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Simple Summary: The study focused on cultivating the cyanobacterial strain Nostoc sp. 136 under
controlled laboratory conditions. Various factors such as nutrient media, initial biomass concentration,
nutrient supplementation, and light conditions were investigated to optimize growth and produc-
tivity. Results showed that the strain adapted well to the laboratory conditions, with the highest
growth rates observed at lower initial biomass concentrations and with mBG11 medium. Nutrient
supplementation, particularly nitrogen, showed potential for enhancing growth, while different light
wavelengths had varied effects on growth and productivity. Biochemical analysis revealed promising
levels of proteins and phycobiliproteins, with potential applications in biotechnology. The study
highlighted the suitability of Nostoc sp. 136 for laboratory cultivation and suggested avenues for
further research, particularly in exploring biomass composition and bioactivities.

Abstract: Cyanobacteria, photoautotrophic Gram-negative bacteria, play a crucial role in aquatic and
terrestrial environments, contributing significantly to fundamental ecological processes and display-
ing potential for various biotechnological applications. It is, therefore, critical to identify viable strains
for aquaculture and establish accurate culture parameters to ensure an extensive biomass supply for
biotechnology purposes. This study aims to establish optimal laboratory batch culture conditions for
Nostoc 136, sourced from Alga2O, Coimbra, Portugal. Preliminary investigations were conducted
to identify the optimal culture parameters and to perform biomass analysis, including protein and
pigment content. The highest growth was achieved with an initial inoculum concentration of 1 g.L−1,
using modified BG11 supplemented with nitrogen, resulting in a Specific Growth Rate (SGR) of
0.232 ± 0.017 µ.day−1. When exposed to white, red, and blue LED light, the most favourable growth
occurred under a combination of white and red LED light exhibiting an SGR of 0.142 ± 0.020 µ.day−1.
The protein content was determined to be 10.80 ± 2.09%. Regarding the pigments, phycocyanin
reached a concentration of 200.29 ± 30.07 µg.mL−1, phycoerythrin 148.29 ± 26.74 µg.mL−1, and
allophycocyanin 10.69 ± 6.07 µg.mL−1. This study underscores the influence of light and nutrient
supplementation on the growth of the Nostoc biomass.

Keywords: Nostoc sp. 136; initial density; nutrient supplementation; irradiance; specific growth rate;
productivity

1. Introduction

Cyanobacteria were the first oxygen-producing photosynthetic organisms on Earth.
They emerged about 3.5-billion years ago and are still thriving today. Their significant
contributions to oxygen, organic carbon, and nitrogen cycles, in various habitats, emphasise
their wide distribution due to metabolic versatility and structural conservation. Among
cyanobacteria, those that are equipped with nitrogenase play a key role in fixing atmo-
spheric nitrogen by converting it to ammonia through biological nitrogen fixation [1,2]. This
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process not only produces organic nitrogen, making it available to other photosynthetic
organisms, but it also leads to the production of secondary metabolites that promote plant
growth and resistance to stress, with benefits for soil fertility and crop productivity, among
other features.

Recognising cyanobacteria as versatile cell factories, scientific research has explored
their ability to produce high-value products such as primary metabolites (carbohydrates,
proteins, lipids), but also secondary metabolites such as mycosporine-like amino acids and
phytohormones, among others. These compounds have been applied as food supplements,
cosmetics, pharmaceuticals, biomaterials, biofuels, bioremediation, and agriculture [3–10].
Thus, cyanobacterial farming has emerged as a potential solution to increase the availability
of biomass for biotechnological purposes. Despite these advances in scientific research,
nonetheless, the economic viability of using cyanobacteria requires careful analysis. Over-
coming economic barriers involves producing value-added chemicals to offset the overall
processing costs [11].

Among the most promising cyanobacteria is the genus Nostoc, a heterocystous fil-
amentous cyanobacterium. Heterocysts develop as a response to nitrogen deprivation,
particularly in the absence of ammonium from the environment or from the nutrient
medium [12]. Akinetes, on the other hand, differentiate under diazotrophic conditions,
i.e., in the absence of nitrogen, and are influenced by extracellular metabolites [13]. The
genus also stands out for the formation of unbranched trichomes embedded in a dense
exopolysaccharides (EPS) sheath. This sheath not only provides moisture to the colony
but also exhibits metal-concentrating properties, contributing to its resilience against ex-
ternal threats [14]. The UV-absorbing pigments within the EPS, such as scytonemin and
mycosporin-like amino acids, further shield Nostoc against solar radiation [15]. Nostoc
is also recognised for its ability to efficiently produce cyanophycin, a nitrogen-storage
compound [16], as well as soil improvement [17] and plant-growth enhancement [18].

Since Nostoc is recognised for its environmental and biotechnological applications,
over the past decades, research has been geared towards finding the optimum conditions
for its production in aquaculture. Studies on nutrient supply [19,20], photoautotrophic,
mixotrophic, and heterotrophic cultivation [21], light intensity and quality [22], and the
type of bioreactor used [23–25], among others, have produced valuable knowledge on the
cultivation of different Nostoc species. Other authors have focused on the production of
bioactive compounds, namely the exopolysaccharides [26–28], phycobiliproteins [29,30],
cyanophycin [16], polysaccharides [31], and biodegradable polymers [32,33], as well as
mycosporine-like amino acids [34]. Cultivation trials also focused on specific applications,
including food production [35], bioremediation [14,36], and biodiesel production [37].

The aim of this work was to grow a strain of heterocystous cyanobacteria, Nostoc sp. 136,
obtained from the Alga2O bank, in Coimbra, Portugal, under different conditions. These
trials sought to study cultivation conditions (density, nutrients, light) in order to optimize
Nostoc growth. These trials offer insights into the biomass production potential of Nostoc
sp. 136 under controlled laboratory settings, allowing us to understand if the strain has the
required physiological characteristics to be efficiently grown in laboratory conditions.

2. Materials and Methods

The cyanobacterial strain Nostoc sp. 136 (Figure 1), was obtained from the Alga2O
Collection, located in Coimbra, Portugal. The strain was kept in a climatic room (20 ± 2 ◦C),
with constant aeration, under a white LED light of 8–10 µmol m−2 s−1, with a photoperiod
set at 16 h:8 h (Light:Dark), supplied with BG11 medium prepared according to McFadden
and Melkonian [38,39].
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Figure 1. Photomicrographs of Nostoc 136 strain, showing oval intercalary heterocysts with two po-
lar nodules (a) and enlarged akinete (b) (red arrows), larger than vegetative cells. 

2.1. Culture Conditions 
The Nostoc sp. 136 culture was kept in 250 mL volumetric flasks in batch mode with 

constant aeration, filtered through a 20 μm filter (Sartorius Stedim Biotech GmbH, 
Goettingen, Germany). Due to the extreme heterogeneity of Nostoc biomass, which tends 
to form aggregates of trichomes, it is not possible to homogenise the culture for regular 
sampling, so the biomass was only measured at the end of each trial. 

Also, due to biomass heterogeneity, the starter culture of the inoculum was centri-
fuged at 2000 g for 3 min, allowing the biomass to settle. Then, an equal weight of Nostoc 
biomass was added to each flask containing 200 mL of modified BG11 medium (mBG11). 

This Nostoc strain submitted to cultivation exhibits a classic growth-curve shape, 
tending to grow slowly. Thus, the exponential phase is reached after 12 to 15 days of cul-
tivation, as shown in Figure 2 [40]. Therefore, all assays lasted for 15 days. 
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Biomass productivity (yield) was expressed on a volumetric basis (g.L−1.day−1) and 
calculated according to the following formula [37]: 

Figure 1. Photomicrographs of Nostoc 136 strain, showing oval intercalary heterocysts with two polar
nodules (a) and enlarged akinete (b) (red arrows), larger than vegetative cells.

2.1. Culture Conditions

The Nostoc sp. 136 culture was kept in 250 mL volumetric flasks in batch mode
with constant aeration, filtered through a 20 µm filter (Sartorius Stedim Biotech GmbH,
Goettingen, Germany). Due to the extreme heterogeneity of Nostoc biomass, which tends
to form aggregates of trichomes, it is not possible to homogenise the culture for regular
sampling, so the biomass was only measured at the end of each trial.

Also, due to biomass heterogeneity, the starter culture of the inoculum was centrifuged
at 2000× g for 3 min, allowing the biomass to settle. Then, an equal weight of Nostoc biomass
was added to each flask containing 200 mL of modified BG11 medium (mBG11).

This Nostoc strain submitted to cultivation exhibits a classic growth-curve shape,
tending to grow slowly. Thus, the exponential phase is reached after 12 to 15 days of
cultivation, as shown in Figure 2 [40]. Therefore, all assays lasted for 15 days.

Figure 2. Growth curve of Nostoc sp. 136, under cultivation for 30 days. Adapted from Mouga
et al. [40].
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The algae growth rate was measured as specific growth rate (SGR) (µ.day−1), and it
was calculated according to Lavasseur et al. [41]:

µ = (ln C2 − ln C1)/(t2 − t1) (1)

Biomass productivity (yield) was expressed on a volumetric basis (g.L−1.day−1) and
calculated according to the following formula [37]:

P = C2 − C1/∆t (2)

where,

C1—biomass concentration at time t1, C2—biomass concentration at time t2, ∆t—difference
in time.

As stated above, due to Nostoc sp. 136 biomass heterogeneity, it is not possible to
assess it quantitatively using optical density. Therefore, the fresh weight and dry weight
of the sample, in mg.L−1, were evaluated. Likewise, the initial inoculum was calculated
based on centrifuged biomass and fresh weight.

The first test was performed to determine the best initial concentration using MBG11
as the nutrient medium (Trial 1).

In Trial 2, two commercial media were analysed in addition to mBG11: Nutribloom®

(Phytobloom by Necton, Belamandil, Portugal) and FloraNova® Grow (General Hidro-
ponics, Hawthorne Gardening Co., Vancouver, BC, Canada). The former medium has
shown remarkable results in the growth of microalgae [42–44]. The latter medium has
been developed for the growth of plants in hydroponics and showed good results growing
Arthrospira platensis [45]. The concentration used for the three media is the recommended
concentration for mBG11 regarding the macronutrient nitrate (150 g.L−1). Thus, 10 mL.L−1

of mBG11, 0.25 mL.L−1 of FloraNova, and 1.25 mL.L−1 of Nutribloom were used (the
media composition of all three media is in Supplementary Material Table S1).

In this trial, it was established that the medium that promotes the strongest growth of
Nostoc 136 is mBG11. This medium was, hence, used in subsequent trials.

In the third trial, some of the nutrients in mBG11 were manipulated to assess their
impact on the growth of Nostoc. The macronutrient nitrogen was assayed due to its influence
on the synthesis of biomolecules such as proteins and, therefore, phycobilins. Also, the
trace elements, iron and magnesium, were evaluated; the first because it is involved in
nitrogen fixation and is part of the chemical composition of the nitrogenase enzyme, and
the last due to its presence in the chlorophyll and Rubisco, as well as in the production of
ATP. The nutrient concentrations used are provided in Table 1.

Table 1. Summary of the conditions of the experimental trials performed (n = 3).

Trial 1. Inoculum Concentration

Inoculum
concentration mBG11 (1.0 g.L−1) mBG11 (3.7 g.L−1) mBG11 (5.2 g.L−1)

Trial 2. Medium selection

Medium mBG11 (10 mL.L−1) Nutribloom (1.25 mL.L−1) FloraNova (0.25 mL.L−1)

Trial 3. Nutrients supplementation

Nitrogen 1× (1.5000 g.L−1) 1.5× (2.2500 g.L−1) 2× (3.0000 g.L−1)
Iron 1× (0.0030 g.L−1) 1.5× (0.0045 g.L−1) 2× (0.0060 g.L−1)

Magnesium 1× (0.0750 g.L−1) 1.5× (0.1125 g.L−1) 2× (0.1500 g.L−1)

Trial 4. Light conditions

Single LED Blue—peak at 465 nm White (450 and 550–620 nm) Red—peak at 635 nm
Combined LED White and Blue (440–470 + 550–620 nm) White and red (550–640 nm)
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Finally, in Trial 4, the effect of different light wavelengths was assessed. The con-
trol for this trial was the mBG11 medium, with a cool-white LED and an irradiance of
8.3 µmol m−2 s−1. The irradiance was maintained between tests, with only the combination
of wavelengths changed. For this purpose, programmable LED (USB RGB 5050, Romwish
LED, Shengwei Lighting Co., Dong Guan, China) lights were used and organised in three
horizontal rows, 2 cm apart, at the height of the culture flask [46,47]. Red and blue light
were tested, as well as a combination of White+Blue and White+Red, allowing for different
wavelengths to be tested, as shown in Table 1.

2.2. Biochemical Analysis

Protein extraction was conducted using the protocol adapted from Parimi et al. [48]. A
100 mL dry sample was centrifuged (5810R, Eppenford, Madrid, Espanha) at 8000× g for
15 min at room temperature. The supernatant was discarded, and the pellet was dried in
an oven at 60 ◦C overnight. Protein extraction was conducted by solubilising the samples
in 1 M HCl and centrifuging at 8670× g for 35 min. The supernatant was analysed using the
Pierce BCA protein assay kit (Thermo Scientific, Waltham, MA, USA) as in Martin et al. [49].
Absorbance of the final samples was measured on a spectrophotometer (Evolution 201,
Thermo Scientific, Waltham, MA, USA) at 652 nm.

As to the quantification of phycobiliproteins, one gram of fresh biomass, previously
frozen at −18 ◦C, was submitted to three freeze–thaw cycles of 12 h each, protected from
light [29]. The biomass was then centrifuged at 5000× g for 10 min at room temperature. The
supernatant was scanned between 400 and 900 nm in a spectrophotometer. The phycobilin
content was calculated using the equations developed by Bennett and Bogorad [50]:

PC [mg/mL] = (OD(615 nm) − 0.474 × OD(652 nm))/5.34 (3)

APC [mg/mL] = (OD(652 nm) − 0.208 × OD(615 nm))/5.09 (4)

PE [mg/mL] = (OD(562 nm) −2.41 × [PC] − 0.849 [APC])/9.62 (5)

where,

[PC]—C-Phycocyanin
[APC]—Allophycocyanin
[PE]—C-Phycoerythrin
OD(615 nm)—Absorbance of the sample at wavelength of 615 nm
OD(652 nm)—Absorbance of the sample at wavelength of 652 nm
OD(562 nm)—Absorbance of the sample at wavelength of 562 nm

2.3. Statistical Analysis

All trials were conducted in triplicate and the data are expressed as mean ± standard
deviation. Statistical analyses were considered significant at a level of 5% (p-value < 0.05).
To test normality and variance homogeneity, the Kolmogorov–Smirnov and Shapiro–Wilk
tests were used, respectively. As the data met the assumptions, the one-way ANOVA test
was used. Statistical analyses were performed using IBM SPSS statistical software, Version
27.0 (IBM Corporation, Armonk, NY, USA).

3. Results
3.1. Culture Conditions

The first trial was performed to assess the optimal initial biomass concentration of
Nostoc that would provide the best growth rate. Three different concentrations were eval-
uated, the lowest of which gave the highest specific growth rate (0.222 ± 0.018 µ.day−1),
significantly higher than the other two concentrations (p-value < 0.05). As to the productiv-
ity, the highest value was registered for the initial biomass concentration of 3.7 g.L−1, with
2.195 ± 0.847 g.L−1.day−1. However, there is no statistical difference between the three
concentrations (Figure 3).
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Figure 3. (a) Specific Growth Rate (µ.day−1) and (b) productivity (g.L−1.day−1) of Nostoc sp.
136, with three biomass concentrations (1.0 g.L−1, 3.7 g.L−1 and 5.2 g.L−1). Values are pre-
sented as mean ± SD (n = 3). Different lower-case letters indicate statistically significant differences
(p-value < 0.05) in the one-way ANOVA.

Although there was no correlation between SGR and productivity, the SGR showed
statistically significant differences for the initial concentration of 1 g.L−1, and, therefore, it
was decided to use this concentration in subsequent trials.

The second trial analysed three different nutrient media, two of which were commer-
cially available, to assess if these could be used to efficiently grow Nostoc, instead of mBG11,
which is expensive, time-consuming, and labour-intensive to prepare. Figure 4 shows the
SGR and productivity obtained for this trial. Nostoc shows a significantly higher growth
rate in mBG11 (0.149 ± 0.0237 µ.day−1) and in Nutribloom (0.1010 ± 0.009 µ.day−1) than
in FloraNova (0.010 ± 0.0229 µ.day−1). The productivity is in line with the data obtained
for SGR, with mBG11 inducing higher Nostoc yields than Nutribloom (2.195 ± 0.847 and
0.879 ± 0.147 g.L−1.day−1, respectively) and the latter showing much higher Nostoc yields
than FloraNova (0.058 ± 0.101 g.L−1.day−1), always with statistically significant differences
between groups. Hence, mBG11 was used in the following trials.

1 
 

Figure 3 

 
 
 
Figure  4 

 
 
Figure  5 

Figure 4. (a) Specific Growth Rate (µ.day−1) and (b) productivity (g.L−1.day−1) of Nostoc sp. 136
grown under three different nutrient media (FloraNova, mBG11, and Nutribloom). Values are
presented as mean ± SD (n = 3). Different lower-case letters indicate statistically significant differences
(p-value < 0.05) in the one-way ANOVA.

The third trial evaluated the impact of medium supplementation on the growth rate
and productivity. As can be seen in Figure 5, only the 1.5-fold supplementation of nitrogen
increased the growth rate of Nostoc when compared to the control, but without statistical
significance (0.232 ± 0.018 µ.day−1 and 0.222 ± 0.017 µ.day−1, respectively). All other
supplements produced lower growth rates, with magnesium supplementation, either
1.5 times or two times, producing significantly lower Nostoc growth rates than the highest
growth rate (0.149 ± 0.012 and 0.125 ± 0.015 µ.day−1, respectively).
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Figure 5. (a) Specific Growth Rate (µ.day−1) and (b) productivity (g.L−1.day−1) of Nostoc sp. 136
grown under different medium supplementation (control, iron 1.5×, iron 2×, nitrogen 1.5×, nitrogen
2×, magnesium 1.5×, and magnesium 2×). Values are presented as mean ± SD (n = 3). Different
lower-case letters indicate statistically significant differences (p-value < 0.05) in the one-way ANOVA.

When analysing productivity, no statistically significant differences were observed
between the supplementation group and the control. Nevertheless, certain supplements
exhibited high productivity in comparison to the control, specifically nitrogen at 1.5 times
and magnesium at 1.5 times the standard concentration (0.376 ± 0.167, 0.452 ± 0.111, and
0.418 ± 0.0782 g.L−1.day−1, respectively). Notably, increased supplementation, such as
doubling the nutrient concentration compared to the control, resulted in decreased produc-
tivity (iron, nitrogen, and magnesium at two times presented productivity of 0.279 ± 0.120,
0.318 ± 0.071, and 0.277 ± 0.065 g.L−1.day−1, respectively). This suggests a trend where
higher nutrient concentrations may lead to toxicity within the organisms, thereby compro-
mising productivity.

As no significantly higher growth rates or productivities were found between the
control and supplemented media, the final test was conducted with standard mBG11.

In the fourth trial, different light wavelengths were evaluated while keeping irradiance
constant. The control (white LED light) presented an SGR of 0.1420 ± 0.003 µ.day−1. The
best growth was obtained with a white–red LED combo, with 0.1424 ± 0.019 µ.day−1, while
red LED light showed negative growth, with an SGR of −0.0348 ± 0.007 µ.day−1, being
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statistically different from the first two. Blue LED light produced intermediate values, with
no statistical differences (Figure 6). Once again, high productivity is promoted by the red–
white LED combination (0.379 ± 0.112 g.L−1.day−1), though with no statistical difference
compared to the control (0.353 ± 0.0.018 g.L−1.day−1). However, both these cultures show
significantly higher yields when compared to the other Nostoc cultures under different
wavelengths. The red LED light caused the worst Nostoc yield presenting a negative value
(−0.019 ± 0.003 g.L−1.day−1).
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Figure 6. (a) Specific Growth Rate (µ.day−1) and (b) productivity (g.L−1.day−1) of Nostoc sp. 136
grown under different wavelengths (control—white LED, Blue LED, Red LED, White–Blue LED
combo, White–Red LED combo). Values are presented as mean ± SD (n = 3). Different lower-case
letters indicate statistically significant differences (p-value < 0.05) in the one-way ANOVA.

3.2. Biochemical Analysis

The protein and phycobilin contents were assessed in Nostoc grown in mBG11 medium
and with white LED light. The protein content recorded for the Nostoc biomass at the end
of the trial was 10.803 ± 2.089% (DW).

As to the phycobilins, they were measured before and after the 15-day trial (Figure 7).
Nostoc 136 shows a similar concentration of phycocyanin and phycoerythrin at the begin-
ning of the trial, with 154.655 ± 39.544 µg.mL−1 and 148.292 ± 26.735 µg.mL−1, respectively.
As to allophycocyanin, as expected, the concentration was significantly lower at the begin-
ning of the trial (16.052 ± 12.118 µg.mL−1). At the end of the trial, phycocyanin increased
to its maximum concentration (200.293 ± 30.074 µg.mL−1), while phycoerythrin remained
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unchanged and allophycocyanin was slightly reduced. None of these fluctuations are
statistically significant.
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Figure 7. Phycobilin content (µg.mL−1) of Nostoc sp. 136 grown under white LED light at the
beginning (T0) and end (T1) of a 15-day trial. Values are presented as mean ± SD (n = 3). Different
lower-case letters indicate statistically significant differences (p-value < 0.05) in the one-way ANOVA.

4. Discussion

Cultivating Nostoc offers numerous environmental benefits, producing biomass for
use in soil stabilization, nutrient cycling, pollution remediation, and ecosystem restora-
tion [14,17,36,51–53]. Nostoc also produces a wide array of bioactive compounds with
potential pharmaceutical, nutraceutical, and cosmeceutical applications. These include
antioxidants, antimicrobial agents, anticancer, antiviral, anti-inflammatory compounds,
UV-absorbing pigments, prebiotic peptides, and polysaccharides with immunomodulatory
properties [27,37,54,55]. Thus, cultivating Nostoc under optimized conditions allows for the
scalable production of these bioactive compounds, which can be further developed into
functional ingredients for various biotechnological industries. These trials have provided
new information on the ability of Nostoc sp. 136 to be cultivated in laboratory conditions.

The growth rate of most cyanobacteria is relatively low (0.1–0.5 µ.day−1) [56], and
Nostoc sp. 136 is no exception. The specific growth rate achieved in our study surpassed
that reported by Yu et al. [21] for Nostoc flagelliforme (0.12 µ.day−1) in a phototrophic culture,
yet it fell short of the rates observed by Baracho [57] in the cultivation of Nostoc CCIBt 3248
(0.3 µ.day−1) and Nostoc CCIBt 3249 (0.7 µ.day−1).

The first trial evaluated the initial biomass concentration of the culture, a pivotal
parameter deserving optimization. Whilst dense cultures offer potential benefits such as
volume efficiency and reduced energy demands, it is crucial to note that high-density
cultivation has been linked with diminished productivity [58]. The density of the starter
culture exerted a noticeable influence on the growth rate and productivity of Nostoc sp.
136 growth rate and productivity after a 15-day period. Remarkably, the lowest initial
concentration (1 g.L−1) allowed a significantly higher growth rate (0.222 ± 0.018 µ.day−1),
mirroring the findings of Van Khanh et al. [59] in their study on Arthrospira platensis. This is
likely to be attributed to light utilization efficiency. As the density of the cyanobacterial
culture rises, there is a corresponding increase in biomass production rates. However,
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beyond a certain threshold, the culture’s density becomes so elevated that the specific
growth rate declines due to increased self-shadowing, leading to a reduction in available
light [60]. Consequently, the need to grow dense cultures must be balanced with the
provision of sufficient light to sustain optimal growth rates.

The second trial evaluated different culture media on the growth of Nostoc sp. 136,
trying to substitute the commonly used laboratory medium BG11. BG11 medium has been
widely reported as a mainstream medium for cyanobacterial biomass and lipid production,
especially for freshwater microalgae [20]. This medium is composed of the macronutrients
and trace elements required for the growth and metabolism of cyanobacteria. Nitrogen and
phosphorus are the elements that are most important for microalgal metabolism. Without
nitrogen, both photosynthetic rates and oxygen-production rates decrease, significantly
affecting cell growth and pigment production, including both chlorophyll and phycobilipro-
teins [30,61]. Cyanobacteria can use both organic and inorganic nitrogen dissolved in water,
due to the presence of heterocysts and nitrogenase. Nitrogenase consists of two compo-
nents, an iron protein, and an iron–molybdenum protein [1]. Cyanobacteria also require
magnesium chelatases (for chlorophyll), in addition to iron-chelatases (haem) present in
the antenna-like domain [62]. Thus, iron, magnesium, and molybdenum are, thus, three of
the most important trace elements. In addition to these three, most organisms also need
Cu, Zn, Mn, Ca, and K, which contribute to the bulk ions and are key to the synthesis of
various macromolecules, such as enzymes and transmembrane transporters [62].

We investigated the appropriateness of FloraNova and Nutribloom to grow Nostoc
sp. 136 since BG11 is not suitable for large-scale cultivation due to its labour-intensive
preparation. As stated before, both commercial media showed adequate results in the
growth of other microalgae, including A. platensis [43,44,46]. The Nutribloom medium
proved to be promising for growing Nostoc. The growth rate and productivity were lower
than that of Nostoc grown on BG11, although the growth rate was not significant. This
shows that the chemical composition of the two media, both macronutrients and trace
elements, is suitable for the nutritional needs of Nostoc, allowing the species to metabolise
and grow adequately [20]. FloraNova, nonetheless, led to a significantly lower growth
rate and productivity, demonstrating that the nutrient content is unbalanced in relation to
Nostoc’s requirements. It is undeniable that this medium lacks several trace elements (Zn,
Mo, Cu, Co, Mg) that play important roles in cyanobacterial metabolism. Thus, unlike A.
platensis [46], the lack of such nutrients prevented Nostoc from thriving.

In the third trial, using the mBG11 medium as a control, we increased the concentration
of nitrate, iron, and magnesium in the medium to assess the impact of these three nutri-
ents on the growth and productivity of the cyanobacterium. Increasing nitrate 1.5 times
increased both the growth rate and productivity of Nostoc, but with no statistical differences.
Our results are in contrast to the finding of Lee et al. [30], who found that nitrogen supple-
mentation did not improve cyanobacterial growth. Trentin and co-workers [16] also found
a decrease in growth rate with nitrate supplementation. However, these authors assessed
inorganic nitrogen. According to these authors, cyanobacteria produce cyanophycin as
a temporary nitrogen reserve compound. In heterocystous cyanobacteria such as Nostoc,
the accumulation of cyanophycin is correlated to a peak of nitrogenase activity, and the
accumulation of cyanophycin is higher in the absence of inorganic nitrogen than in the
presence of a nitrogen source, which tends to suppress the formation of heterocysts.

The source of nitrogen for the growth of cyanobacteria found in all the media tested is
nitrate, an organic form of nitrogen, which is reduced to nitrite and then to ammonium to
be finally incorporated into the storage components. Therefore, as Cottas et al. stated, there
is a slight increase in Nostoc growth with nitrate supplementation [19]. Nitrogen shortages,
on the other hand, are very detrimental to the cell, causing it to utilise a portion of the
nitrogen present in phycobiliproteins, which also function as the cell’s nitrogen storage
structures. Reducing organic nitrogen availability, hence, results in a decrease in these
pigments in the cell, while supplementing the culture media with nitrogen tends to favour
the production of phycobiliproteins [19].
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As for the supplementation of magnesium, which is an important trace element since it
is part of important molecules such as enzymes and pigments, we expected to increase the
photosynthetic rate and, therefore, the growth rate. The slight increase in Nostoc, grown at
1.5 times the magnesium concentration, may be due to the ability of magnesium sulphate
(MgSO4) to induce heterocyst formation [63]. As also noticed by Qiong–Che et al. studying
Monoraphidium, Mg2+ may play a role in cellular processes and metabolic pathways related
to growth and lipid accumulation in this microalgae species [64].

As to iron, it is a growth-promoting factor [65]. Iron deficiency in cyanobacteria leads
to a decrease in chlorophyll a content, a reduction in cell diameter, a depletion of the
electron transport chain, and a decrease in photosynthesis and respiration processes [66].
In contrast, high iron levels in the culture medium tend to increase chlorophyll a, total
cell volume, and oxygen-production rate, resulting in a higher nitrogen-fixation rate and
photosynthesis [67]. Thus, due to the role of iron in cyanobacterial physiology, it was
expected that iron supplementation would lead to an increase in the growth of Nostoc.
However, neither SGR nor productivity was improved. This may be explained by an excess
of free intracellular iron, which is detrimental because it catalyses the formation of reactive
oxygen species (ROS). In particular, H2O2 reacts with ferrous iron to produce the highly
reactive hydroxyl radical. The damage caused by oxidation depends on the rigorous control
of iron homeostasis [68]. Therefore, it seems that the supplementation may have induced
some degree of oxidative stress that decreased cell growth.

Since it is well recognised that light is a key factor in regulating the growth and
metabolism of cyanobacteria [69], the final trial determined the impact of different wave-
lengths of light on cell growth. Cyanobacteria usually do not endure light intensities
exceeding 100 µmol photons.m−2 s−1. To counteract photoinhibition, they reduce chloro-
phyll content while maintaining a relatively constant level of carotenoids, which serve as
effective photoprotectors. As light intensity increases, photosynthetic efficiency declines
due to both photosaturation and photoinhibition [16]. In addition to irradiance, the colour
of the light also impacts the performance of cyanobacteria, showing that, among other fac-
tors, the wavelength can influence the accumulation of biomass and metabolites. Red LED
light was found to promote the highest cell growth and cell densities, whereas blue LED
light stimulated the accumulation of nitrogen compounds in the form of phycobiliproteins
at the expense of cell growth [70]. Our results determined that the best growth occurred
with a combination of white and red light, both for SGR and productivity, although not
significantly. Pagels et al. [71] reported that blue-light supplementation showed little or
no improvements to the culture of Cyanobium sp., and red light did not improve growth
but triggered the production of lipids, phycocyanin, carotenoids, and total antioxidant
compounds. Our findings regarding blue light align closely with those of Pagels et al.
suggesting that blue-supplemented light is not used as an active energy source for pho-
tosynthesis. Conversely, red light may enhance cyanobacterial cell growth by inducing
mRNA expression of psaE, a photosynthesis-related gene [72], and it often stimulates
the production of bioactive compounds, including carotenoids, fatty acids, phenolic com-
pounds, and phycocyanin [68,71]. Hence, our findings diverge from those of these authors.
This discrepancy could be attributed to the conditions tested (wavelength and irradiance)
where, due to photoinhibition, respiratory metabolism might surpass photosynthesis,
resulting in cell death [22].

As to protein content, the protein level found by Baracho et al. [57] for Nostoc is higher,
ranging from 26.2% to 54.7%. The different extraction methods used by these authors (opti-
mised sequential extraction in trichloroacetic acid and NaOH) followed Slocombe et al. [73]
method, which has been shown to be more effective than the one used in this work.

Lastly, concerning the phycobiliprotein content, Nostoc sp. 136 showed interesting
levels of both phycocyanin and phycoerythrin under white LED light. These values
exceeded those reported by Lee [30] under identical conditions. As emphasized by these
authors, the manipulation of culture conditions notably augments pigment production,
deserving further exploration in subsequent studies.
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5. Conclusions

This research paper underscores the suitability of cultivating Nostoc sp. 136 under
laboratory conditions. The strain has been shown to adapt well to laboratory settings and
respond favourably to various treatments, including changes in nutrient supplementa-
tion and different light conditions. Further research is necessary to ascertain whether the
biomass composition, beyond proteins and phycobiliproteins, holds promise, and whether
the biomass demonstrates bioactivities. However, existing data on similar species suggest
that this strain may hold potential for further exploration. Moreover, the species’ hetero-
geneity arises from its high content of exopolysaccharides, as highlighted in our previous
work [40], compounds that deserve to be further investigated.

Furthermore, cultivating Nostoc in thin-layer raceway ponds, where light can penetrate
deeper into the culture layer, may be required in industrial units. These ponds offer a
favourable surface area-to-volume ratio and facilitate rapid light-/dark-cell cycling, thereby
enhancing photosynthetic efficiency [23]. They also provide a simple means of maintaining
the buoyancy of Nostoc, which otherwise tends to form aggregates and settle.
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