Blue and Red LED Lights Differently Affect Growth Responses and Biochemical Parameters in Lentil (Lens culinaris)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Light Treatments
2.3. Biometric Measurements
2.4. Chlorophyll and Carotenoid Contents
2.5. Total Phenols
2.6. Ascorbate Pool
2.7. Hydrogen Peroxide and Lipid Peroxidation Determination
2.8. Soluble Protein and Enzyme Activity Assay
2.9. Statistical Analysis
3. Results
3.1. Effect of Light on Biometric Parameters
3.2. Chlorophylls and Carotenoid Content
3.3. Changes in Phenol Content
3.4. Changes in Ascorbate Pool
3.5. Light Influence on H2O2 and Lipid Peroxidation Levels
3.6. Antioxidant Enzymes Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Di Gioia, F.; Renna, M.; Santamaria, P. Sprouts, Microgreens and “Baby Leaf” Vegetables. In Minimally Processed Refrigerated Fruits and Vegetables; Yildiz, F., Wiley, R.C., Eds.; Food Engineering Series; Springer: Boston, MA, USA, 2017; pp. 403–432. [Google Scholar] [CrossRef]
- Zhang, X.; Bian, Z.; Yuan, X.; Chen, X.; Lu, C. A Review on the Effects of Light-Emitting Diode (LED) Light on the Nutrients of Sprouts and Microgreens. Trends Food Sci. Technol. 2020, 99, 203–216. [Google Scholar] [CrossRef]
- Samuolienė, G.; Sirtautas, R.; Brazaitytė, A.; Duchovskis, P. LED Lighting and Seasonality Effects Antioxidant Properties of Baby Leaf Lettuce. Food Chem. 2012, 134, 1494–1499. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chang, S.K.C. Macronutrients, Phytochemicals, and Antioxidant Activity of Soybean Sprout Germinated with or without Light Exposure. J. Food Sci. 2015, 80, S1391–S1398. [Google Scholar] [CrossRef] [PubMed]
- Nam, T.G.; Kim, D.-O.; Eom, S.H. Effects of Light Sources on Major Flavonoids and Antioxidant Activity in Common Buckwheat Sprouts. Food Sci. Biotechnol. 2017, 27, 169–176. [Google Scholar] [CrossRef]
- Mastropasqua, L.; Dipierro, N.; Paciolla, C. Effects of Darkness and Light Spectra on Nutrients and Pigments in Radish, Soybean, Mung Bean and Pumpkin Sprouts. Antioxidants 2020, 9, 558. [Google Scholar] [CrossRef]
- Ding, S.; Su, P.; Wang, D.; Chen, X.; Tang, C.; Hou, J.; Wu, L. Blue and Red Light Proportion Affects Growth, Nutritional Composition, Antioxidant Properties and Volatile Compounds of Toona Sinensis Sprouts. LWT 2023, 173, 114400. [Google Scholar] [CrossRef]
- Galvão, V.C.; Fankhauser, C. Sensing the Light Environment in Plants: Photoreceptors and Early Signaling Steps. Curr. Opin. Neurobiol. 2015, 34, 46–53. [Google Scholar] [CrossRef]
- Devlin, P.F.; Christie, J.M.; Terry, M.J. Many Hands Make Light Work. J. Exp. Bot. 2007, 58, 3071–3077. [Google Scholar] [CrossRef]
- Paradiso, R.; Proietti, S. Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. J. Plant Growth Regul. 2022, 41, 742–780. [Google Scholar] [CrossRef]
- Loi, M.; Villani, A.; Paciolla, F.; Mulè, G.; Paciolla, C. Challenges and Opportunities of Light-Emitting Diode (LED) as Key to Modulate Antioxidant Compounds in Plants. A Review. Antioxidants 2021, 10, 42. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. In Methods in Enzymology; Jakoby, W.B., Colowick, S.P., Griffith, O.W., Eds.; Plant Cell Membranes; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. [Google Scholar] [CrossRef]
- Bartley, G.E.; Scolnik, P.A. Plant Carotenoids: Pigments for Photoprotection, Visual Attraction, and Human Health. Plant Cell 1995, 7, 1027–1038. [Google Scholar] [CrossRef] [PubMed]
- Bantis, F.; Smirnakou, S.; Ouzounis, T.; Koukounaras, A.; Ntagkas, N.; Radoglou, K. Current Status and Recent Achievements in the Field of Horticulture with the Use of Light-Emitting Diodes (LEDs). Sci. Hortic. 2018, 235, 437–451. [Google Scholar] [CrossRef]
- Hamzah Saleem, M.; Rahman, M.; Fahad, S.; Tung, S.; Iqbal, N.; Hassan, A.; Ayub, A.; Wahid, M.; Shaukat, S.; Liu, L.; et al. Leaf Gas Exchange, Oxidative Stress, and Physiological Attributes of Rapeseed (Brassica napus L.) Grown under Different Light-Emitting Diodes. Photosynthetica 2020, 58, 836. [Google Scholar] [CrossRef]
- Hirai, T.; Amaki, W.; Watanabe, H. Action of blue or red monochromatic light on stem internodal growth depends on plant species. In Proceedings of the V International Symposium on Artificial Lighting in Horticulture 711, Lillehammer, Norway, 21–24 June 2005; pp. 345–350. [Google Scholar]
- Kim, E.-Y.; Park, S.-A.; Park, B.-J.; Lee, Y.; Oh, M.-M. Growth and Antioxidant Phenolic Compounds in Cherry Tomato Seedlings Grown under Monochromatic Light-Emitting Diodes. Hortic. Environ. Biotechnol. 2014, 55, 506–513. [Google Scholar] [CrossRef]
- Kong, Y.; Zheng, Y. Growth and Morphology Responses to Narrow-Band Blue Light and Its Co-Action with Low-Level UVB or Green Light: A Comparison with Red Light in Four Microgreen Species. Environ. Exp. Bot. 2020, 178, 104189. [Google Scholar] [CrossRef]
- Li, H.; Tang, C.; Xu, Z.; Liu, X.; Han, X. Effects of Different Light Sources on the Growth of Non-Heading Chinese Cabbage (Brassica campestris L.). J. Agric. Sci. 2012, 4, 262. [Google Scholar] [CrossRef]
- Trouwborst, G.; Hogewoning, S.W.; van Kooten, O.; Harbinson, J.; van Ieperen, W. Plasticity of Photosynthesis after the ‘Red Light Syndrome’ in Cucumber. Environ. Exp. Bot. 2016, 121, 75–82. [Google Scholar] [CrossRef]
- Lee, S.-W.; Seo, J.M.; Lee, M.-K.; Chun, J.-H.; Antonisamy, P.; Arasu, M.V.; Suzuki, T.; Al-Dhabi, N.A.; Kim, S.-J. Influence of Different LED Lamps on the Production of Phenolic Compounds in Common and Tartary Buckwheat Sprouts. Ind. Crops Prod. 2014, 54, 320–326. [Google Scholar] [CrossRef]
- Johnson, R.E.; Kong, Y.; Zheng, Y. Elongation Growth Mediated by Blue Light Varies with Light Intensities and Plant Species: A Comparison with Red Light in Arugula and Mustard Seedlings. Environ. Exp. Bot. 2020, 169, 103898. [Google Scholar] [CrossRef]
- Ahmadi, T.; Shabani, L.; Sabzalian, M.R. LED Light Mediates Phenolic Accumulation and Enhances Antioxidant Activity in Melissa officinalis L. under Drought Stress Condition. Protoplasma 2020, 257, 1231–1242. [Google Scholar] [CrossRef]
- Tang, Y.; Mao, R.; Guo, S. Effects of LED Spectra on Growth, Gas Exchange, Antioxidant Activity and Nutritional Quality of Vegetable Species. Life Sci. Space Res. 2020, 26, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Ebert, A.W. Sprouts and Microgreens—Novel Food Sources for Healthy Diets. Plants 2022, 11, 571. [Google Scholar] [CrossRef] [PubMed]
- Villani, A.; Loi, M.; Serio, F.; Montesano, F.F.; D’Imperio, M.; De Leonardis, S.; Mulè, G.; Paciolla, C. Changes in Antioxidant Metabolism and Plant Growth of Wild Rocket Diplotaxis tenuifolia (L.) DC Cv Dallas Leaves as Affected by Different Nutrient Supply Levels and Growing Systems. J. Soil. Sci. Plant Nutr. 2023, 23, 4115–4126. [Google Scholar] [CrossRef]
- Paciolla, C.; Ippolito, M.P.; Logrieco, A.; Dipierro, N.; Mulè, G.; Dipierro, S. A Different Trend of Antioxidant Defence Responses Makes Tomato Plants Less Susceptible to Beauvericin than to T-2 Mycotoxin Phytotoxicity. Physiol. Mol. Plant Pathol. 2008, 72, 3–9. [Google Scholar] [CrossRef]
- Singh, N.; Ma, L.Q.; Srivastava, M.; Rathinasabapathi, B. Metabolic Adaptations to Arsenic-Induced Oxidative Stress in Pteris vittata L and Pteris ensiformis L. Plant Sci. 2006, 170, 274–282. [Google Scholar] [CrossRef]
- Zhang, J.; Kirkham, M.B. Antioxidant Responses to Drought in Sunflower and Sorghum Seedlings. New Phytol. 1996, 132, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Franklin, K.A. Shade Avoidance. New Phytol. 2008, 179, 930–944. [Google Scholar] [CrossRef]
- Zhang, X.; Heuvelink, E.; Melegkou, M.; Yuan, X.; Jiang, W.; Marcelis, L.F.M. Effects of Green Light on Elongation Do Not Interact with Far-Red, Unless the Phytochrome Photostationary State (PSS) Changes in Tomato. Biology 2022, 11, 151. [Google Scholar] [CrossRef]
- Kong, Y.; Stasiak, M.; Dixon, M.A.; Zheng, Y. Blue Light Associated with Low Phytochrome Activity Can Promote Elongation Growth as Shade-Avoidance Response: A Comparison with Red Light in Four Bedding Plant Species. Environ. Exp. Bot. 2018, 155, 345–359. [Google Scholar] [CrossRef]
- Noctor, G.; Foyer, C.H. Intracellular Redox Compartmentation and ROS-Related Communication in Regulation and Signaling. Plant Physiol. 2016, 171, 1581–1592. [Google Scholar] [CrossRef] [PubMed]
- Quan, L.-J.; Zhang, B.; Shi, W.-W.; Li, H.-Y. Hydrogen Peroxide in Plants: A Versatile Molecule of the Reactive Oxygen Species Network. J. Integr. Plant Biol. 2008, 50, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Noctor, G.; Foyer, C.H. ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen under Control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 249–279. [Google Scholar] [CrossRef] [PubMed]
- Polle, A.; Chakrabarti, K.; Schürmann, W.; Renneberg, H. Composition and Properties of Hydrogen Peroxide Decomposing Systems in Extracellular and Total Extracts from Needles of Norway Spruce (Picea abies L., Karst.) 1. Plant Physiol. 1990, 94, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Anjum, N.A.; Sharma, P.; Gill, S.S.; Hasanuzzaman, M.; Khan, E.A.; Kachhap, K.; Mohamed, A.A.; Thangavel, P.; Devi, G.D.; Vasudhevan, P.; et al. Catalase and Ascorbate Peroxidase—Representative H2O2-Detoxifying Heme Enzymes in Plants. Environ. Sci. Pollut. Res. 2016, 23, 19002–19029. [Google Scholar] [CrossRef]
- Rahmati Ishka, M. Out of the Blue: Blue Light Mediates Ascorbate Synthesis. Plant Cell 2023, 35, 2440–2441. [Google Scholar] [CrossRef]
- Bournonville, C.; Mori, K.; Deslous, P.; Decros, G.; Blomeier, T.; Mauxion, J.-P.; Jorly, J.; Gadin, S.; Cassan, C.; Maucourt, M.; et al. Blue Light Promotes Ascorbate Synthesis by Deactivating the PAS/LOV Photoreceptor That Inhibits GDP-L-Galactose Phosphorylase. Plant Cell 2023, 35, 2615–2634. [Google Scholar] [CrossRef]
- Hamedalla, A.M.; Ali, M.M.; Ali, W.M.; Ahmed, M.A.A.; Kaseb, M.O.; Kalaji, H.M.; Gajc-Wolska, J.; Yousef, A.F. Increasing the Performance of Cucumber (Cucumis sativus L.) Seedlings by LED Illumination. Sci. Rep. 2022, 12, 852. [Google Scholar] [CrossRef]
- Yang, X.; Xu, H.; Shao, L.; Li, T.; Wang, Y.; Wang, R. Response of Photosynthetic Capacity of Tomato Leaves to Different LED Light Wavelength. Environ. Exp. Bot. 2018, 150, 161–171. [Google Scholar] [CrossRef]
- Landi, M.; Zivcak, M.; Sytar, O.; Brestic, M.; Allakhverdiev, S.I. Plasticity of Photosynthetic Processes and the Accumulation of Secondary Metabolites in Plants in Response to Monochromatic Light Environments: A Review. Biochim. Biophys. Acta Bioenergy 2020, 1861, 148131. [Google Scholar] [CrossRef]
- Di Ferdinando, M.; Brunetti, C.; Agati, G.; Tattini, M. Multiple Functions of Polyphenols in Plants Inhabiting Unfavorable Mediterranean Areas. Environ. Exp. Bot. 2014, 103, 107–116. [Google Scholar] [CrossRef]
- Świeca, M.; Baraniak, B. Nutritional and Antioxidant Potential of Lentil Sprouts Affected by Elicitation with Temperature Stress. J. Agric. Food Chem. 2014, 62, 3306–3313. [Google Scholar] [CrossRef] [PubMed]
- Johkan, M.; Shoji, K.; Goto, F.; Hashida, S.; Yoshihara, T. Blue Light-Emitting Diode Light Irradiation of Seedlings Improves Seedling Quality and Growth after Transplanting in Red Leaf Lettuce. HortScience 2010, 45, 1809–1814. [Google Scholar] [CrossRef]
- Liang, D.; Yousef, A.F.; Wei, X.; Ali, M.M.; Yu, W.; Yang, L.; Oelmüller, R.; Chen, F. Increasing the Performance of Passion Fruit (Passiflora edulis) Seedlings by LED Light Regimes. Sci. Rep. 2021, 11, 20967. [Google Scholar] [CrossRef]
DAS | LED Light | PPFD (µmol m−2 s−1) | Parameters | |||||
---|---|---|---|---|---|---|---|---|
Aerial Part Length (cm) | Root Length (cm) | Total Length (cm) | Aerial Part/Root Length | FW (mg) | DM (%) | |||
Dark | 0 | 1.61 ± 0.38 b | 3.48 ± 0.77 c | 5.00 ± 1.17 b | 0.454 ± 0.081 cd | 100 ± 19 b | 26.8 ± 2.8 a | |
3 | Blue | 100 | 1.06 ± 0.22 d | 1.59 ± 0.41 e | 2.60 ± 0.48 d | 0.701 ± 0.212 b | 93 ± 19 b | 25.9 ± 3.2 ab |
300 | 1.26 ± 0.19 cd | 2.62 ± 0.88 d | 3.92 ± 1.11 c | 0.524 ± 0.173 c | 93 ± 19 b | 27.8 ± 2.5 a | ||
500 | 1.15 ± 0.12 d | 1.27 ± 0.27 e | 2.42 ± 0.41 d | 0.927 ± 0.151 a | 92 ± 17 b | 26.3 ± 2.8 ab | ||
Red | 100 | 1.50 ± 0.18 bc | 4.01 ± 0.44 b | 5.47 ± 0.60 b | 0.377 ± 0.053 d | 97 ± 19 b | 23.8 ± 1.7 bc | |
300 | 1.91 ± 0.37 a | 5.08 ± 0.54 a | 7.02 ± 0.73 a | 0.388 ± 0.078 d | 104 ± 25 ab | 24.3 ± 2.4 bc | ||
500 | 2.09 ± 0.26 a | 5.24 ± 0.88 a | 7.33 ± 1.01 a | 0.385 ± 0.061 d | 117 ± 23 a | 21.7 ± 1.9 c | ||
Dark | 0 | 3.16 ± 0.76 b | 6.69 ± 1.66 bc | 10.12 ± 2.39 b | 0.587 ± 0.152 b | 123 ± 14 b | 18.7 ± 2.7 a | |
5 | Blue | 100 | 2.57 ± 0.58 bc | 5.95 ± 0.95 cd | 8.60 ± 1.30 c | 0.444 ± 0.081 c | 118 ± 19 b | 19.0 ± 2.2 a |
300 | 2.03 ± 0.12 c | 5.93 ± 1.06 cd | 8.01 ± 1.12 c | 0.384 ± 0.069 c | 115 ± 17 b | 18.7 ± 2.0 a | ||
500 | 1.94 ± 0.40 c | 5.28 ± 1.16 d | 7.26 ± 1.45 c | 0.415 ± 0.114 c | 121 ± 20 b | 19.0 ± 1.2 a | ||
Red | 100 | 5.35 ± 0.93 a | 7.92 ± 1.04 a | 13.27 ± 1.38 a | 0.678 ± 0.145 ab | 145 ± 20 a | 17.7 ± 1.6 a | |
300 | 5.50 ± 1.16 a | 7.25 ± 0.77 ab | 12.42 ± 1.47 a | 0.770 ± 0.182 a | 142 ± 23 a | 15.2 ± 2.2 b | ||
500 | 4.99 ± 0.72 a | 7.89 ± 1.04 a | 12.75 ± 0.92 a | 0.757 ± 0.192 a | 145 ± 25 a | 13.0 ± 1.7 b |
DAS | LED Light | PPFD (µmol m−2 s−1) | Photosynthetic Pigment Content (mg g−1 DW) | ||||
---|---|---|---|---|---|---|---|
Chlorophyll a | Chlorophyll b | Total Chlorophyll | Carotenoids | Chl a:b | |||
3 | BLUE | 100 | 82.4 ± 9.3 a | 33.7 ± 5.6 a | 116.2 ± 14.5 a | 47.9 ± 3.7 a | 2.46 ± 0.20 c |
300 | 54.7 ± 8.2 b | 21.6 ± 4.1 c | 76.3 ± 12.3 b | 26.5 ± 1.2 c | 2.54 ± 0.11 bc | ||
500 | 90.4 ± 6.0 a | 33.8 ± 4.5 a | 124.1 ± 10.4 a | 45.4 ± 2.9 a | 2.69 ± 0.17 abc | ||
RED | 100 | 84.1 ± 5.3 a | 29.2 ± 4.1 ab | 113.3 ± 9.4 a | 39.0 ± 0.2 b | 2.91 ± 0.24 a | |
300 | 64.1 ± 4.5 b | 22.3 ± 2.4 bc | 86.4 ± 6.3 b | 29.9 ± 1.9 c | 2.88 ± 0.27 ab | ||
500 | 81.6 ± 2.4 a | 31.2 ± 2.8 a | 112.9 ± 4.9 a | 39.6 ± 1.3 b | 2.61 ± 0.17 abc | ||
5 | BLUE | 100 | 530.6 ± 11.3 b | 155.2 ± 16.1 c | 685.8 ± 26.3 b | 185.3 ± 8.8 b | 3.44 ± 0.31 a |
300 | 439.1 ± 42.5 c | 133.5 ± 10.7 c | 572.6 ± 52.7 c | 160.9 ± 5.7 c | 3.28 ± 0.11 ab | ||
500 | 323.3 ± 40.4 d | 102.8 ± 9.4 d | 426.1 ± 47.7 d | 131.5 ± 11.7 d | 3.14 ± 0.27 abc | ||
RED | 100 | 421.8 ± 36.2 c | 140.1 ± 28.4 c | 561.9 ± 64.4 c | 138.3 ± 4.7 d | 3.08 ± 0.43 abc | |
300 | 6316 ± 46.7 a | 222.9 ± 18.0 a | 854.5 ± 54.5 a | 206.7 ± 1.7 a | 2.84 ± 0.24 bc | ||
500 | 518.0 ± 50.2 b | 188.6 ± 16.4 b | 706.6 ± 60.9 b | 189.9 ± 15.4 b | 2.76 ± 0.24 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bottiglione, B.; Villani, A.; Mastropasqua, L.; De Leonardis, S.; Paciolla, C. Blue and Red LED Lights Differently Affect Growth Responses and Biochemical Parameters in Lentil (Lens culinaris). Biology 2024, 13, 12. https://doi.org/10.3390/biology13010012
Bottiglione B, Villani A, Mastropasqua L, De Leonardis S, Paciolla C. Blue and Red LED Lights Differently Affect Growth Responses and Biochemical Parameters in Lentil (Lens culinaris). Biology. 2024; 13(1):12. https://doi.org/10.3390/biology13010012
Chicago/Turabian StyleBottiglione, Benedetta, Alessandra Villani, Linda Mastropasqua, Silvana De Leonardis, and Costantino Paciolla. 2024. "Blue and Red LED Lights Differently Affect Growth Responses and Biochemical Parameters in Lentil (Lens culinaris)" Biology 13, no. 1: 12. https://doi.org/10.3390/biology13010012