.33 (t, J = 5.6 Hz, 1H), 4.60
(d, J = 5.5 Hz, 2H), 3.83 (s, 3H); 13C NMR (101 MHz, DMSO) δ 149.33, 130.66, 126.36, 122.07,
121.43, 115.32, 115.09, 56.01, 55.43; HRMS (ESI): m/z [M+Na] calcd. for C10H11N3NaO2:
228.074347, found: 228.074826.

2.3. In Silico Prediction

DataWarrior software version 5.5.0 [33] was used to predict physicochemical proper-
ties. SwissADME service (https:www.swissadme.ch accessed on 31 may 2023) was used to
predict drug oral bioavailability using radar graphics.

2.4. Two- and Three-Dimensional Cell Cultures

VERO cells (Rio de Janeiro Cell Bank code 0245) were cultivated in RPMI 1640 medium
supplemented with 10% fetal bovine serum (FBS) at 37 ◦C in a humidified atmosphere of
5% CO2. Confluent monolayers were dissociated with trypsin-EDTA solution (0.025%),
and isolated cells were seeded on culture plates or flasks, depending on the experimental
assay. The VERO cell cultures were used in cytotoxicity and phenotypic screening assays
and for obtaining culture-derived trypomastigotes.

Primary heart muscle cell cultures were obtained from fetuses of female Swiss Webster
mice, as previously described [34]. After heart removal and ventricle fragmentation, tissue
fragments were dissociated in a trypsin and collagenase type II (Worthington Biochemical
Corporation, Lakewood, USA) dissociation solution. For two-dimensional (2D) cultures, the
isolated cardiac cells were seeded at a density of 5 × 104 cells/well in gelatin (0.1%)-coated
96-well white culture plates. Three-dimensional (3D) cardiac spheroids were obtained
after seeding isolated heart muscle cells at a density of 2.5 × 104 cells/well in an agarose
(1%)-coated 96-well U-bottom plate, as described in [35]. Heart muscle cells cultures were
cultivated in Dulbecco’s modified Eagle medium (DMEM) supplemented with 7% FBS,
2.5 mM CaCl2, 2% embryo extract, and 1 mM L-glutamin and maintained at 37 ◦C in a
humidified atmosphere of 5% CO2. All procedures with animals were approved by the
Animal Care and Use Committee at the Oswaldo Cruz Institute (license L-017/2022).

2.5. Parasites

A drug screen was carried out with Trypanosoma cruzi clone Dm28c genetically mod-
ified to express luciferase (Dm28c-luc), kindly provided by Dr. Cristina Henriques [36].
The genetically modified T. cruzi clone Dm28c (Dm28c-Luc) has the firefly luciferase gene
integrated into the genome, stably expressing the luminescent enzyme. The biolumines-
cent signal, proportional to the number of parasites, is produced by adding a D-luciferin
substrate [37]. Trypomastigotes were harvested from supernatants of VERO cell cultures,
infected at a ratio of 10:1 parasite/host cells, 4 days post-infection (4 dpi). Parasites were
used for phenotypic drug screening procedures. Luminescent parasites are a reliable and
sensitive tool that allows precise quantification of parasite load. The use of genetically
modified organisms was approved under license CQB 105/99.

2.6. Cytotoxicity Analysis

The toxic effect of the triazole series was evaluated on VERO cell monolayers. After
seeding for 24 hours, VERO cells were treated for 72 h at 37 ◦C with the 1,2,3-triazole
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derivatives and Bz, the reference drug, with a range of concentration from 15.62 to 500 µM.
Controls were performed with a non-toxic concentration of dimethyl sulfoxide (DMSO;
≤0.1%) used in the experimental assays. Cell viability was determined by measuring
ATP level using a CellTiter Glo kit [38]. The luminescence read was performed using a
Glomax microplate reader (Promega Corporation, Madison, WI, EUA). The cytotoxicity
concentration 50 (CC50), the drug concentration that reduces cell viability by 50%, was
calculated using linear regression. The cardiotoxic effect of the most effective compounds
was also evaluated using 2D and 3D cultures. Cultures were exposed for 72 h to com-
pound concentrations up to 500 µM, following the protocol mentioned above. At least
3 independent assays were performed in duplicate.

2.7. Trypanocidal Activity

All triazole analogs were analyzed for their biological activity against trypomastigote
and intracellular amastigote forms of T. cruzi (Dm28c-Luc). Trypomastigotes (1.0 × 106 par-
asites/well) were incubated for 24 h at 37 ◦C with triazole derivatives and Bz at concen-
trations ranging from 0.04 to 100 µM. Luciferin (300 µg/mL), a luciferase substrate, was
added to parasite suspensions to evaluate trypomastigotes viability [38]. The luminescent
signal was measured using a Glomax microplate reader. A maximal DMSO concentration
(0.1%) was used as the negative control. The inhibitory concentration 50 (IC50) and 90 (IC90)
against T. cruzi, which reduces the number of parasites by 50% and 90%, respectively, was
calculated using linear regression. The selectivity index (SI), a ratio that measures the
window between toxicity in mammalian cells and anti-T. cruzi activity (SI = CC50/IC50),
was also determined.

Activity against intracellular amastigotes was determined in cultures of VERO cells
infected by T. cruzi (24 h), as previously described [38]. Briefly, infected cultures were treated
for 72 h at 37 ◦C with different concentrations of triazole derivatives (0.04–100 µM). Then,
the culture supernatant was removed, and the viability of the intracellular parasites was
evaluated after adding luciferin (300 µg/mL) to the cell monolayer followed by reading
using the microplate reader. Anti-T. cruzi activity (IC50 and IC90) and SI values were
determined. All experimental assays were performed at least 3 times in duplicate.

2.8. Drug Efficacy in 3D Microtissue

A three-dimensional cardiac model was applied as a cell culture platform to test
the efficacy of promising candidates. Cardiac spheroids, with 5–7 days of culture, were
infected for 24 h with T. cruzi Dm28c-Luc (5 × 105 parasites/well) and then, after washing,
incubated for 72 h at 37 ◦C with 15 to 30 times the IC90 value of the most active compounds
(IC50 ≤ 10 µM). Microtissues were also incubated with DMSO (0.1%) and Bz (100 µM)
as negative and positive controls, respectively. After luciferin addition (300 µg/mL),
the luminescence was measured, and the data were expressed as arbitrary luminescence
units (ALU).

2.9. Washout Assay

A washout assay was performed to evaluate the capacity of the promising candidates
to eliminate all parasites. Thus, VERO cells, seeded in 96-well plates at a density of
1.5 × 104 cells/well, were infected with T. cruzi (Dm28c-Luc) at a 10:1 parasite–host cell
ratio (24 h). Two treatment schedules were performed: 3 days with 30, 50, and 100 µM
concentrations and 10 days with 30 and 60 times the IC50 concentrations. After treatment,
the cultures were washed with PBS and kept for the same period in RPMI 1640 medium
supplemented with 10% FBS without compound pressure. The culture medium was
changed every 3 or 4 days during the time course, and the supernatant was harvested
for luminescence reading after luciferin (300 µg/mL) addition. At the endpoint, the
monolayers were also evaluated for parasite load. The luminescent signal was read using a
Glomax reader. Bz (100 µM) and DMSO (≤1%) were used as positive and negative controls,
respectively.
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2.10. Drug Combination Assay

The combination of promising candidates and Bz was performed using an isobologram
method [39]. Initial concentrations were determined by ensuring that IC50 concentrations
of monotherapy compounds remained close to half in serial dilutions (1:3–6 concentrations).
Solutions at the initial concentration of each compound were prepared and then mixed
in proportions of 5:0, 4:1, 3:2, 2:3, 1:4, and 0:5 (v/v) of promising compounds and Bz,
respectively. The anti-T. cruzi activity for the serial dilutions (1:3) of the ratios was then
analyzed, as previously described [39]. The IC50 values for each combination were used
to determine the fractional inhibitory concentration index (FICI); thus, FICI(A) = IC50(A)
in combination/IC50(A) alone and FICI(B) = IC50(B) in combination/IC50(B) alone. In
addition, the sum of the FICIs for each proportion (∑FICI = FICI(A) + FICI(B)) and the
average of the sums for the FICIs (xΣFICI) were calculated. The FICI values were plotted on
an isobologram graph. The xΣFICI was applied as a classification criterion for interactions:
as synergistic xΣFICI ≤ 0.5, additive xΣFICI > 0.5–1, without interaction xΣFICI > 1–4, and
antagonistic for xΣFICI > 4.

2.11. Statistical Analysis

Data are presented as the mean and standard deviation (SD) of at least three indepen-
dent experiments. All statistical analyses were performed using GraphPad Prism version
8.2 (GraphPad software, Inc., La Jolla, CA, USA). A statistical difference, calculated using
an ANOVA (Kruskal–Wallis), was considered as a p-value ≤ 0.05.

3. Results and Discussion
3.1. In Silico Characterization of 1,2,3-Triazole Derivatives

Computer-aided drug discovery tools have been an attractive strategy for identifying
novel hits and optimizing hit-to-lead compounds [40]. In silico analysis has an impact on
accelerating the discovery of new drugs by discarding compounds with poor physicochem-
ical and pharmacokinetic properties in the early stages of development, thus reducing the
risks of failure [41,42]. Considering this issue, the physicochemical properties of the 1,2,3-
triazole derivatives were assessed with the aim of predicting the drug-likeness profile of the
designed compounds. A total of 14 derivatives (1a–n) were analyzed for their compliance
with Lipinski’s rule, which considers that a molecule is orally bioavailable when it has a
molecular weight (MW) < 500, octanol/water partition coefficient (cLogP) < 5, number
of hydrogen bond donors (HBD) < 5, and hydrogen bond acceptors (HBA) < 10. The
compounds had a low MW, varying from 205.21 to 300.15 g/mol (Figure 1). The optimal
cLogP range (1.520132.9) was mostly observed in 1,2,3-triazole derivatives, favoring per-
meation of biological barriers. Only 1i (cLogP = 0.73) and 1n (cLogP = −0.13) had greater
polarity (Figure 1), which may favor aqueous solubility but tended to limit membrane per-
meability. Lipophilicity is an important property that impacts drug absorption, distribution,
metabolism, excretion, and toxicity (ADMET) [43]. However, oral bioavailability is also
influenced by tPSA and flexibility [44]. Our in silico analysis showed that all derivatives
have a topological polar surface area (tPSA) < 140 Å2, HBD < 5, HBA < 10, and rotatable
bonds (RB) < 10, with a prediction of good oral bioavailability (Figure 1). These findings
were also confirmed using bioavailability radar (Supplementary Figure S2), with most
of the physicochemical parameters, including lipophilicity (LIPO), size (SIZE), polarity
(POLAR), solubility (INSOLU), flexibility (FLEX), and saturation (INSATU), within the
physicochemical space that represents the prediction of oral bioavailability (radar pink area).
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3.2. Cytotoxicity and Biological Activity

All triazole analogs showed good drug-likeness prediction and advanced to pheno-
typic screening assays against T. cruzi (Dm28c-Luc). Toxicity is undoubtedly the main
cause of failure for drugs in clinical trials. Thus, the cytotoxicity was explored in vitro on
VERO cell monolayers, with viability measured using the ATP level. Low toxicity was
observed for all compounds analyzed (CC50 > 236 µM) except 1f (CC50 = 86.8 ± 2.73 µM),
which demonstrated moderate cytotoxicity (Table 1). Next, we assessed the antiparasitic
effect of the 1,2,3-triazole derivatives (1a–n) (Table 1). Most compounds had low activity
against T. cruzi, with IC50 > 70 µM for both trypomastigotes and intracellular amastigotes
forms (Table 1). However, three derivatives, including 1d (pIC50 = 6.67), 1f (pIC50 = 5.91),
and 1g (pIC50 = 5.64), showed a remarkable effect against trypomastigotes, with higher
potency when compared to the reference drug (Bz; pIC50 = 4.64). The effectiveness of
1d (IC50 = 0.21 ± 0.03 µM), 1f (IC50 = 1.23 ± 0.24 µM), and 1g (IC50 = 2.28 ± 0.34 µM),
with IC50 values 10- to 100-fold lower than Bz (IC50 = 22.79 ± 4.12 µM), highlights their
potent activity. Compared with 1g, the introduction of the substituents methoxy (1d), an
electron donating group, using resonance, and methyl (1f), an electron donor group, using
induction, in the para and ortho positions of the phenyl ring increased the activity by 11 and
1.8 times, respectively. Interestingly, 1d (IC50 = 3.27 ± 0.90 µM), 1f (IC50 = 3.50 ± 0.39 µM),
and 1g (IC50 = 6.20 ± 1.06 µM) were also the most effective compounds against intracellular
amastigotes, with anti-T. cruzi activity comparable to Bz (IC50 = 4.67 ± 0.22 µM) (Table 1).
Among promising candidates, 1d (IC90 = 2.90 ± 0.16 µM) and 1f (IC90 = 3.68 ± 0.60 µM)
stood out with IC90 values lower than Bz (IC90 > 100 µM) for both trypomastigotes. How-
ever, 1d had the highest selectivity index (SI) for trypomastigotes (SI > 2380) and intra-
cellular amastigotes (SI > 152), suggesting a potential wide therapeutic window of this
compound (Table 1).
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Table 1. Cytotoxicity and trypanocidal effect to 1,2,3-triazole derivatives.

Trypanocidal Activity
Mean ± SD (µM) Cytotoxicity

Compounds Trypomastigotes Intracellular Amastigotes VERO Cells

IC50 IC90 SI IC50 IC90 SI CC50

1a >100 >100 Nd >100 Nd Nd >500
1b >100 >100 Nd >100 Nd Nd >500
1c >100 >100 Nd >100 Nd Nd >500
1d 0.21 ± 0.03 2.90 ± 0.16 >2380 3.27 ± 0.90 >100 >152 >500
1e >100 >100 Nd 83.24 ± 2.27 Nd >6 >500
1f 1.23 ± 0.24 3.68 ± 0.60 70.5 3.50 ± 0.39 30.42 ± 0.4 24.8 86.8 ± 2.73
1g 2.28 ± 0.34 >100 >219 6.20 ± 1.06 >100 >80.6 >500
1h >100 Nd Nd >100 Nd Nd >500
1i >100 Nd Nd >100 Nd Nd >500
1j >100 Nd Nd >100 Nd Nd >500
1k >100 Nd Nd >100 Nd Nd >500
1l 80.42 ± 3.56 >100 2.94 77.90 ± 2.00 >100 3.03 236.41 ± 17.87

1m >100 Nd Nd >100 Nd Nd >500
1n >100 Nd Nd >100 Nd Nd >500
Bz 22.79 ± 4.12 >100 >100 4.67 ± 0.22 21.69 ± 2.37 >107 >500

Mean values for IC50 and IC90 from three independent experiments ± standard deviation (SD); IC50: concentration
that inhibits parasite viability by 50%; CC50: concentration that reduces the viability of VERO cells by 50%;
Nd = Not determined; Selectivity index (SI) = CC50 of VERO cells/IC50 of trypomastigotes and intracellular
amastigotes forms of T. cruzi.

Database analysis highlights triazole-containing heterocycles as privileged scaffolds in
anti-T. cruzi drug development [45]. Derivatives of the 5-amino-1,2,3-triazole-4-carboxamides
series have demonstrated potent in vitro biological activity [46]. The most active compound
in this series (analog 58) was analyzed in a mouse model of acute and chronic infection using
T. cruzi clone CL-luciferase. Oral treatment (50 mg/kg for 20 days) reduced parasite burden
but was unable to induce sterile cure, with relapse after mice immunosuppression [46]. The
new 1,2,3-triazole-2-nitroimidazole series also revealed high potency against T. cruzi in vitro,
with 5-fold more activity than Bz [23]. Recently, new 1,2,3-triazole-selenide hybrids also
showed anti-T. cruzi activity comparable to the reference drug [47]. Our data highlight the
potential of 1-(4-diphenyl)-1H-1,2,3-triazole derivatives against T. cruzi, with a nanomolar
activity for trypomastigotes (100-fold more active than Bz) and similar potency to Bz for
intracellular parasites. Triazole-based molecules have been identified as potent inhibitors
of T. cruzi drug targets [48–51]. Two new 1,2,3-triazole derivatives (9 and 10), synthesized
from natural phenylpropanoids, interact with the active site of cruzain with molecular
docking and reduce parasitemia in T. cruzi experimental infection in vivo [48]. Bioactive
derivatives consisting of 1,2,3-triazole and 1,2,4-triazole heterocycles have been emphasized
as inhibitors of enzymes involved in T. cruzi metabolism, including trans-sialidase [49],
trypanothione synthetase [50], and cruzain [51].

3.3. Cardiotoxic Effect of 1,2,3-Triazole Candidates

Drug-induced cardiotoxicity remains a major cause of attrition in drug develop-
ment [52,53]. In this regard, we explored the cardiotoxic effect of promising candidates
(1d, 1f, and 1g) in a 2D and 3D primary culture of heart muscle cells. Derivatives 1d and
1g did not induce a cardiotoxic effect, showing CC50 > 500 µM in both 2D and 3D culture
models (Table 2). Derivative 1f revealed a low toxicity (CC50 = 111.33 ± 10.06 µM) on
cardiac monolayers (2D) but no cardiotoxic effect was detected on 3D cardiac microtissue
(CC50 > 500 µM). In general, 2D cultures are more susceptible to compound-induced
toxicity than 3D microtissues [54]. The difference in drug response may be related to phys-
ical and physiological properties, such as morphology, distribution of surface receptors,
proliferative stage, and pH level, promoting drug susceptibility or resistance [54].
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Table 2. Cardiotoxic effect of 1,2,3-triazole derivatives.

Compounds
Toxicity (Mean ± SD µM)

2D Culture 3D Culture

1d >500 >500
1f 111.33 ± 10.06 >500
1g >500 >500

Mean value for CC50 calculated using three independent experiments ± standard deviation (SD). CC50: concen-
tration that reduces heart muscle cell viability by 50%.

3.4. Drug Efficacy in T. cruzi-Infected 3D Cardiac Spheroid

Bridging the gap between in vitro and animal models in drug discovery, 3D cardiac
microtissue, which has a more realistic physiological microenvironment of in vivo tissues
compared to 2D cultures [55], was also applied to evaluate the efficacy of the compounds.
Organoid cultures have been highlighted as a drug screening platform to improve the
efficiency of drug development [56], providing more robust data to proceed with in vivo
preclinical studies. Herein, T. cruzi-infected cardiac spheroids were used to address the
effectiveness of promising candidates since the cardiac cells are the main target of infection
by T. cruzi. The 3D microtissues were treated with the promising candidates at concen-
trations of 15 to 30 times the IC50, except for 1f, whose maximum concentration reached
50 µM. Derivatives 1d and 1f were able to significantly reduce the parasite load in 3D
cardiac microtissue, showing an effective diffusion and effectiveness of the 1,2,3-triazole
candidates (Figure 2). These derivatives showed an anti-T. cruzi effect similar to Bz, even at
low concentrations (≤50 µM). In contrast, 1g did not effectively decrease the total number
of viable intracellular parasites (Figure 2).
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Figure 2. Biological activity of 1,2,3-triazole derivatives (1d, 1f and 1g) in T. cruzi-infected 3D cardiac
spheroids. Anti-T. cruzi activity of the compounds was determined using quantification of the
luminescent signal, measured in arbitrary luminescence units (A.L.Us.) Note that 1d and 1f in both
concentrations significantly inhibited the viability of the parasites, exhibiting efficacy comparable to
Bz. A one-way ANOVA test was used to determine the statistical significance relative to the untreated
and treated groups, p ≤ 0.0001 (****).

Our data reinforce using 3D primary cardiac microtissue as a suitable model to assess
drug efficacy, which can improve the translation potential for anti-T. cruzi drugs, reduc-
ing gaps between in vitro and in vivo models. Efficient preclinical screening is essential
to avoid therapeutic failures in clinical development and the use of 3D culture models
has been widely encouraged to accurately screen candidate drugs [57]. The 3D culture
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model has attracted attention in the development of new drugs and vaccines for infectious
diseases [58]. This tool has allowed advances in the discovery of antimicrobial [59,60]
and antiparasitic drugs, but it has been rarely used in Chagas disease drug screening.
H9c2 cardiomyoblast 3D spheroids were recently used to evaluate the anti-T. cruzi ef-
fect of nucleoside analogs, showing potent activity against intracellular amastigotes [61].
HepG2 monolayers and 3D cultures were also exploited to investigate the hepatotoxicity of
atorvastatin–aminoquinoline derivatives screened against T. cruzi [62]. The efficacy of pyra-
zole derivatives, pyrazole–imidazoline and pyrazole–thiazoline scaffolds, against T. cruzi
was also explored using VERO cell spheroids [38,39]. In cancer research, 3D microtissue
has been widely used as a powerful tool for anti-cancer drug screening since its complex
organization represents the tumor microenvironment with greater reliability, interfering
with drug diffusion and efficacy [63,64]. Therefore, the introduction of 3D culture models
in preclinical drug screening platforms may overcome the drawbacks of immortalized cell
lineage (2D culture) and have the potential to reduce translational lacunas between in vitro
and animal models.

3.5. Drug Potential to Inhibit Parasite Resurgence

An important open question was whether treatment with the promising candidates
could induce a sterile cure in vitro. To assess drug efficacy more accurately, monolayers
of VERO cells infected with T. cruzi (24 h) were exposed to short-term treatment (3 days)
followed by cultivation for 3 days without compound pressure. Both the release of trypo-
mastigotes in the culture supernatant and the presence of intracellular amastigotes in cell
monolayers were determined after reading the luminescent signal (arbitrary luminescence
unit; A.L.U.). Our results demonstrated significant inhibition of released trypomastigotes
and cell monolayer infection. Among the promising candidates analyzed, 1d (100 µM) and
1f (50 µM) were the most effective compounds (Figure 3). In contrast, 1f (30 µM) and 1g
(100 µM) did not significantly reduce the parasite load. Despite the potent activity of 1d
(100 µM) and 1f (50 µM), achieving an approximately 10- to 12-fold reduction, respectively,
in parasite load compared to untreated cultures, these derivatives did not prevent parasite
resurgence (Figure 3). Treatment with Bz (100 µM) potentially inhibited the infection pro-
gression, with a few parasites released and low infection of the cell monolayer (Figure 3),
indicating failure to eliminate parasites with short-term treatment.

The promising results showing that the analogs potentially decreased infection without
drug pressure led us to investigate their ability to induce sterile cure using a long-term
treatment assay. Thus, T. cruzi-infected VERO cell monolayers were treated for 10 days with
the promising candidates, and the reversibility was monitored for another 10 days. The
maximum concentration of 1d and 1f showed a similar inhibitory effect to Bz on the release
of trypomastigotes (Figure 4). Although the 1,2,3-triazole derivatives potentially reduced
the parasite load, none inhibited infection reactivation (Figure 4). However, prolonged
treatment with Bz also failed to induce a sterile cure (Figure 4). Treatment of VERO cells
infected with Silvio X10/7 with Bz (12.5 to 50 times EC50) for 8 days also did not prevent
relapse, but a lack of recrudescence was evidenced for 60 days after 16 days of treatment
with 25 to 50 times EC50 [65]. Interestingly, treatment for 8 days with Bz was able to
delay the resurgence of the parasite, even using a highly proliferative strain (Silvio X10/7).
This fact was not observed in our analysis, where a very low, but continuous, release of
trypomastigotes was evidenced. It is possible that this effect is related to the maximum
concentration of Bz used (20 times the IC50) or the susceptibility of T. cruzi.
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p ≤ 0.05 (*).
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Figure 4. Long-term (21 days) washout assay with 1,2,3-triazole-treated, T. cruzi-infected VERO
cells. Infected monolayers (24 h) were treated for 10 days with promising candidates (1d, 1f, and
1g) followed by another 10 days in the absence of treatment pressure. Detection of trypomastigotes
released in the culture supernatant after treatment with 1d (a), 1f (b), and 1g (c) at different concen-
trations (30 or 60 times IC50). (d) Viable intracellular parasites in the cell monolayer were revealed
using arbitrary luminescence units. Statistical significance, in relation to the untreated group, was
determined using a one-way ANOVA test, with p ≤ 0.0001 (****) and p ≤ 0.001 (***).
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Drug combinations with distinct pharmacological compounds have been applied as a
strategy to improve anti-T. cruzi activity. The resulting in vitro effect of Bz combined with
the promising candidates against intracellular amastigote was analyzed with a luminescent
assay, using T. cruzi Dm28c-Luc. Drug pairs, combined at six different ratios (0:5, 1:4, 2:3,
3:2, 4:1, and 5:0), allowed the calculation of FICI, ΣFICI, and xΣFIC. The data revealed an
additive effect of the 1,2,3-triazole derivatives 1d (xΣFICI = 0.93), 1f (xΣFICI = 0.88), and
1g (xΣFICI = 0.90) with Bz (Figure 5), indicating that the combination effect is equal to the
sum of their activity alone.
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Figure 5. in vitro combinatorial activity of the promising 1,2,3-triazole derivatives and Bz against
amastigotes of T. cruzi. The isobologram graph was constructed by plotting the FICI values for each
proportion of compounds 1d (a), 1f (b), and 1g (c) in combination with Bz (Solid line). Diagonal
drawn dashed line represents the expected FICI points of combinations given dose-additivity.

4. Conclusions

This study integrated virtual analysis and phenotypic drug screening to predict the
oral bioavailability and evaluate the trypanocidal effect of 1,2,3-triazole derivatives, re-
spectively. Three-dimensional spheroids and reversibility assay are suitable in vitro pre-
clinical models to improve the translational success of drug candidates. The reported
data highlight the activity of 1d, 1f, and 1g against T. cruzi, showing good permeability
and efficacy in 3D cardiac microtissue. However, the washout assay demonstrated that
while the analogs potentially reduced the parasite load, they did not prevent parasite
resurgence. The combination of Bz and triazole promising candidates induced an additive
effect with the isobologram analysis, suggesting that combination treatment may lead to a
positive outcome in vivo. New 1,2,3-triazole derivatives, containing methoxy and methyl
substituents on the phenyl ring, will be designed, aiming to improve the compounds’
anti-T. cruzi activity.
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