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Simple Summary: Chagas disease, a vector-borne disease caused by the parasite Trypanosoma cruzi,
is a significant threat to human and canine health in the tropics. To control the transmission of
T. cruzi, systemic insecticide treatment of dogs with fluralaner has been proposed as an intervention
for canine and potentially human Chagas disease. In this study, we evaluated the efficacy of canine
treatment regimens with fluralaner to reduce Chagas disease infections (once every three months and
once every twelve months) in high and low endemic regions using a data-driven mathematical model.
Our study shows that Fluralaner treatment can effectively reduce T. cruzi transmission in humans,
but may increase infections in dogs if canine consumption of triatomine increases. The effectiveness
of the treatment regimen was shown to vary substantially with the underlying intensity of T. cruzi
transmission and the increased rate of canine consumption of dead triatomines. Our study provides
new evidence to support further empirical studies on the potential impact of mass treatment of dogs
with systemic insecticides as a novel and additional intervention for the control and elimination of
Chagas disease in the tropics.

Abstract: Chagas disease, caused by Trypanosoma cruzi and transmitted by triatomines, can lead to
severe cardiac issues and mortality in many mammals. Recent studies have shown that systemic
insecticide treatment of dogs is highly effective in killing triatomines. Here, we assessed the impact of
dog treatment on T. cruzi transmission. We developed a mathematical model of T. cruzi transmission
among triatomines, dogs, humans, and rodents. We used the model to evaluate the impact of dog
treatment regimens on T. cruzi transmission dynamics to determine their effectiveness in reducing
T. cruzi infection among hosts. We show that a 3-month treatment regimen may reduce T. cruzi
incidence among humans by 59–80% in a high transmission setting, and 26–82% in a low transmission
setting. An annual treatment may reduce incidence among humans by 49–74% in a high transmission
setting, and by 11–76% in a low transmission setting. However, dog treatment may substantially
increase T. cruzi prevalence among dogs if dog consumption of dead triatomines increases. Our
model indicates that dog treatment may reduce T. cruzi infections among humans, but it may
increase infections in dogs. Therefore, a holistic approach targeting different hosts is necessary for
Chagas elimination.

Keywords: Trypanosoma cruzi; chagas disease; systemic insecticide; Ross–MacDonald model

1. Introduction

Chagas disease is a vector-borne neglected tropical disease that poses a significant
health burden in tropical regions [1]. The parasite is primarily transmitted by triatomine
insects, commonly known as “kissing bugs”, via contact with their infected fecal material
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during or after feeding. In addition, transmission can occur when the host ingests the
infected bugs or their feces [2,3]. Vertical transmission through transplacental transmission
or breast milk, and other routes such as direct contact with infected body fluids, blood
transfusion, and organ transplantation, also contribute to parasite transmission [4]. The
causative agent of Chagas disease is the parasite Trypanosoma cruzi, and unfortunately, spe-
cific treatment options are limited, and viable vaccines are still lacking. Originally endemic
in the Americas, spanning from Chile to the United States of America, the disease has now
become a global health concern due to human migration, resulting in a significant number
of cases in non-endemic regions such as Canada and Europe [5,6]. There are approximately
6 million reported human cases in the Americas alone, but the true disease burden may be
even higher due to differences in disease surveillance and reporting practices between coun-
tries [1]. For example, recent estimates for Mexico, one of the most affected countries, range
from less than 1 million to more than 4 million cases, and there is considerable uncertainty
in these figures, possibly influenced by reporting bias [7–9]. Chagas disease particularly
affects vulnerable communities and can lead to severe cardiac problems. The global annual
public health impact of the disease is approximately $627.46 million in healthcare costs and
806,170 disability-adjusted life years (DALYs) lost due to both mortality and morbidity [10].
These statistics underscore the urgent need for effective and comprehensive strategies to
control and manage Chagas disease on a global scale.

Triatomines are blood-sucking insects of the family Reduviidae found primarily in the
Americas. There are more than 150 species of triatomines distributed across different tribes,
with diverse morphological characteristics and unique wing patterns [11,12]. Species such
as Rhodnius prolixus, Triatoma infestans, and Triatoma dimidiata are of significant medical
importance due to their high prevalence, wide distribution, and efficient transmission of
Chagas disease. Understanding the biology, distribution, and vectorial capacity of these
triatomine species is critical for effective disease control and prevention strategies [11]. In
tropical regions such as Latin America, triatomine species such as T. infestans, T. dimidiata,
and R. prolixus are widespread and well-adapted to human dwellings, contributing to
Chagas disease transmission [12]. These species exhibit a high degree of domiciliation in
and around human habitats [13–15]. These triatomine species are commonly found in rural
areas with suitable housing conditions and animal reservoirs [14,15].

Efforts to control and eradicate Chagas disease have concentrated on targeting tri-
atomine bugs, the insect vectors [12]. Specifically, T. cruzi transmission to humans occurs
via two primary cycles: the domestic and peri-domestic cycles [16]. In the peri-domestic
cycle, small wild mammals serve as reservoirs, with peri-domestic bugs introducing the
parasite into households and infecting humans and domesticated mammals. The domestic
cycle involves the colonization of houses by triatomine bugs, which in certain regions facili-
tates transmission between humans and domesticated mammals [16]. The epidemiological
importance of rodents becomes even more apparent when considering that many species
can also enter human dwellings and contribute to the transmission of T. cruzi infections [17].
Given the presence of numerous wild mammalian reservoirs, elimination of the disease in
the peri-domestic cycle is very challenging [18,19]. However, within the domestic cycle,
dogs serve as more accessible reservoirs than wild animals, providing opportunities for
One Health interventions to target T. cruzi transmission and reduce human Chagas dis-
ease [20]. Dogs have been identified as a major contributor to T. cruzi transmission [21].
These animals play an increasingly important role in societies, serving as pets, companions,
guard dogs, hunting partners, herding assistants, and law enforcement aids [22]. Dogs
can contribute to the transmission of T. cruzi in several ways. They may ingest infected
triatomine, thereby maintaining the transmission cycle of the parasite as a primary or
major reservoir host. In addition, dogs can contribute to the proliferation of triatomine bug
populations by serving as an important source of blood meals [23]. Consequently, dogs can
establish a link between the peridomestic and domestic transmission cycles, increasing the
risk of human T. cruzi infection [24–26].
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In the tropics, particularly in Argentina, several studies have demonstrated and docu-
mented the significant involvement of dogs in areas endemic to T. cruzi [24,27–29]. In the
northwestern region, dogs exhibited a notably higher infection rate (65.1%) compared to
that of humans (34.2%). In addition, dogs were found to be 18 times more infectious to
T. infestans than humans [27]. Furthermore, T. infestans, a major vector of T. cruzi in the trop-
ics, consistently shows a preference for dogs over other domestic animals [22]. This strong
preference for triatomine vectors for dogs can be exploited via a targeted vector control
approach known as xenointoxication. In this strategy, pesticides are applied to peri-domestic
and domestic animals, such as dogs, with the goal of suppressing insect infestations. By
specifically targeting dogs with topical insecticides or insecticide-impregnated collars, dogs
effectively become baited lethal traps [20,30]. In the context of a pyrethroid shortage, the
administration of a safe, long-lasting, and effective insecticide such as fluralaner to dogs
could potentially serve as a valuable resource to interrupt the transmission of T. cruzi [20].
Interventions targeting the dog population to interrupt T. cruzi transmission in the domestic
cycle have been evaluated. Mathematical models suggest that removal of infected dogs
from households with infected humans could interrupt disease transmission but culling
the dog population is socially unacceptable [31]. Recent trials of oral or topical insecticides,
particularly fluralaner, have shown promising efficacy in killing triatomines that feed on
dogs [30,32–34]. These interventions have the potential to be cost-effective in reducing
T. cruzi infection in humans [35]. Annual treatment of dogs with fluralaner may be effective
in reducing infection rates in high transmission settings, but caution is needed in low
transmission settings [36]. However, there is a potential counterproductive effect as dogs
may ingest treated infected triatomines, increasing infection rates in the dog population.

The Ross-MacDonald theory has made significant contributions to the advancement
of quantitative theory and basic principles of epidemiology, particularly in the context of
vector-borne diseases [37,38]. Mathematical models have been developed to study and
better understand the dynamics of T. cruzi transmission with an emphasis on protecting
human health [36,39–43]. Mathematical modeling techniques provide valuable insights into
the cycle of T. cruzi transmission and the potential impacts of host-targeted interventions.
In this study, we modified the traditional Ross-MacDonald model to examine the dynamics
of transmission among triatomines, dogs, rodents, and humans in domestic and peri-
domestic settings. We used the model to evaluate the effectiveness of treating dogs with
different treatment strategies using the systemic insecticide fluralaner to control triatomine
populations and reduce T. cruzi infections among hosts. In addition, we considered the
potential impact of increased triatomine consumption and the risk of oral transmission
when fluralaner is administered regularly to dogs.

2. Materials and Methods

We conducted a simulation study by modifying the traditional Ross-MacDonald
model. Our adapted model made several simplifying assumptions. First, we assumed
that the population of hosts (humans, dogs, and other competent hosts, i.e., rodents) was
homogeneous and remained constant throughout the study. Similarly, we assumed that
the vector population (triatomine) was also homogeneous but differed from the classic
Ross-MacDonald model by incorporating a logistic birth rate for triatomine [44]. We based
the parameters of the triatomine population on data related to T. infestans, the primary
vector of T. cruzi transmission in the tropics. In addition, we assumed that both triatomine
bugs and hosts (humans, dogs, and other competent hosts) can be susceptible (S, not
infected with T. cruzi and able to become infected) or infectious (I, infected with T. cruzi and
able to transmit). We denoted by NH , ND, NO and NV , the population sizes of humans,
dogs, other competent (rodents), and triatomines, respectively. We denoted SV and IV

as the number of susceptible and infected triatomines and βVH , βVD, and βVO are the
transmission rate of T. cruzi from humans, dogs, and other competent hosts to triatomine.



Biology 2023, 12, 1235 4 of 16

The number of triatomine births is determined by the birth rate R, carrying capacity κ and
the total number of triatomines NV in each setting using the following formula:

R(NV)

(
1 − NV

κ

)
.

The model flow diagram is provided in Figure 1.
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Figure 1. Flowchart for our model of T. cruzi transmission. The blue, red, and yellow dotted lines
represent the transmission processes of T. cruzi.

2.1. Human, Dogs, and Other Transmitters (Rodents)

We denoted βHV , βDV and βOV as the transmission rate of T. cruzi from triatomine to
humans, dogs, and other competent hosts, respectively. The transition of hosts (humans,
dogs, and rodents) from a susceptible state to an infectious state occurs at a rate deter-
mined by the force of infection (FOI) resulting from vector-borne transmission. This FOI
is calculated as the product of various factors, including the transmission rate of T. cruzi
from triatomine to hosts, the ratio of triatomine associated with humans, dogs, and other
competent hosts as ρH , ρD and ρO, respectively, and the proportion of infected triatomines
IV present in the system. We further denote by infected hosts by IH, ID, and IO the pro-

portion of humans, dogs, and other competent hosts (rodents) infected with T. cruzi and
able to transmit. Prior to dog treatment, disease transmission dynamics between the hosts
(humans, dogs, and other competent hosts (rodents)) and the triatomine are described
and presented by the following system of nonlinear ordinary differential equations: dIH ,
the change in the proportion of infected humans, dID, the change in the proportion of
infected dogs, dIO, the change in the proportion of infected other competent hosts (rodents),
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dSV , the change in the proportion of susceptible triatomines and dIV , the change in the

proportion of infectious triatomines:

dIH = βHVρH(1 − IH)
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dID = βDVρD(1 − ID)
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𝑑𝑑𝐼𝐼𝐻𝐻 = 𝛽𝛽𝐻𝐻𝑉𝑉𝜌𝜌𝐻𝐻(1 − 𝐼𝐼𝐻𝐻)�
𝐼𝐼𝑉𝑉
𝑁𝑁𝑉𝑉
� − 𝜇𝜇𝐻𝐻𝐼𝐼𝐻𝐻  

𝑑𝑑𝐼𝐼𝐷𝐷 = 𝛽𝛽𝐷𝐷𝑉𝑉𝜌𝜌𝐷𝐷(1 − 𝐼𝐼𝐷𝐷)�
𝐼𝐼𝑉𝑉
𝑁𝑁𝑉𝑉
� − 𝜇𝜇𝐷𝐷𝐼𝐼𝐷𝐷  

NV

− µO IO
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hosts, and are estimated as 9.3:1; 31.6:1, and 13.7:1, respectively [2,45]. The model’s pa-
rameters and corresponding values are provided in Table 1. 

Table 1. Parameter table. 

Parameter Description Values Reference 

𝛽𝛽𝑂𝑂𝑉𝑉  The transmission rate of T. cruzi from triatomine to other hosts 
H: 0.000087/day 
L: 0.000058/day Estimated from [46,47] 

𝛽𝛽𝐻𝐻𝑉𝑉 The transmission rate of T. cruzi from triatomine to humans H: 0.0000012/day 
L: 8 × 10−8/day 

Estimated from [47–49] 

𝛽𝛽𝐷𝐷𝑉𝑉 The transmission rate of T. cruzi from triatomine to dogs 
H: 0.000025/day 
L: 0.000017/day Estimated from [47,49,50] 

𝛽𝛽𝑉𝑉𝐷𝐷 The transmission rate of T. cruzi from dogs to triatomine H: 0.0086/day 
L: 0.0057/day 

Estimated from [27,47,49] 

𝛽𝛽𝑉𝑉𝐻𝐻 The transmission rate of T. cruzi from humans to triatomine 
H: 0.000173/day 
L: 0.00011/day Estimated from [47,49,50] 

𝛽𝛽𝑉𝑉𝑂𝑂 The transmission rate of T. cruzi from other hosts to triatomine H: 0.00754/day 
L: 0.005/day 

[47,49,50] 

𝜇𝜇𝐻𝐻 Human death rate 0.00003641/day [16] 
𝜇𝜇𝐷𝐷 Dog death rate 0.000455675/day [51] 
𝜇𝜇𝑂𝑂 Other competent death rate 0.0027/day [2] 
𝜇𝜇𝑉𝑉 Triatomine death rate 0.005/day [52] 
κ Carrying capacity of vectors per host Estimated From this study 
𝑅𝑅 The birth rate at carrying capacity 0.09 [53] 

ε 
Transmission efficiency from infectious triatomine to susceptible 

dog via oral transmission 
0.1 [2] 

𝑁𝑁𝑉𝑉  Triatomine population density  31600 vec/km2 [2] 
𝑏𝑏𝑉𝑉𝐷𝐷 Probability of triatomine infection per feed on dogs 0.3082 [27] 
α Triatomine bites rate 0.1428/day [47] 

In the absence of T. cruzi infection, triatomine carrying capacity is derived as follows: 
At equilibrium, 𝑑𝑑𝑁𝑁𝑉𝑉 = 0, thus 

𝑑𝑑𝑁𝑁𝑉𝑉 = 𝑅𝑅𝑁𝑁𝑉𝑉(1 − 𝑁𝑁𝑉𝑉
𝜅𝜅

) − 𝜇𝜇𝑉𝑉𝑁𝑁𝑉𝑉 = 0, and 𝜅𝜅 = 𝑅𝑅𝑁𝑁𝑉𝑉
𝑅𝑅−𝜇𝜇𝑉𝑉

  

For our high and low prevalence settings, the endemic prevalence was estimated to 
be 0.54 and 0.26 for triatomine, 0.48 and 0.23 for dogs, 0.22 and 0.08 for other hosts, and 
0.14 and 0.05 for humans, respectively. These estimates are consistent with empirical esti-
mates from the tropics [54–58]. To initialize our simulations at endemic prevalence in each 
transmission setting, our model was run long enough to reach equilibrium (Figure 2). 
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For our high and low prevalence settings, the endemic prevalence was estimated to 
be 0.54 and 0.26 for triatomine, 0.48 and 0.23 for dogs, 0.22 and 0.08 for other hosts, and 
0.14 and 0.05 for humans, respectively. These estimates are consistent with empirical esti-
mates from the tropics [54–58]. To initialize our simulations at endemic prevalence in each 
transmission setting, our model was run long enough to reach equilibrium (Figure 2). 
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number of triatomine births is determined by the birth rate R, carrying capacity 𝜅𝜅 and the 
total number of triatomines 𝑁𝑁𝑉𝑉 in each setting using the following formula: 

𝑅𝑅(𝑁𝑁𝑉𝑉)(1 −
𝑁𝑁𝑉𝑉
𝜅𝜅

).  

The model flow diagram is provided in Figure 1. 

 
Figure 1. Flowchart for our model of T. cruzi transmission. The blue, red, and yellow dotted lines 
represent the transmission processes of T. cruzi. 

2.1. Human, Dogs, and Other Transmitters (Rodents) 
We denoted 𝛽𝛽𝐻𝐻𝑉𝑉 ,𝛽𝛽𝐷𝐷𝑉𝑉 and 𝛽𝛽𝑂𝑂𝑉𝑉 as the transmission rate of T. cruzi from triatomine to 

humans, dogs, and other competent hosts, respectively. The transition of hosts (humans, 
dogs, and rodents) from a susceptible state to an infectious state occurs at a rate deter-
mined by the force of infection (FOI) resulting from vector-borne transmission. This FOI 
is calculated as the product of various factors, including the transmission rate of T. cruzi 
from triatomine to hosts, the ratio of triatomine associated with humans, dogs, and other 
competent hosts as 𝜌𝜌𝐻𝐻, 𝜌𝜌𝐷𝐷 and 𝜌𝜌𝑂𝑂, respectively, and the proportion of infected triatom-
ines 𝐼𝐼𝑉𝑉 present in the system. We further denote by infected hosts by IH, ID, and IO the 
proportion of humans, dogs, and other competent hosts (rodents) infected with T. cruzi 
and able to transmit. Prior to dog treatment, disease transmission dynamics between the 
hosts (humans, dogs, and other competent hosts (rodents)) and the triatomine are de-
scribed and presented by the following system of nonlinear ordinary differential equa-
tions: 𝑑𝑑𝐼𝐼𝐻𝐻, the change in the proportion of infected humans, 𝑑𝑑𝐼𝐼𝐷𝐷, the change in the pro-
portion of infected dogs, 𝑑𝑑𝐼𝐼𝑂𝑂, the change in the proportion of infected other competent 
hosts (rodents), 𝑑𝑑𝑆𝑆𝑉𝑉, the change in the proportion of susceptible triatomines and 𝑑𝑑𝐼𝐼𝑉𝑉 , the 
change in the proportion of infectious triatomines: 

𝑑𝑑𝐼𝐼𝐻𝐻 = 𝛽𝛽𝐻𝐻𝑉𝑉𝜌𝜌𝐻𝐻(1 − 𝐼𝐼𝐻𝐻)�
𝐼𝐼𝑉𝑉
𝑁𝑁𝑉𝑉
� − 𝜇𝜇𝐻𝐻𝐼𝐼𝐻𝐻  
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= (βVH IH + βVD ID + βVO IO)
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𝜇𝜇𝑉𝑉 Triatomine death rate 0.005/day [52] 
κ Carrying capacity of vectors per host Estimated From this study 
𝑅𝑅 The birth rate at carrying capacity 0.09 [53] 

ε 
Transmission efficiency from infectious triatomine to susceptible 

dog via oral transmission 
0.1 [2] 

𝑁𝑁𝑉𝑉  Triatomine population density  31600 vec/km2 [2] 
𝑏𝑏𝑉𝑉𝐷𝐷 Probability of triatomine infection per feed on dogs 0.3082 [27] 
α Triatomine bites rate 0.1428/day [47] 

In the absence of T. cruzi infection, triatomine carrying capacity is derived as follows: 
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𝑅𝑅−𝜇𝜇𝑉𝑉

  

For our high and low prevalence settings, the endemic prevalence was estimated to 
be 0.54 and 0.26 for triatomine, 0.48 and 0.23 for dogs, 0.22 and 0.08 for other hosts, and 
0.14 and 0.05 for humans, respectively. These estimates are consistent with empirical esti-
mates from the tropics [54–58]. To initialize our simulations at endemic prevalence in each 
transmission setting, our model was run long enough to reach equilibrium (Figure 2). 
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For our high and low prevalence settings, the endemic prevalence was estimated to 
be 0.54 and 0.26 for triatomine, 0.48 and 0.23 for dogs, 0.22 and 0.08 for other hosts, and 
0.14 and 0.05 for humans, respectively. These estimates are consistent with empirical esti-
mates from the tropics [54–58]. To initialize our simulations at endemic prevalence in each 
transmission setting, our model was run long enough to reach equilibrium (Figure 2). 
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.
ρH , ρD and ρO are the ratio of triatomine to humans, dogs, and other competent hosts,

and are estimated as 9.3:1; 31.6:1, and 13.7:1, respectively [2,45]. The model’s parameters
and corresponding values are provided in Table 1.

Table 1. Parameter table.

Parameter Description Values Reference

βOV
The transmission rate of T. cruzi from triatomine to other

hosts
H: 0.000087/day
L: 0.000058/day Estimated from [46,47]

βHV
The transmission rate of T. cruzi from triatomine

to humans
H: 0.0000012/day
L: 8 × 10−8/day Estimated from [47–49]

βDV The transmission rate of T. cruzi from triatomine to dogs H: 0.000025/day
L: 0.000017/day Estimated from [47,49,50]

βVD The transmission rate of T. cruzi from dogs to triatomine H: 0.0086/day
L: 0.0057/day Estimated from [27,47,49]

βVH
The transmission rate of T. cruzi from humans

to triatomine
H: 0.000173/day
L: 0.00011/day Estimated from [47,49,50]

βVO
The transmission rate of T. cruzi from other hosts

to triatomine
H: 0.00754/day

L: 0.005/day [47,49,50]

µH Human death rate 0.00003641/day [16]

µD Dog death rate 0.000455675/day [51]

µO Other competent death rate 0.0027/day [2]

µV Triatomine death rate 0.005/day [52]

κ Carrying capacity of vectors per host Estimated From this study

R The birth rate at carrying capacity 0.09 [53]

ε
Transmission efficiency from infectious triatomine to

susceptible dog via oral transmission 0.1 [2]

NV Triatomine population density 31,600 vec/km2 [2]

bVD Probability of triatomine infection per feed on dogs 0.3082 [27]

α Triatomine bites rate 0.1428/day [47]
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In the absence of T. cruzi infection, triatomine carrying capacity is derived as follows:
At equilibrium, dNV = 0, thus

dNV = RNV

(
1 − NV

κ

)
− µV NV = 0, and κ =

RNV
R − µV

For our high and low prevalence settings, the endemic prevalence was estimated
to be 0.54 and 0.26 for triatomine, 0.48 and 0.23 for dogs, 0.22 and 0.08 for other hosts,
and 0.14 and 0.05 for humans, respectively. These estimates are consistent with empirical
estimates from the tropics [54–58]. To initialize our simulations at endemic prevalence in
each transmission setting, our model was run long enough to reach equilibrium (Figure 2).
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2.2. Dog Treatment

Fluralaner, an oral systemic insecticide, is used in dogs to prevent tick and flea infesta-
tions. Fluralaner-treated dogs have been shown to effectively kill triatomine feeding on
them [34,59]. The triatomine mortality rate induced from dog treatment was defined as θz
where θ is the triatomine contact rate with dogs, with θ = βVD

bVD
, where bVD is the probability

of triatomine infection per feed on T. cruzi infected dogs and z is the percentage of bugs
that will die after feeding on treated dogs at that given time point. Temporal changes in z
were informed using empirical data from systematic laboratory studies [34,59].

As dog treatment results in a substantial increase in dead triatomines, this may change
the force of infection in dogs due to the potential ingestion of dead infected bugs. We
considered this oral force of infection in our model via the additional transmission factor

pε(θzρD)

( IV

NV

)
where p is the proportion of dead triatomines consumed by dogs and ε is

the probability of dog infection via triatomine ingestion. The system of equations becomes
the following:

dIH = βHVρH
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(1 − ID)− µD ID

dIO = βOVρO
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(1 − IO)− µO IO

d

Biology 2023, 12, x FOR PEER REVIEW 5 of 16 
 

 

𝑑𝑑𝐼𝐼𝑂𝑂 = 𝛽𝛽𝑂𝑂𝑉𝑉𝜌𝜌𝑂𝑂(1 − 𝐼𝐼𝑂𝑂)�
𝐼𝐼𝑉𝑉
𝑁𝑁𝑉𝑉
� − 𝜇𝜇𝑂𝑂𝐼𝐼𝑂𝑂  

𝑑𝑑𝑆𝑆𝑉𝑉 = 𝑅𝑅𝑁𝑁𝑉𝑉(1 −
𝑁𝑁𝑉𝑉
𝜅𝜅

) − (𝛽𝛽𝑉𝑉𝐻𝐻𝐼𝐼𝐻𝐻 + 𝛽𝛽𝑉𝑉𝐷𝐷𝐼𝐼𝐷𝐷 + 𝛽𝛽𝑉𝑉𝑂𝑂𝐼𝐼𝑂𝑂)𝑆𝑆𝑉𝑉 − 𝜇𝜇𝑉𝑉𝑆𝑆𝑉𝑉  

𝑑𝑑𝐼𝐼𝑉𝑉 = (𝛽𝛽𝑉𝑉𝐻𝐻𝐼𝐼𝐻𝐻 + 𝛽𝛽𝑉𝑉𝐷𝐷𝐼𝐼𝐷𝐷 + 𝛽𝛽𝑉𝑉𝑂𝑂𝐼𝐼𝑂𝑂)𝑆𝑆𝑉𝑉 − 𝜇𝜇𝑉𝑉𝐼𝐼𝑉𝑉  

where 𝑁𝑁𝑉𝑉 = 𝑆𝑆𝑉𝑉 + 𝐼𝐼𝑉𝑉 . 
𝜌𝜌𝐻𝐻 , 𝜌𝜌𝐷𝐷  and 𝜌𝜌𝑂𝑂  are the ratio of triatomine to humans, dogs, and other competent 

hosts, and are estimated as 9.3:1; 31.6:1, and 13.7:1, respectively [2,45]. The model’s pa-
rameters and corresponding values are provided in Table 1. 

Table 1. Parameter table. 

Parameter Description Values Reference 

𝛽𝛽𝑂𝑂𝑉𝑉  The transmission rate of T. cruzi from triatomine to other hosts 
H: 0.000087/day 
L: 0.000058/day Estimated from [46,47] 

𝛽𝛽𝐻𝐻𝑉𝑉 The transmission rate of T. cruzi from triatomine to humans H: 0.0000012/day 
L: 8 × 10−8/day 

Estimated from [47–49] 

𝛽𝛽𝐷𝐷𝑉𝑉 The transmission rate of T. cruzi from triatomine to dogs 
H: 0.000025/day 
L: 0.000017/day Estimated from [47,49,50] 

𝛽𝛽𝑉𝑉𝐷𝐷 The transmission rate of T. cruzi from dogs to triatomine H: 0.0086/day 
L: 0.0057/day 

Estimated from [27,47,49] 

𝛽𝛽𝑉𝑉𝐻𝐻 The transmission rate of T. cruzi from humans to triatomine 
H: 0.000173/day 
L: 0.00011/day Estimated from [47,49,50] 

𝛽𝛽𝑉𝑉𝑂𝑂 The transmission rate of T. cruzi from other hosts to triatomine H: 0.00754/day 
L: 0.005/day 

[47,49,50] 

𝜇𝜇𝐻𝐻 Human death rate 0.00003641/day [16] 
𝜇𝜇𝐷𝐷 Dog death rate 0.000455675/day [51] 
𝜇𝜇𝑂𝑂 Other competent death rate 0.0027/day [2] 
𝜇𝜇𝑉𝑉 Triatomine death rate 0.005/day [52] 
κ Carrying capacity of vectors per host Estimated From this study 
𝑅𝑅 The birth rate at carrying capacity 0.09 [53] 

ε 
Transmission efficiency from infectious triatomine to susceptible 

dog via oral transmission 
0.1 [2] 

𝑁𝑁𝑉𝑉  Triatomine population density  31600 vec/km2 [2] 
𝑏𝑏𝑉𝑉𝐷𝐷 Probability of triatomine infection per feed on dogs 0.3082 [27] 
α Triatomine bites rate 0.1428/day [47] 

In the absence of T. cruzi infection, triatomine carrying capacity is derived as follows: 
At equilibrium, 𝑑𝑑𝑁𝑁𝑉𝑉 = 0, thus 

𝑑𝑑𝑁𝑁𝑉𝑉 = 𝑅𝑅𝑁𝑁𝑉𝑉(1 − 𝑁𝑁𝑉𝑉
𝜅𝜅

) − 𝜇𝜇𝑉𝑉𝑁𝑁𝑉𝑉 = 0, and 𝜅𝜅 = 𝑅𝑅𝑁𝑁𝑉𝑉
𝑅𝑅−𝜇𝜇𝑉𝑉

  

For our high and low prevalence settings, the endemic prevalence was estimated to 
be 0.54 and 0.26 for triatomine, 0.48 and 0.23 for dogs, 0.22 and 0.08 for other hosts, and 
0.14 and 0.05 for humans, respectively. These estimates are consistent with empirical esti-
mates from the tropics [54–58]. To initialize our simulations at endemic prevalence in each 
transmission setting, our model was run long enough to reach equilibrium (Figure 2). 
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𝛽𝛽𝑉𝑉𝑂𝑂 The transmission rate of T. cruzi from other hosts to triatomine H: 0.00754/day 
L: 0.005/day 

[47,49,50] 

𝜇𝜇𝐻𝐻 Human death rate 0.00003641/day [16] 
𝜇𝜇𝐷𝐷 Dog death rate 0.000455675/day [51] 
𝜇𝜇𝑂𝑂 Other competent death rate 0.0027/day [2] 
𝜇𝜇𝑉𝑉 Triatomine death rate 0.005/day [52] 
κ Carrying capacity of vectors per host Estimated From this study 
𝑅𝑅 The birth rate at carrying capacity 0.09 [53] 

ε 
Transmission efficiency from infectious triatomine to susceptible 

dog via oral transmission 
0.1 [2] 

𝑁𝑁𝑉𝑉  Triatomine population density  31600 vec/km2 [2] 
𝑏𝑏𝑉𝑉𝐷𝐷 Probability of triatomine infection per feed on dogs 0.3082 [27] 
α Triatomine bites rate 0.1428/day [47] 

In the absence of T. cruzi infection, triatomine carrying capacity is derived as follows: 
At equilibrium, 𝑑𝑑𝑁𝑁𝑉𝑉 = 0, thus 

𝑑𝑑𝑁𝑁𝑉𝑉 = 𝑅𝑅𝑁𝑁𝑉𝑉(1 − 𝑁𝑁𝑉𝑉
𝜅𝜅

) − 𝜇𝜇𝑉𝑉𝑁𝑁𝑉𝑉 = 0, and 𝜅𝜅 = 𝑅𝑅𝑁𝑁𝑉𝑉
𝑅𝑅−𝜇𝜇𝑉𝑉

  

For our high and low prevalence settings, the endemic prevalence was estimated to 
be 0.54 and 0.26 for triatomine, 0.48 and 0.23 for dogs, 0.22 and 0.08 for other hosts, and 
0.14 and 0.05 for humans, respectively. These estimates are consistent with empirical esti-
mates from the tropics [54–58]. To initialize our simulations at endemic prevalence in each 
transmission setting, our model was run long enough to reach equilibrium (Figure 2). 
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Using our model, we assessed the effectiveness of both regimens in reducing the
prevalence of T. cruzi infection in dogs and triatomines, as well as the density of triatomines
in two transmission settings: high and low. The effective outcomes we considered include
the reduction in T. cruzi prevalence in various hosts (dogs, humans, and other competent
hosts like rodents), the decrease in triatomine density, and the reduction in T. cruzi incidence
in humans.

2.3. Treatment Strategies

In this study, we examined two distinct fluralaner treatment approaches: a 3-month
regimen, where dogs received treatment once every three months and a 12-month regimen.
The efficacy of each treatment and the induced triatomine mortality rate were determined
based on empirical data [34]. Our models were utilized to assess the effectiveness of
both regimens in reducing T. cruzi infection prevalence among dogs, humans, other hosts
(rodents), and triatomine, and reduction in human infection incidence, in two transmission
settings (high and low). To evaluate the potential impact of increased oral transmission on
the effectiveness of the dogs’ treatment, we considered varying levels of dead triatomine
consumption by dogs (low, medium, and high). These dog consumption levels were
defined as Low, p = 0.01; Medium, p = 0.2; and High, p = 0.6, where p is the proportion
of dead triatomines consumed by dogs.

All analyses for the figures were performed in MATLAB 2022b. In our model, treat-
ment was initiated once the population of dogs, humans, other competent hosts, and the
vector population reached equilibrium.

3. Results

In our study, we investigated two distinct dog treatment regimens targeting the
domestic vector of Chagas disease. The domestic vector refers to the triatomine insects
that have adapted to living in and around human dwellings and play a significant role
in transmitting the T. cruzi parasite responsible for Chagas disease. The two treatment
regimens involved administering canine fluralaner treatment every three months and
annually for a period of 20 years. The frequent treatment approaches aimed to evaluate
the long-term effects of a less frequent intervention strategy on the prevalence of T. cruzi
infection in the dog population. Additionally, we explored its potential implications for
Chagas disease transmission to humans and other competent hosts.

First, we examined the impact of a 3-month treatment regimen in both low- and high-
transmission settings. These scenarios were evaluated for different levels (low, medium,
and high) of dead triatomine consumption by dogs. As the percentage of dead triatomines
eaten by dogs increases, the effectiveness of dog treatment for reducing T. cruzi infection
decreases. The impact on reducing T. cruzi prevalence in the human population is marginal,
primarily because humans have a longer lifespan, and our study considered a relatively
short period of only 20 years (Figures 3 and 4). In the low-transmission setting, the
prevalence of T. cruzi decreased from 0.05 to 0.04, 0.046, and 0.047 in humans for low,
medium, and high oral consumption of triatomines over 20 years, respectively (Figure 3),
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whereas in the high-transmission setting, the prevalence of T. cruzi decreased from 0.14 to
0.11, 0.12, and 0.12 in humans with low, medium, and high oral consumption of triatomines,
respectively (Figure 4). Similarly, for other host populations, the prevalence of T. cruzi in the
low-transmission setting decreased from 0.08 to 0.005, 0.059, and 0.065 for a low medium,
and high oral consumption of triatomines, respectively (Figure 3). On the other hand,
in a high transmission setting, T. cruzi prevalence in the other host (rodents) population
decreased from 0.22 to 0.03, 0.09, and 0.1 with low, medium, and high oral consumption
of triatomines, respectively (Figure 4). T. cruzi prevalence in both the dog and other host
population shows a consistent decline for low consumption of dead triatomines in both
low and high transmission settings (Figures 3 and 4). In the low transmission setting, when
the percentage of dead triatomines consumed is lower (1%), the level of T. cruzi prevalence
decreases from 0.23 to 0.05, while in the high transmission setting, it decreases from 0.48 to
0.19 among the dog population.
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However, when the consumption of dead triatomines is medium and higher (20% and
60%), the level of T. cruzi prevalence among dogs increases in both transmission settings
(Figures 3 and 4). With a medium oral consumption of dead triatomines by dogs, T. cruzi
prevalence among dogs rises from 0.23 to 0.82 in a low-transmission setting and from
0.48 to 0.89 in a high-transmission setting. Similarly, for higher oral consumption of dead
triatomines, T. cruzi prevalence increases from 0.23 to 0.93 in the low-transmission setting
and from 0.48 to 0.96 in the high transmission setting.

Our analysis shows that canine fluralaner treatment administered every 3 months
had an immediate impact in reducing the percentage of infected triatomine population
across both transmission settings (Figures 3 and 4). This impact was observed even under
various levels of oral consumption of dead triatomines by dogs. In the low transmission
setting, when dogs had a low level of oral consumption of triatomines, we observed a
continuous decline in the percentage of infected triatomine population over the 20-year
period, decreasing from 25% to 1%. Similarly, in the high transmission setting, with a low
level of oral consumption of triatomines, the percentage of the triatomine population also
exhibited a decreasing trend, declining from 53% to 5% over the 20-year period. On the
other hand, under the medium and higher consumption of dead triatomines by dogs in
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both settings, we see a steep decline in the percentage of the infected triatomine population
immediately after treatment, which then gradually increased and eventually stabilized.
With a medium oral consumption of dead triatomines by dogs, the infected triatomine
population decreases from 25% to 17% in a low-transmission setting and from 53% to 20%
in a high transmission setting. Similarly, for higher oral consumption of dead triatomines,
T. cruzi prevalence decreases from 25% to 21.6% in the low-transmission setting and from
53% to 19.5% in the high transmission setting.
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We also investigate the impact of annual treatment (12-month regimen) in the two
transmission settings over a period of 20 years. Similar to the 3-month regimen, there was
a prompt decline in T. cruzi prevalence in both dogs and other host population following
the initiation of annual treatment when dogs’ consumption of killed triatomine is very low
(Figures 5 and 6). The observed annual transient rebound in T. cruzi prevalence was due to
the fact that the efficacy of fluralaner for killing triatomines progressively declines at seven
months following dog treatment [34,59].

The reduction in T. cruzi prevalence in humans under annual treatment was similar
to that of the 3-month regimen. In the low-transmission setting, the prevalence of T. cruzi
in humans was reduced from 0.05 to 0.04, 0.046, 0.047 for low, medium, and high oral
consumption of triatomines, respectively (Figure 5), and in a high-transmission setting,
the prevalence of T. cruzi in humans was reduced from 0.14 to 0.11, 0.12, 0.13 for low,
medium, and high oral consumption of triatomines, respectively (Figure 6). For other host
populations, the prevalence of T. cruzi in the low-transmission setting decreased from 0.08
to 0.008 for low, medium, and high oral consumption with the highest reduction observed
immediately after treatment initiation. T. cruzi prevalence among dogs decreases from 0.23
to 0.06 in the low transmission setting, while in the high transmission setting, it decreases
from 0.48 to 0.24.
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With medium and higher consumption of dead triatomines by dogs, the T. cruzi
prevalence among dogs increases in both transmission settings (Figures 5 and 6). With a
medium oral consumption of dead triatomines by dogs (20%), T. cruzi prevalence among
dogs rises from 0.23 to 0.81 in a low-transmission setting and from 0.48 to 0.89 in a high
transmission setting. For a higher oral consumption of dead triatomines (60%), T. cruzi
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prevalence among dogs increases from 0.23 to 0.93 in the low-transmission setting and
from 0.48 to 0.96 in the high transmission setting.

Canine fluralaner treatment administered annually was shown to substantially re-
duce T. cruzi prevalence among triatomines in low and high transmission settings when
the oral consumption is low. In the low transmission setting, for low oral consumption
of triatomines, the percentage of infected triatomine population decreases from 25% to
2%. Similarly, in the high transmission setting, with a low level of oral consumption of
triatomines, the percentage of the triatomine population declines from 53% to 6%. With
a medium oral consumption of dead triatomines by dogs, the percentage of infected
triatomines in the low transmission setting initially decreases from 25% to 17% and subse-
quently increases to 33% after 3 years of treatment, whereas in a high transmission setting
it reduces from 53% to 20% immediately after the first round of treatment and then rises
to 39%. With higher oral consumption of dead triatomines, the percentage of infected
triatomines decreases in the low transmission setting from 25% to 19% immediately after
treatment initiation and then rises to 33%, whereas in the high transmission setting the
percentage of infected triatomines initially decreases from 53% to 22% and subsequently
increases to 41%.

In all transmission settings, we observed a prompt decline in vector population density
following the initiation of treatment for both regimens (Figure 7). Under the 3-month
treatment regimen, the triatomines population was reduced and maintained to 67% of its
pre-intervention level in high transmission settings and 79% in low transmission settings
(Figure 7A). Under a 12-month regimen, the triatomine population was shown to be initially
reduced to 67% of its pre-intervention level in high transmission setting and 79% in low
transmission setting after each round of treatment (Figure 7B). However, the triatomine
population was shown to recover promptly as fluralaner efficacy wanes (Figure 7B). .
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Finally, we evaluated the impact of the dogs’ treatment regimens on T. cruzi infection
incidence among humans (Table 2). We showed that over the first 10 years of treatment,
annual dogs’ treatment may reduce T. cruzi infection incidence among humans by 74% and
77% in high and low transmission settings, respectively, whereas a three-month treatment
regimen may reduce incidence by more than 80% in both transmission settings. However,
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the effectiveness of the dog treatment regimen for reducing disease incidence among
humans varies significantly with the level of additional dog consumption of dead bugs
following treatment initiation (Table 2). For example, if dogs eat 20% of dead triatomines
(medium consumption), annual dog treatment will reduce T. cruzi infection incidence by
52% over the first 10 years in high transmission settings, and by 25% in low transmission
settings. A three-month treatment regimen will reduce human infection incidence by 62%
in high transmission settings, and by 38% in low transmission settings.

Table 2. Percentage reduction in T. cruzi infection incidence among humans during the first
10 years of treatment. In the absence of dog treatment, the baseline annual endemic incidence was
6.7 cases/10,000 persons per year in low transmission setting and 18.9 cases/10,000 persons per year
in high transmission setting.

Transmission
Settings

Treatment Frequency

Every Three Months Every Twelve Months

Dead Triatomine Consumption Dead Triatomine Consumption

Low Medium High Low Medium High

High 80.40% 61.70% 58.90% 74.00% 52.60% 49.30%
Low 81.90% 37.80% 26.30% 76.80% 25.50% 11.20%

4. Discussion

The study evaluated the impact of fluralaner treatment for the control of Chagas dis-
ease in different T. cruzi transmission settings in the tropics. The effectiveness of treatment
was shown to vary significantly with the level of oral consumption of dead triatomine
by dogs after treatment initiation. At low oral consumption levels (e.g., 1%), our model
showed that dog treatment (once every 3 or 12 months) with fluralaner could substantially
reduce T. cruzi infection in most hosts including humans and other hosts (rodents). At
moderate or high oral consumption of dead triatomines by dogs (e.g., 5% or more), dog
treatment may exacerbate T. cruzi infection in dogs, and moderately reduce infection in
triatomines and other hosts (rodents). In humans, Chagas disease incidence could be
reduced by 50–60% in high transmission settings, and by less than 40% in low transmission
settings, with effectiveness decreasing with increasing oral consumption rates.

The results of our study have important implications for public health strategies aimed
at controlling T. cruzi transmission. First, canine fluralaner treatment can effectively reduce
T. cruzi infection in dogs if canine treatment does not result in a substantial increase in
dog consumption of dead triatomines. The effect of systemic insecticide treatment on
canine consumption of triatomine remains unknown. To more accurately estimate the
effectiveness of systemic insecticide use on T. cruzi infection in dogs and humans, empirical
field studies are needed to better understand canine triatomine feeding behavior and the
impact of systemic insecticide use on this feeding behavior. Although canine treatment can
be an effective tool for Chagas disease control, it is important to recognize that reliance on
canine treatment alone may not be sufficient to achieve elimination of T. cruzi transmission.
Additional measures such as insecticide spraying, vaccines, health education, and screening
of at-risk human populations are essential components of an integrated approach to Chagas
disease control.

As with all mathematical models, our model has some limitations. These limitations
are likely to affect our estimates of the impact of dog treatment on reducing T. cruzi infection
among humans and other hosts. This is due to several simplifying assumptions made.
First, our model does not explicitly account for triatomine migration, which may help to
replenish the triatomine population in the area of interest and provide an external source of
infection. Second, our model does not explicitly account for the fact that some triatomines
may not feed on dogs or may not feed continuously on all hosts. The T. infestans are
opportunistic feeders with nocturnal feeding behavior, so their feeding patterns may be
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highly heterogeneous among hosts and over time. This may reduce the effectiveness of
dog treatment for preventing T. cruzi infection among other hosts and humans. Third, our
model does not account for triatomine reproductive senescence and seasonality of their
feeding patterns, which may also influence the effectiveness of dog treatment for reducing
T. cruzi transmission dynamics [60]. Fourth, our model does not account for the impact
of possible natural or treatment-induced recovery among infected hosts. The presence of
recovered hosts will hinder disease transmission and subsequently reduce the effectiveness
of systemic insecticide treatment of dogs for control of Chagas disease. However, low
recovery rates are anticipated to have minimal impact on the effectiveness of treatment
regimens. In addition to ignoring the potential impact of host recovery, our model did not
investigate the impact of dogs’ lifespan on disease transmission. Future studies should
investigate the impact of these factors on the effectiveness of systemic insecticide treatment
of dogs for control of Chagas disease.

Our model made additional assumptions. We grouped hosts into a single infected
class, combining the acute and chronic phases of infection, which have different infectivity.
We also ignore disease-induced mortality by assuming that hosts could die via natural
death. Although such assumptions are expected to have minimal impact on our results, they
remain a simplifying assumption. Finally, we assumed that oral transmission occurred only
after the bugs were killed by treatment (fluralaner administration). Thus, we considered
that there was no significant oral transmission of T. cruzi in the dog population prior to the
administration of the fluralaner.

5. Conclusions

Our study provides valuable insights into the impact of canine fluralaner treatment
on T. cruzi infection incidence in different host populations and transmission settings.
While canine treatment was shown to be effective in directly reducing infections in the dog
population, a potential indirect consequence of treatment via increased oral consumption
of dead bugs by dogs may result in increased T. cruzi infection in dogs. The direct impact
of dog treatment on human and other hosts (rodents) infection rates has been shown to
vary significantly with the underlying transmission setting and the oral infection rate of
dogs. Integrated control strategies that include multiple interventions, including vector
control and community engagement, are essential to achieve meaningful reductions in
T. cruzi transmission and improve public health outcomes. Further research and collab-
oration between researchers, health authorities, and local communities are essential to
develop and implement comprehensive approaches to effectively control Chagas disease in
the tropics.
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