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Abstract: This work explores the integration and effectiveness of artificial intelligence in improving
the security of critical energy infrastructure, highlighting its potential to transform cybersecurity
practices in the sector. The ability of artificial intelligence solutions to detect and respond to cyber
threats in critical energy infrastructure environments was evaluated through a methodology that
combines empirical analysis and artificial intelligence modeling. The results indicate a significant
increase in the threat detection rate, reaching 98%, and a reduction in incident response time by
more than 70%, demonstrating the effectiveness of artificial intelligence in identifying and mitigating
cyber risks quickly and accurately. In addition, implementing machine learning algorithms has
allowed for the early prediction of failures and cyber-attacks, significantly improving proactivity and
security management in energy infrastructure. This study highlights the importance of integrating
artificial intelligence into energy infrastructure security strategies, proposing a paradigmatic change
in cybersecurity management that increases operational efficiency and strengthens the resilience and
sustainability of the energy sector against cyber threats.
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1. Introduction

The accelerated advance of cyber threats in critical energy infrastructure constitutes a
significant challenge to global security. These threats put energy services’ continuity and
efficiency at risk and threaten economic and social stability. Against this backdrop, this
work addresses the critical problem of improving the detection of and response to cyber
incidents in energy infrastructure by integrating artificial intelligence (AI) solutions. This
work innovates by applying and evaluating advanced AI techniques, such as deep learning
and predictive analytics, in the context of critical energy infrastructure, thus providing an
effective and proactive solution to a persistent and evolving problem [1].

The relevance of this study focuses on increasingly sophisticated cyber threats, where
energy infrastructure represents a critical target. Therefore, we explore how AI can be an
advanced tool used to anticipate, detect, and neutralize cyber risks, ensuring the continuity
and reliability of energy services [2]. A review of the literature reveals a growing body of
research in AI applied to cybersecurity. However, significant gaps persist in studies specific
to the energy sector [3]. In methodological terms, a multidisciplinary approach combines
data analysis, AI modeling, and simulations of cyber threat scenarios. This methodology is
justified by its comprehensive and realistic assessment of AI’s ability to improve energy
security [4]. Advanced data analysis instruments and machine learning algorithms have
been used to process and examine large volumes of energy infrastructure data, enabling
accurate assessments of AI systems’ detection and response capabilities [5].

Among the significant findings is progress in the protection of critical energy in-
frastructure through the implementation of AI. The most notable results include a 98%
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improved threat detection rate and a more than 70% reduction in response time to cyber
incidents, marking a significant milestone in the efficiency and effectiveness of cybersecu-
rity measures. Furthermore, implementing machine learning algorithms has allowed for a
more accurate prediction of possible failures and cyber-attacks, improving the proactivity
and responsiveness of the security system [6]. These results reflect the potential of AI to
transform the security of energy infrastructure and suggest a paradigmatic shift in how
cyber risks are addressed and managed in this vital sector.

2. Literature Review

The works in this review range from developing advanced AI algorithms to their
practical implementation in critical infrastructure environments, highlighting technological
advances and associated challenges [7]. One of the fundamental aspects of the literature
is identifying specific cyber threats facing the energy sector [8]. Studies such as those by
Ameri et al. demonstrate how vulnerabilities in Industrial Control Systems (ICSs) [9] can be
exploited to cause significant disruptions. This work highlights the need for AI solutions
that can proactively detect and neutralize threats, serving as a basis for subsequent research
that focuses on developing anomaly-detection algorithms specific to these environments.

The literature shows significant progress in using machine learning and deep learning
techniques in threat detection [10,11]. For example, Siva Kumar et al. [12] have presented a
deep neural network-based approach for detecting abnormal patterns in critical infrastruc-
ture network traffic data. This approach highlights the ability of AI models to learn from
large data sets and adapt to new threats, offering a high degree of precision and efficiency
in detecting cyber-attacks.

Furthermore, integrating AI into energy infrastructure is not limited to threat detection
but encompasses incident response and mitigation [13]. Research by Rizvi [14] illustrates
how AI systems can automate incident response, significantly reducing response time and
minimizing potential damage. These systems use real-time decision-making algorithms to
execute corrective actions, demonstrating the potential of AI to improve the resilience of
critical infrastructure.

Data reliability and security are also recurring themes in the literature [15,16]. In this
context, Wazid et al.’s [10] work examines the challenges associated with data security
in implementing AI, highlighting the importance of data protection and privacy in IT
systems and critical infrastructure. This study highlights the need for robust cybersecurity
approaches that ensure the integrity and confidentiality of data used by AI systems.

A review of the literature also reveals the importance of a holistic approach, consider-
ing AI implementation’s technical and socio-economic aspects in energy infrastructure [17].
Works such as Wenninger et al. [18] discuss how AI solutions can influence energy policies
and grid management. They suggest that AI adoption must be accompanied by strategic
planning and effective management to maximize its positive impact on the sector.

Adapting to rapid evolutions in the cyber threat landscape and taking advantage of
AI technology advances require a commitment to innovation and continuous improve-
ment [19,20]. Studies advocating an open innovation framework highlight this aspect,
where collaboration between industries, academics, and governments can accelerate the
development and implementation of effective and safe AI solutions.

3. Materials and Methods

The method was designed to provide an understanding of the tools, techniques, and
processes used in the research and application of AI solutions in critical energy infras-
tructure. To this end, we address the selection of AI technologies, evaluation criteria, and
specific implementation procedures that adapt to the unique challenges of the energy
sector. This methodological framework pursues a systematic and rigorous approach to
researching and applying AI but also establishes the basis for further experimentation and
analysis, allowing us to effectively evaluate the effectiveness and impact of these advanced
technologies in improving the security and efficiency of critical energy infrastructure.
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3.1. Definition of the Problem

The core of the problem in critical energy infrastructure lies in its increasing exposure
to advanced cyber threats, which is exacerbated by the interconnection of systems and
reliance on digital technologies. These threats evolve in sophistication and speed, requiring
an equally rapid and efficient response to prevent significant damage to infrastructure and,
by extension, the society and economy that depend on it.

The proposed solution to this problem involves integrating advanced technologies
capable of anticipating, detecting, and responding to security incidents autonomously and
in real time. This is where AI comes into play, promising to transform the cybersecurity
paradigm in critical infrastructure [21]. AI, with its ability to analyze large volumes of data,
learn from it, and make decisions based on complex patterns, is presented as a solution to
overcome the limitations of traditional security systems.

Specifically, we face attacks targeting ICSs, Advanced Persistent Threats (APTs), spear
phishing, and ransomware attacks. Each of these challenges requires a solution that combines
advanced detection, analysis, and rapid response, roles in which AI is incredibly proficient.
We used advanced machine learning and data analysis techniques to identify anomalous
patterns and suspicious behavior that indicate intrusion attempts or malicious activity. These
AI systems operate under conditions that require high precision and speed to be effective,
such as real-time detection and continuous monitoring, enabling a rapid, automated response
that minimizes potential damage and improves infrastructure resilience [22].

The objective focuses on integrating AI into the critical energy infrastructure network’s
cyber defense system to improve threat detection and automate responses. Adopting AI can
provide advanced analysis and response capabilities, improving system resilience to cyber-
attacks and reducing operational downtime. At the same time, a balance is sought between
technological implementation and the management of potential risks associated with
reliance on automated systems, ensuring that the integration of AI into cyber defense is both
practical and secure. Specific AI technologies are selected and configured to address cyber
threats to critical energy infrastructure, integrating with existing systems and managing
data securely and effectively for threat detection.

3.2. Analysis of the Critical Energy Infrastructure Network

Critical energy infrastructure is a complex interconnected network encompassing
energy generation, transmission, and distribution. This network is essential for the func-
tioning of society and the economy. It is characterized by its wide geographical distribution,
interconnection of advanced technological components, and interdependence with other
vital sectors such as telecommunications, water, and financial services.

The network incorporates ICSs and operational technologies (OTs) integrated with
information technology (IT) systems to optimize operation and monitoring. These systems
operate using specific protocols, such as supervisory control and data acquisition (SCADA),
distributed Network Protocol 3 (DNP3), and Modbus, which are crucial for control and
data acquisition in real-time.

Infrastructure depends on various connected devices, from simple sensors and ac-
tuators to complex process control systems. These devices are distributed throughout
the network, from generation plants to consumption points, forming a network of nodes
that can number thousands in an extensive network, each with its function and level
of criticality.

The network faces significant challenges regarding cybersecurity due to its high
automation and digitalization. The increasing connection of these systems to the Internet
and enterprise networks to facilitate remote control and real-time monitoring expand the
attack surface [23]. This exposes the network to various cyber threats. These risks include
targeted attacks on critical network components, such as substations and control centers,
using tactics such as malware, ransomware, and denial of service (DoS) attacks that can
disrupt power supply and cause cascading effects.
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The energy infrastructure network is a complex network that extends nationwide,
with a geographic scale that ranges from generation plants in remote areas to substations
and distribution centers in urban centers. The network consists of several nodes, including:

• Generation plants are power stations that produce electricity from fossil fuels, hydro-
electric, solar, and wind sources.

• Substations are facilities that transform the voltage levels of electricity for distribution
and transmission throughout the network.

• Distribution centers are nodes that distribute electrical energy to final consumers,
adjusting supply according to demand.

Every node within the network is a critical point that cyber-attacks can target. Potential
incidents range from an intrusion and manipulation of operations to complete a interruption
of services. The interconnection of these nodes creates a densely woven network where an
incident in a single location can quickly propagate its effects, underscoring the importance
of a robust, multi-layered cybersecurity strategy.

An incident in one part of this interconnected grid can have cascading effects through-
out the system, destabilizing the regional power grid and causing widespread blackouts.
Integrating legacy systems with new technologies has created a heterogeneous environ-
ment with different levels of cybersecurity, generating vulnerabilities that are difficult to
detect and mitigate [24]. Additionally, the reliance on third parties to maintain and provide
network components increases the risk of attacks through the supply chain.

Cyber incidents affecting the energy sector include supply chain attacks, DoS attacks,
and others, which can significantly impact the operation and security of energy infrastruc-
ture. A business impact analysis, supported by statistics and case studies, highlights the
sector’s susceptibility to these cyber threats.

A reliance on third parties to maintain and supply network components also increases
the risk of attacks through the supply chain. Although arguably better funded than
other critical sectors, such as healthcare, the energy sector faces unique challenges that
require advanced and targeted cybersecurity solutions. Implementing AI in this context
shows promise, with AI systems designed to analyze large volumes of data generated by
the network in real time, identify abnormal behavior patterns, and facilitate automated
responses to security incidents [25].

3.3. Description of the AI Technology Implemented

AI techniques primarily identify and mitigate cyber-attacks within critical energy
infrastructure. The use of neural networks, for example, is not limited to a generic type but
includes specific variants such as convolutional neural networks (CNNs) for the processing
and analyzing of visual and traffic data. At the same time, long-short-term memory (LSTM)
is preferred for predicting attacks based on time series analysis [26].

In the domain of decision trees, specialized techniques such as C4.5 and ID3 classify and
predict the nature of cyber threats, enabling rapid and informed responses. These methodolo-
gies allow for vast network data to be broken down into actionable information [27].

Beyond predictive analytics, implementing Natural Language Processing (NLP) en-
compasses advanced techniques for interpreting unstructured data. Tools like GPT and
BERT, under the domain of NLP, are essential for analyzing communications and detecting
threat indicators in free text, allowing for a deeper understanding of adversaries’ tactics.

Table 1 specifies the evaluation of AI technologies implemented in the cyber defense
of critical energy infrastructures. It offers a comparison that quantifies aspects such as
detection efficiency, integration with existing systems, scalability, resource management,
and cost. This comparative analysis originates from research that combines theoretical
analysis, empirical tests, and case studies in real cybersecurity scenarios.

To measure detection efficiency, penetration testing and attack simulation were con-
ducted in controlled environments, each using AI technology to identify its ability to detect
and react to various cyber threats. These tests included injecting malicious traffic and attack
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patterns into the network to evaluate how each AI model identified and classified threats
in real time [28].

Table 1. Comparative assessment of AI technologies for energy infrastructure security.

AI Technology Detection
Efficiency

Integration with
Existing Systems Scalability Resource

Management Cost

Neural Networks High Moderate High Intensive High
CNN High Moderate High Intensive High
LSTM High Moderate High Intensive High

GNN (Graph Neural Network) High Moderate High Intensive High
Decision Trees Medium High Medium Moderate Medium

C4.5 Medium High Medium Moderate Medium
ID3 Medium High Medium Moderate Medium

Support Vector Machines (SVMs) Medium High Medium Moderate Medium
Natural Language Processing (NLP) Medium Moderate High Intensive High

GPT (Generative Pretrained Transformer) High Moderate High Intensive High
BERT (Bidirectional Encoder Representations from

Transformers) High Moderate High Intensive High

Integration with existing systems was evaluated by implementing each AI technology
into the energy grid’s operational IT infrastructure. The compatibility of AI technologies
with ICSs and OT was analyzed, noting the ease of integration, the need for infrastructure
modifications, and the interaction with existing monitoring and incident response systems.
The scalability of the AI technologies was tested by progressively increasing the data
load and processing demands to see how each AI system adapted to changes in the
volume of network traffic and the number of nodes and devices monitored. This included
simulating scenarios of network growth and increased network activities to determine each
AI technology’s ability to scale without degrading performance.

Regarding resource management, CPU memory, and storage efficiency were analyzed,
and resource consumption was measured during normal operations and under high-
workload conditions. This helped identify resource-intensive AI technologies and how this
affected their long-term viability in operational environments. The cost was evaluated by
considering the initial investment in the technology and infrastructure necessary for its
implementation and the long-term operational costs, including maintenance, upgrades,
and energy consumption.

3.4. Implementation Methodology

The methodology adopted in our study is an iterative procedure that adjusts and
evolves in response to ongoing findings and operational feedback. It begins with a detailed
needs assessment and planning, in which current threats are identified, energy infras-
tructure vulnerabilities are assessed, and precise goals for AI integration are defined, as
presented in Figure 1.

• The first phase assesses the existing cyber defense infrastructure to identify its strengths
and weaknesses, understand the threats to which it is exposed, and clearly define the
requirements and objectives for AI integration. This phase allows us to align project
expectations with the system’s capabilities and operational needs.

• Subsequently, the AI tools configuration phase involves selecting and customizing AI
solutions. Algorithms and platforms are chosen based on their ability to satisfy the
identified requirements and are configured to adapt to the specific environment of
the cyber defense system. The configuration ranges from adapting machine learning
algorithms to integrating NLP systems, ensuring that each AI component is optimized
for the context in which it will be deployed.

• Integration with existing systems is the next phase, where the configured AI tools
are assembled within the operational framework of the cyber defense system. This
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integration must be seamless, allowing AI solutions to effectively interact with ex-
isting systems, exchange data, and provide real-time analysis and responses. This
phase ensures that AI infrastructure coexists and collaborates effectively with already
deployed cybersecurity tools.

• The testing and validation stage focuses on evaluating the effectiveness of the AI
integration. During this phase, rigorous testing is carried out to ensure that the AI
solutions perform as expected in the actual operating environment. Testing includes
simulating cyber-attacks to verify AI systems’ detection and response capabilities and
evaluating precision and efficiency in threat management.

• Effectiveness assessment involves a critical analysis of data and performance metrics
collected during testing and actual operation to determine the impact of AI on improv-
ing cybersecurity. It evaluates how AI tools have improved threat detection, reduced
incident response time, and contributed to the overall cyber defense strategy.

• For our methodology, a refinement and adjustment loop are introduced. This loop
is activated if the effectiveness evaluation indicates performance below the desired
threshold. The AI technologies are then fine-tuned using performance data and
effectiveness metrics collected during testing. The adjustments focus on improving
precision, reducing false positives, and adapting AI systems to better respond to
emerging threats. This iteration is repeated until the AI systems reach and maintain a
level of performance that meets our rigorous criteria for effectiveness and efficiency.
At the end of the iterative cycle, AI systems that demonstrate a robust ability to detect
and respond to threats in real time and under diverse operating conditions are selected
for long-term deployment.
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Given the energy sector’s strategic importance and potential vulnerabilities to cyber
threats, AI tools were selected and adapted to ensure operational effectiveness and seamless
integration with existing industrial control systems. Recognizing these systems’ complexity
and high-risk exposure, specific modifications to the AI tools included optimizing algo-
rithms to discern between normal operational fluctuations and abnormal network traffic
patterns indicative of malicious cyber activity.

Studies such as those by Ameri et al. [9] and Siva Kumar et al. [12] illustrate the com-
plexities and risks associated with industrial control systems and network infrastructure in
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the energy sector. AI tools must be integrated precisely to maintain operational stability and
security, a critical aspect that Jadidi et al. [21] examined by detailing effective cybersecurity
management strategies. Seamless integration, prior cleaning, and data normalization are
essential for AI systems to function effectively.

Modifications were made to adapt these algorithms to the energy sector to accom-
modate the peculiarities of its data and operations. This included calibrating models
to recognize normal power flow fluctuations and distinguish them from potential cyber
threats [29]. Integration with operational energy systems was carefully managed to ensure
seamless communication and coordinated response between AI and industrial control
systems, maintaining energy grid stability and operational security.

3.5. Data Collection and Analysis

Data collection for our study was based on a combination of public and private data
sources selected for their relevance and reliability in the context of cyber threats to critical
energy infrastructure. Public sources include well-known cyber threat databases such as
the National Vulnerability Database (NVD) in the United States [30], which provides a
compendium of security vulnerabilities identified in various systems. In addition, event
logs and alerts from publicly accessible network monitoring platforms were used, such
as those provided by the Security Information Exchange project of the SANS Internet
Storm Center and the early warning system of national CERTs [31]. Collaborations with
private entities and industry associations allowed for access to detailed operational data
and incident records specific to the energy sector under confidentiality agreements.

The data analyzed come from real environments and controlled simulations, reflect-
ing a broad spectrum of cyber threats to critical energy infrastructure. Sector-specific
operational and incident logs were obtained through collaborations with private entities
under strict confidentiality agreements and complemented by threat intelligence analysis
provided by CrowdStrike [32] and FireEye [33], which analyze and monitor cyber adver-
saries’ tactics, techniques, and procedures. This data set includes attacks targeting ICSs,
APTs, spear phishing tactics, and ransomware. The emulated data were generated in
testbeds designed to simulate specific attack scenarios, providing a comprehensive view
of AI detection and response capabilities against a diversified spectrum of cyber threats,
underscoring the depth and relevance of our analysis in the context of cybersecurity of
energy infrastructures.

The data collection process was designed to capture a comprehensive and accurate
view of cyber activities within critical energy infrastructure. Automated tools, including ad-
vanced packet capturers and Security Information and Event Management (SIEM) systems,
were implemented to monitor network traffic and log security events. These tools were
configured to ensure the systematic capture and aggregation of data in real time, allowing
for the collection of detailed information on communications within the network, intrusion
attempts, and detected anomalies.

To ensure data representativeness, collection points were strategically deployed across
multiple network nodes, providing a data set that accurately reflects the complete picture
of network operations and its security challenges. This multidimensional approach not
only improved the quality of the data set but also increased the relevance of subsequent
analyses by providing a meaningful and representative sample of the environment being
protected. Data integrity was maintained by implementing validation and verification
protocols, including integrity testing and regular audits. These protocols ensured that any
data collected were complete, accurate, and free of corruption or manipulation before being
used to train and test the AI models. The systematic approach and automated tools enabled
efficient and structured data collection, thus forming the basis for detailed cybersecurity
analysis and the effective development of AI solutions tailored to the specific needs of the
cyber defense environment.

Over a representative six-month period, approximately 100 terabytes (TB) of data
were collected, covering various cyber activities and threats to ensure the comprehensive
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analysis and practical training of AI models. For network traffic, around 15 TB of data
were monitored monthly, totaling 90 TB at the end of the collection period. This collection
was performed across multiple network nodes within the organization, capturing a full
spectrum of network activity, including regular traffic and potential threats.

Regarding security event logs generated by devices such as firewalls and intrusion
detection systems, about 2 TB of data accumulate monthly, and up to 12 TB during the
six months. These logs are essential for analyzing security events and alerts generated in
response to suspicious or malicious activity. In addition, application and operating system
logs are collected, adding up to approximately 500 gigabytes (GB) per month, reaching
3 TB in the study period. These data provide detailed information about system behavior
and user activities, which is crucial for detecting potential internal security breaches.

Threat intelligence, obtained from public and private sources, provides around 5 GB
of updated data each month, reaching 30 GB at the end of six months. This information
enriches the database with up-to-date knowledge on the tactics, techniques, and procedures
(TTPs) of emerging threats, which is vital for the fine-tuning and precision of AI models
in threat detection. The collection was performed using automated tools, such as packet
capturers for network traffic and SIEM systems for logs, ensuring an efficient and systematic
process. All the collected data are stored in secure repositories, with controlled access and
protection measures to maintain their integrity and confidentiality. Additionally, validation
protocols are established to verify the completeness and precision of the data, including
integrity verification and audits of regularly collected data. This approach to data collection
ensures a diverse and representative data set, essential for detailed cybersecurity analysis
and an effective development of AI solutions tailored to the specific needs of the cyber
defense environment.

3.5.1. Data Preparation and Preprocessing

In the data preprocessing phase, we employed methods to transform the collected
raw data into a uniform and standardized format, making them suitable for advanced
analysis using AI algorithms. Data collected from various sources, such as event logs,
network traffic, and system logs, were converted to a standard format such as CSV or JSON
to facilitate consistent handling. Using data integration tools like Logstash, we analyzed
and transform heterogeneous data into a standardized structure. For example, security
event logs, initially in proprietary formats specific to each security tool and the network
traffic data captured in PCAP formats, were uniformly converted to CSV. This standard-
ization guarantees consistency in data handling between different types of information in
subsequent analytical phases [34].

Numerical values within the data, such as response times and traffic volumes, under-
went min–max normalization, adjusting the values to fall within a standardized range of 0
to 1. This normalization process facilitates the comparative analysis of various data types
on a consistent scale and mitigates bias due to magnitude disparities. After normalization,
data centering is performed by subtracting the mean of each feature and aligning the data
set around a center value of zero. This centering improves the ability of AI models to learn
from patterns and deviations rather than absolute values.

Additionally, we normalized the variance by dividing each feature by its standard
deviation, ensuring uniformity in feature variability [35]. This standardization is essential
to prevent an individual feature from disproportionately influencing AI models due to
their scale. These preprocessing steps are automated through scripts in programming
environments such as Python, using libraries such as Pandas and Scikit-learn, which
provide comprehensive functionalities for efficient data transformation.

The data cleaning began with identifying and removing duplicate records, which can
distort analytical results by overrepresenting certain events [36]. Automated algorithms
scan the data set and identify duplicates based on unique identifiers or critical attributes,
such as timestamp, event type, and source in the event logs. These redundant entries are
subsequently removed to maintain analytical precision.
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Addressing incomplete data is another critical step, where missing values are managed
through imputation or deletion based on the context and proportion of missing data.
For minor cases of missing data, imputation techniques such as mean, median, mode
replacement, or more sophisticated model-based imputation are used to preserve the
integrity of the data set. Conversely, a large amount of missing data on a feature might
require removal from the data set to avoid analysis distortion [37].

We implemented validation protocols to ensure the representativeness and quality of
the data. These protocols included integrity checks and periodic audits of the data collection
process to verify its completeness and precision. The data preparation and preprocessing
not only optimized the data set for AI analysis but also strengthened the foundation of
our cybersecurity study, ensuring that the AI models were trained and tested on data that
accurately reflect the real-world operating environment.

To ensure an accurate comparison in our analysis, we must highlight that both the
AI algorithms and traditional analysis methods were evaluated using the same data set,
which was preprocessed and cleaned. This uniform approach ensures that the evaluation
accurately reflects the inherent effectiveness of each algorithm in identifying and mitigating
cyber threats, eliminating any confounding variables that could arise from the quality of the
data set. In this way, we can affirm that the observed differences in performance are due to
the distinctive characteristics and capabilities of the algorithms evaluated, thus providing
an unbiased and equitable analysis.

3.5.2. Analysis of Data

Statistical analysis began with applying descriptive statistics to obtain a basic under-
standing of the data. The mean, median, standard deviation and interquartile ranges were
calculated for each numerical characteristic in the data. This provided an overview of the
distribution and variability of the data. For example, the average amount of traffic per
hour was analyzed for network traffic data, identifying spikes and dips that may suggest
abnormal behavior or cyber-attacks [38].

Inferential statistical methods, such as hypothesis testing and regression analysis, were
used to determine whether the data observations result from genuine patterns or random
variations. In the cybersecurity context, this could involve analyzing whether an increase
in network traffic is correlated with known malicious activity or is part of normal behavior.

The model’s hyperparameters were tuned to classify malicious activities in network
traffic data. Hyperparameters are configurations external to the model that influence its
behavior and performance. Optimizing them is crucial to improving a model’s ability to
detect threats accurately.

In addition to these statistical methods, hyperparameter tuning in models such as
random forests were performed to optimize the classification of malicious activities in
network traffic data. Using cross-validation and grid search techniques, this adjustment
allowed us to determine the optimal configuration to improve the model’s precision and
efficiency. Although random forest is specifically mentioned, this approach was uniformly
applied to the other machine learning algorithms evaluated in the results. This ensures a
solid comparative basis for evaluating their performance in detecting cyber threats.

For random forests, key hyperparameters include the following:

• Number of Trees (n_estimators): This refers to the number of trees in the forest. A
significant number can improve the model’s precision and increase the computational
cost. Experiment with 100, 200, or 500 values to balance performance and efficiency.

• Maximum Tree Depth (max_depth): This hyperparameter limits the depth of each
tree. A more considerable depth allows the model to capture more detail but can also
lead to overfitting. Different depths, such as 10, 20, or None (no limit), are tested to
determine the optimal level.

• Minimum Samples to Split (min_samples_split): This parameter indicates the mini-
mum number of samples necessary to split a node. Typical values are 2, 5, or 10. A
lower value allows the model to be more detailed but can cause overfitting.
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• Minimum Samples per Leaf (min_samples_leaf): The minimum number of samples
required to be a tree leaf. Setting this to a more significant value can smooth the model
and prevent overfitting.

Cross-validation and grid search techniques tune these hyperparameters. This method
evaluates and compares model performance with different combinations of hyperparame-
ters, using a training set divided into parts (e.g., 5 or 10 parts in k-fold cross-validation) to
ensure that the fit is generalizable to unseen data [39].

For machine learning analysis, algorithms are implemented and trained on the pre-
processed and cleaned data set to identify patterns and predict future threat behavior.
Classification models are selected to detect malicious activities using algorithms such as
decision trees, random forests, and support vector machines.

The process begins with dividing the data set into training and test sets, usually in a
ratio of 80/20 or 70/30. The training set trains the models, adjusting their parameters to
optimize their classification and prediction ability. For example, a random forest model is
trained with network traffic data and security event logs to identify cyber-attack patterns.
Subsequently, the performance of these models is validated and evaluated using the test
set, applying metrics such as precision, sensitivity (recall), and F1 score [40]. Additionally,
k-fold cross-validation ensures that the model is generalizable and robust to new data.

Precision is defined as the proportion of true positives (TPs) among all predicted
positives (TPs and false positives, FPs), calculated as follows:

Precision =
True positives

True positives + False positives
(1)

Recall measures the proportion of true positives correctly identified concerning the
total number of confirmed positive cases (true positives and false negatives, FN) and is
calculated as follows:

Recall =
True positives

True positives + False negatives
(2)

The F1 score is the harmonic average of precision and sensitivity, balancing these two
metrics. It is calculated as follows:

F1 Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(3)

3.5.3. Evaluation of the Operational Effectiveness of AI in Cybersecurity

The effectiveness of AI in cybersecurity situations is evaluated not only by its preci-
sion in detecting and classifying threats but also by its performance in real or simulated
operational environments. In this context, this evaluation focuses on how AI effectively
contributes to the comprehensive cybersecurity management and decision-making process.

• Practical Application and Response Time: We measured the speed and effectiveness of
AI systems responding to detected threats, evaluating the time elapsed from detection
to implementing an appropriate response. This metric is vital for mitigating damage
and strengthening incident response strategies.

• Managing False Positives in Operational Environments: It is crucial to evaluate how
often AI systems incorrectly identify legitimate activities as malicious. A high rate of
false positives can create unnecessary operational burdens and divert resources from
real threats. We analyzed how these false positives are managed and reduced in the
operational context to improve efficiency and minimize disruption.

• Adaptability and Continuous Learning: We implemented periodic testing and adjust-
ments based on updated data analysis to measure AI’s adaptability to new threats and
changes in the cyber environment. This dynamic approach allowed us to constantly
identifying areas for improvement, optimizing both threat detection precision and
response efficiency.
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• Feedback and Continuous Improvement Mechanism: We established a feedback
mechanism that integrates learnings from real cybersecurity operations, allowing
for AI systems to refine and evolve based on practical experiences. This continuous
improvement ensures that AI not only stays up to date with the tactics, techniques,
and procedures of emerging threats but also aligns with the specific operational needs
of the cybersecurity environment.

Therefore, assessing AI’s operational effectiveness is a holistic process encompassing
technical precision, operational efficiency, and strategic adaptability. This approach ensures
that AI systems are evaluated in a context that reflects their real-world application in
cybersecurity, providing a comprehensive view of their performance and contribution to
the security of critical infrastructure.

4. Results

The results highlight AI technologies’ effectiveness and transformative impact in
strengthening the security of critical energy infrastructure. We have made significant
progress in accurately detecting and rapidly responding to cyber threats by implementing
advanced AI solutions. The case studies analyzed concretely illustrate how these tech-
nologies not only theorize possible solutions but also execute them effectively, addressing
the energy sector’s unique challenges. These specific examples demonstrate the practical
application of our research and methodologies in real operational environments, providing
valuable insight into the real-world impact of our AI solutions in improving the safety and
resilience of energy infrastructure.

4.1. Evaluation of Data Processing

Data transformation and cleansing have made it easier to identify and detect cyber
threats accurately using AI algorithms. The processes began with evaluating the original
data set, identifying and removing 30,000 duplicate records, and reducing the total from
1,200,000 to 1,150,000 valid records. This step allowed us to eliminate redundancies and
possible biases in the subsequent analysis. Identifying 100,000 missing values and their
subsequent treatments through imputation or elimination techniques ensures the analyzed
data’s integrity and continuity. Additionally, 20,000 anomalies or outliers were detected
and corrected, thus normalizing the data and avoiding distortions in the analysis results.
This cleaning process also improved the consistency of data formats, moving from low
uniformity to high consistency, which facilitated integration and analysis in later stages.

Regarding the content of the logs analyzed, these consisted of detailed security event
data, including access logs, intrusion alerts, and notifications from anomaly-detection
systems, covering a wide range of cyber threats in the energy infrastructure environment
criticism. These threats included brute force attacks, malware infiltrations, spear phishing
activities, and abnormal behaviors indicative of vulnerability exploitation attempts. For
each record, details such as the timestamp of the event, the nature of the suspicious activity,
and the response of the security system were captured and analyzed. The traditional
detection method was based on signature systems and heuristics that, although efficacious
against known threats, showed limitations against new and sophisticated attacks. In
contrast, the AI models deployed leveraged advanced machine learning techniques to
analyze patterns within the data, significantly improving threat detection by adapting to
the evolving cybersecurity landscape, as demonstrated in the higher detection rate and
reduction in response times.

Preprocessing included normalizing the numerical values and scaling them to a range
of 0 to 1. This adjustment not only homogenized the data but also optimized the efficiency
of the AI algorithms during training and evaluation, allowing for further comparisons and
analysis. Accurate, detailed results are presented in Table 2.
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Table 2. Impact of data preprocessing on input quality for AI systems in cyber security.

Evaluated Aspect Result Before Treatment Result After Treatment

Amount of Data (records) 1,200,000 1,150,000
Identified Duplicates 30,000 0

Missing Values 100,000 0
Anomalies/Outliers Detected 20,000 0

Format Consistency Low high
Numeric Value Range Varied (unnormalized) 0–1 (normalized)

To understand the impact of preprocessing on the effectiveness of AI models in
detecting cyber threats, it is crucial to analyze how improvements in data quality have
contributed to more accurate and efficient detection. Data preprocessing included removing
duplicate records, correcting missing values and anomalies, and standardizing formats.
These actions significantly improved the quality of data available for training AI models.

Cleaning and normalizing the data resulted in a more coherent and representative
data set, which allowed the AI models to learn from a more accurate and less noisy set of
information. This improvement in data quality translated into greater precision in threat de-
tection, as evidenced by the improved detection rate of 95% after the implementation of AI
technologies. Additionally, the incident response time was dramatically reduced from min-
utes to seconds, demonstrating the ability of AI systems to react quickly to identified threats.
The analysis of the results highlights the importance of data preprocessing in optimizing
AI models for cybersecurity. Improved precision and rapid incident response indicate AI
models’ ability to operate effectively in dynamic and complex cybersecurity environments.

4.2. Evaluation of AI Performance in Threat Detection

The ability of AI models to identify cyber threats was evaluated, revealing a significant
advance over conventional security methods. The AI algorithms applied to the collected
and preprocessed data set demonstrated a high threat detection rate, notably outperforming
traditional security solutions in efficiency and effectiveness. Through the analysis, the
precision and sensitivity of these models were quantified, with the results highlighting a
substantial improvement in accurately identifying malicious activities. The comparative
evaluation between various AI algorithms highlighted the superiority of specific techniques
that managed to successfully detect a wide range of cyber threats, from brute force attacks
to sophisticated intrusions, thus evidencing the potential of AI in reinforcing cybersecurity.

4.2.1. Threat Detection

The obtained results present the improved efficiency of the AI models evidenced by
a significantly higher threat detection rate. The analysis began with the implementation
of the AI algorithms in a controlled environment, using the same cyber threat data set for
the two systems: the AI model and the traditional security system. Special attention was
paid to training and tuning the AI models, ensuring they were well-calibrated to recognize
malicious behavior patterns from the collected and preprocessed network traffic data, event
logs, and system logs.

To measure the threat detection rate, the number of actual threats detected by each
system was counted against the total threats in the test data set. The results showed that
the AI models achieved a detection rate of 94.7%, detecting 947 of the 1000 threats, while
traditional systems managed to identify 749 threats, resulting in a detection rate of 74.9%.
As seen in Table 3.
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Table 3. Performance comparison between AI models and traditional systems in cyber threat detection.

Criterion AI Model Traditional System

Threat Detection Rate (%) 94.7 74.9
Total Number of Threats Detected 947 749
Total Number of Threats Present 1000 1000

False Positives 53 104
False Negatives 53 251

A direct comparison of these figures demonstrates the advantage of AI in accurately
identifying cyber threats. In addition, the number of false positives and false negatives
generated by both systems was analyzed, and was lower in the AI models, indicating
greater precision and reliability in threat detection. These results highlight the superiority
of AI in effectively detecting malicious activity but also underline its potential to optimize
cybersecurity operations, reducing the incidence of false positives and improving the ability
to respond to real threats. The quantitative evidence from this study provides a solid basis
to argue for adopting AI technologies in advanced cyber defense systems.

4.2.2. Precision and Recall Analysis

Through analysis, precision and sensitivity metrics were quantified, highlighting the
superiority of AI systems in identifying and reacting to malicious activities. To arrive
at these results, benchmark tests were applied using an extensive data set reflecting a
variety of cyber threats. The models selected for the study, including random forest, SVM,
and Deep Neural Networks (DNNs), were trained and tuned to maximize their ability to
recognize malicious patterns within network traffic and other threat indicators. Each model
underwent a series of tests to measure its precision, defined as the proportion of correct
threat identifications among all identifications made, and its sensitivity, which measures
the model’s ability to detect all real threats present in the set of data.

The results showed that DNNs improve the performance with 93% precision and 90%
sensitivity, followed by random forest with 92% precision and 88% sensitivity. SVMs were
also effective, although to a lesser extent, with an accuracy of 89% and a sensitivity of 85%.
In contrast, traditional security systems had significantly lower rates, with a precision of
75% and a sensitivity of 70%. This analysis was based on applying advanced statistical
methodologies and empirical tests, guaranteeing the reliability and validity of the results
obtained. The AI algorithms were evaluated in terms of their ability to detect threats,
minimize false positives, and respond effectively to security incidents, thus establishing a
compelling argument for their adoption within the modern cybersecurity framework.

4.2.3. Comparison of Algorithms

Various AI algorithms were implemented to perform the comparative analysis, includ-
ing random forests, SVM, DNN, CNN, and decision trees. Each model was trained using
a representative cyber threat data set, and its parameters were optimized to maximize
precision and sensitivity in threat detection.

In the analysis, we differentiated between neural networks in general and specific
types, such as CNNs. Given that CNNs are a subtype of neural networks, these may seem to
overlap. However, this distinction highlights CNNs’ specialized capabilities in processing
visual and spatial data, differentiating them from other neural network architectures. CNNs
are especially effective in analyzing visual and spatial data due to their unique structure,
which mimic the mechanism of visual perception in living beings. This specialization makes
them ideal for detecting image patterns or network traffic with visual characteristics. On
the other hand, DNNs refer to a broader spectrum of neural networks capable of handling
various data analysis tasks, including those that do not necessarily have a clear spatial or
visual structure.

In Table 4, we differentiate the types of neural networks to show how each performs
in detecting cyber threats based on metrics such as precision, recall, and F1 Score. This
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differentiation is intended to demonstrate that, although CNNs are a form of neural net-
work, their separate evaluation is justified by their specialization and unique ability to
deal with certain types of cyber threat data. When evaluating AI algorithms, it is essential
to consider the explainability of each method to ensure its applicability in cybersecurity
environments. Decision trees offer a transparent structure that allows users to understand
decisions based on specific model characteristics. On the other hand, DNNs and CNNs
provide high rates of accuracy and sensitivity but often act as “black boxes”, where the
internal decision processes are not easily interpretable. This can complicate understandings
of the specific nature of the detected threats. Support vector machines (SVMs), especially
with non-linear kernels, also present similar challenges in terms of transparency. Recogniz-
ing and addressing these aspects of explainability is critical to developing threat detection
systems that are effective, reliable, and understandable to security operators.

Table 4. Performance evaluation of AI algorithms in cyber security.

AI Algorithm Precision (%) Recall (%) F1 Score (%)

Random Forest 92 88 90
SVM 89 85 87

Deep Neural Network 93 90 91.5
CNN 91 87 89

Decision Trees 88 84 86
Traditional System 75 70 72

The results indicate that DNNs obtained the best results, with higher precision and
sensitivity, compared to random forests and CNNs. Although effective, the decision trees
and SVMs showed slightly inferior performance. Data collection and analysis allowed for
an objective and quantitative evaluation of each algorithm’s performance.

This evaluation process involved training, testing the models, and analyzing the
test results to understand how each algorithm processes and responds to cyber threats.
Precision, sensitivity, and F1 Score were calculated from actual threat detection on the test
data set, providing a standardized measure of model effectiveness.

Furthermore, the analysis revealed the superiority of DNNs in threat detection, mark-
ing the importance of model selection in implementing AI-based cyber defense systems.
These findings provide a solid foundation for future research and development in cyberse-
curity, guiding the selection of technologies toward those most effective in preventing and
mitigating cyber-attacks.

4.3. Effectiveness in Incident Response

AI models have demonstrated a solid ability to react to threats in real time, significantly
reducing response times compared to traditional security methods. This improvement in
incident response is evidenced by the ability of AI-based systems to automatically execute
mitigation actions, minimizing the potential impact of detected threats and improving the
overall resilience of the cybersecurity system.

Integrating AI into Security Operations Center (SOC) operations has transformed
the dynamics of incident response, where every second counts [41]. Although it seems
marginal, the reduction in response time, which can vary between 3 and 6 s compared
to traditional methods, is vital in critical security. In situations where threats evolve
rapidly, such as ransomware attacks or network intrusions, these seconds can be crucial to
preventing an attack from spreading and reducing the resulting damage.

The effectiveness of AI in providing faster responses is based on its ability to analyze
large volumes of data efficiently and make automated decisions based on complex and
changing patterns. This capability accelerates the detection and response process and
enables continuous adaptation to new threats, which is essential to maintaining security
against increasingly sophisticated adversaries.
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4.3.1. Effectiveness in Incident Response

With the implementation of AI systems, agility in responding to cybersecurity inci-
dents has become innovative. Additionally, integrating AI systems into SOC operations
has improved agility in responding to cybersecurity incidents. Figure 2 illustrates a con-
sistent trend: AI-based systems respond faster than traditional methods and maintain
improvement over time, optimizing their protocols and reducing latency in response to
threats [42,43]. The analysis highlights that the few seconds gained in response time are
critical for SOC operations. For example, a faster response can mean the difference between
a localized infection and a large-scale spread in a ransomware attack. This time frame
allows for decisive actions such as disconnecting compromised devices from the network,
mitigating the impact, and preventing potential data breaches.
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Figure 2. Comparison of response speed between AI and traditional systems over time.

This analysis focused on measuring response times after detecting a threat. Data
were collected bimonthly, reflecting the intervals of ‘Month 1–2’, ‘Month 3–4’, and ‘Month
5–6’, and then subjected to statistical analysis. Data for this evaluation come from timed
recorded responses to simulated incidents, measured in seconds. Each two months, data
were collected, corresponding to the systems’ reaction to a series of verified threats. The
times from initial detection to execution of the appropriate response were recorded.

An improvement was observed in the speed of response of the AI systems, with a trend
towards decreasing median response times with each successive measurement, implying
the continuous learning and adaptation of the AI system; in contrast, the response times of
traditional security systems exhibited more excellent dispersion and a slight tendency to
increase in the median over time, which could indicate less adaptability to emerging threats.

Each box on the graph represents the distribution of response times for each system
over the two-month intervals. The line inside each box denotes the distribution median,
while the boxes’ ends define the first and third quartiles, thus providing a view of the
interquartile range that encompasses the middle half of the data. The whiskers extend to
the minimum and maximum values within a defined range unless outliers are represented
as individual points outside the whiskers.
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The graph’s results directly compare the two types of systems and their response
capabilities over time. The AI systems’ improved responsiveness is evident and suggests
continuous adaptability and optimization in threat management. These findings highlight
the importance of incorporating AI into cybersecurity protocols and promise significant
improvements in the overall effectiveness of incident response strategies.

4.3.2. Response Automation

Organizations can significantly reduce the time between detecting and mitigating
threats by automating incident responses. AI, in this process, allows for not only the
application of simple rules but also advanced techniques that provide significant value
by interpreting and responding to threats in real time. Table 5 presents various types
of automatic reactions implemented by AI systems and the frequency of their activation
during the study period, illustrating the diversification and agility that AI brings to re-
sponse capabilities.

Table 5. Analysis of automation in response to cyber security incidents.

Automated Response Type Description Activation Frequency

System Isolation Disconnecting infected devices from the network to contain the spread of
a threat 120 times

Account Deactivation Temporary suspension of user accounts with abnormal behavior 75 times
Blocking Network Traffic Immediate interruption of traffic flows identified as malicious 200 times

Automatic Patching Applying security patches to vulnerable software without
human intervention 150 times

Security Alerts Automatic notifications to security teams for situations that require
human review 300 times

The data analysis reveals that the implementation of AI has increased the response
capacity, adapting to the type and severity of the perceived threat. The AI systems recorded
a series of automatic actions during the study period. These automated responses, from the
immediate isolation of compromised devices to the application of security patches without
human intervention, demonstrate remarkable efficiency in preventing the infiltration and
spread of cyber threats.

The trigger frequency of these responses provides quantitative insight into AI’s con-
tribution to real-time security. For example, system isolation was activated 120 times,
reflecting a security policy prioritizing rapid containment of the threat. Equally important,
the automatic deployment of security patches was carried out 150 times, highlighting the
ability of AI systems to strengthen defenses by fixing known vulnerabilities without delay.

The 300 automated alerts sent to security teams highlight the essential collaboration
between AI and security professionals, where technology acts as a force multiplier, allowing
human teams to focus on threats that require specialized expertise and judgment.

The automation of responses evidenced by data marks the transformation that AI
drives in cybersecurity: an evolution from reactive protocols to proactive and dynamic
strategies, maximizing the effectiveness of incident response and strengthening the overall
defensive posture.

4.4. Reduction in False Positives and Negatives

Figure 3 evaluates the effectiveness of AI in reducing false positives and negatives and
the improvement this represents compared to traditional security systems. The line graph
illustrates the variability and performance of the AI system over six months, highlighting
the system’s progressive adaptation and learning. The variable line highlights the system’s
ability to adjust genuine threat detection over time.
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The second bar chart graph compares false positive and negative counts between
traditional and AI-based systems, providing a direct visualization of AI’s effectiveness
compared to conventional methods. The comparison reveals differences in the incidence of
errors, underscoring that AI can improve the speed and accuracy of incident response and
decrease the number of incorrect alerts that could divert valuable resources.

The analysis was based on a set of simulated security incidents, where whether each
alert was a true positive, a false positive, a true negative, or a false negative was recorded.
These incidents were processed by AI systems and, for comparison purposes, by traditional
systems. Performance was evaluated monthly, allowing for the evolution of the AI system
and its learning from interactions with new and diverse threats to be tracked. This detailed
analysis supports the integration of AI into cyber defense systems. It highlights its critical
role in continuously improving security operations. It shows how this technology can
reduce errors and build a more reliable and robust system for detecting and managing
cyber threats.

4.5. Impact on Global Cyber Security

A detailed analysis of operational metrics reveals an encouraging picture of AI’s role in
redefining global cybersecurity. The statistics show a substantial improvement in the ability
to detect and respond quickly to threats and notable efficiency in reducing false alerts,
fundamental elements for protecting critical infrastructures. Exploring AI’s impact on
cybersecurity opens the dialogue on how these advanced solutions are making a difference
in the complex fabric of cyber defense globally.

4.5.1. General Security Improvements

Integrating AI into cybersecurity strategies has led to significant improvements in
the protection of critical infrastructure globally. Adopting these advanced technologies
has redefined the ability to respond and resist complex incidents, evidenced by a notable
decrease in the frequency and impact of cyber-attacks. The analyzed data, reflected in
Figure 4, show a reduction trend in the number of incidents and their severity since the
implementation of AI systems. The first graph reveals a decrease in the frequency of
incidents month on month, underscoring the proactive role of AI in preventing attacks
before they happen or in quickly neutralizing them. The red line, which represents the
frequency of incidents before AI implementation, shows a significantly higher trend than



Systems 2024, 12, 165 18 of 26

the green line, which illustrates the frequency of incidents after AI implementation. This
comparison shows how AI contributes to a notable decrease in security incidents. AI’s
predictive capability and continuous surveillance allow one to proactively identify and
mitigate vulnerabilities before they are exploited.
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The second graph complements this view by demonstrating a decrease in the impact of
incidents that occur, being indicative of more effective risk management and faster recovery.
The relationship between the blue and yellow lines exposes the difference in the effects of
security incidents before and after integrating AI. The blue line, which indicates a more
significant impact of incidents before AI, contrasts significantly with the yellow line, which
shows how the effect is reduced after the implementation of AI. This contrast suggests
that AI is detecting threats more effectively and implementing more effective responses
to contain and neutralize the potential damage from such incidents. The reduction in the
impact of incidents can be attributed to AI’s automated and adaptive response, which
applies countermeasures in real time and adapts security defenses more dynamically than
traditional systems.

The impact score is defined by a comprehensive approach that considers the severity of
the incident, the extent of potential damage, and the speed of response. This comprehensive
metric seeks to reflect the seriousness and consequences of cybersecurity incidents before
and after implementing AI systems.

The severity of each incident is initially rated on a scale of 1 to 5, with 1 representing
minor incidents with marginal impacts and 5 being reserved for critical security breaches
with the potential for extensive damage to infrastructure and data integrity. This assessment
is based on standardized criteria to ensure consistency over time and between security
analysts. The extent of potential damage is estimated by considering the number of
compromised systems and their importance to the infrastructure’s operation. A rating is
assigned on a scale of 1 to 10, with the highest value indicating a high risk of affecting
the organization’s critical systems. The speed of response is measured from the moment
the threat is detected until effective corrective action is implemented. More agile and
early responses receive higher scores, reflecting the premise that prompt intervention can
significantly reduce the magnitude of the impact.
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The consolidated impact score is obtained by a weighted average of these factors,
creating a quantitative and comparable measure of the impact associated with each incident.
This calculation allows for an objective and standardized assessment of the real impact of
security incidents. It demonstrates how integrating AI into cybersecurity systems changes
the risk landscape over time.

A detailed and systematic monitoring of cybersecurity incidents was carried out over
12 months before and after implementing AI-based solutions to reach these results. Data
on the frequency and impact of incidents were meticulously collected through security
reports and cyber defense system logs. AI algorithms designed for early detection and
rapid response were applied, resulting in a lower frequency of incidents and less impact
when they occurred.

According to the ‘Cybersecurity and Infrastructure Security Agency (CISA)’ report
published by America’s Cyber Defense Agency, the implementation of AI has been shown to
improve the security of critical infrastructure networks and strengthen resilience to complex
attacks. This report highlights how AI solutions have enabled organizations to adapt more
effectively to emerging threats in the cybersecurity landscape [44]. Additional case studies
illustrating the effectiveness of AI in real-world situations will provide deeper insight
into its positive impact, showing how the technology has not only detected and mitigated
specific incidents but has transformed cybersecurity into a solid and dynamic strength.

4.5.2. Comparison with Other Solutions

The impact of this implementation goes beyond a simple improvement in threat detec-
tion rates, encompassing a comprehensive transformation in the way critical infrastructure
is defended in the digital realm. When comparing our AI solution to alternative systems, it
is evident that there are notable improvements on several fronts. With a threat detection
rate of 95%, our solution outperforms the rules-based and hybrid systems, which reach
85% and 90%, respectively. This improvement in the detection rate is not only a reflection
of AI’s ability to identify known threats but also its ability to learn and adapt to new tactics
employed by cybercriminals.

Average response time is a critical factor in cybersecurity incident management. Our
solution responds in an average of 3 s, an impressively faster speed compared to 9 s for
the rules-based system and 6 s for the hybrid system. This rapid response is crucial to
mitigating the impact of attacks, enabling near-instant defensive action that could be the
difference between a minor breach and a devastating security breach.

Regarding the false positive rate, which can overwhelm security teams and divert es-
sential resources, our solution shows a rate of 4%. In contrast, the rule-based system shows
a rate of 12%, and the hybrid system is 9%. Although the operational cost of our AI solution
is higher, this additional expense is more than justified by the reduction in operational
interruptions and downtime, which can have even more significant financial consequences.

Similarly, the advanced AI system significantly improves the false negative rate,
representing the threats that evade detection and are potentially the most dangerous. While
our solution shows 5%, the rule-based system has a rate of 15%, and the hybrid system
10%, indicating a clear advantage in terms of detection reliability.

This analysis makes the case for investing in advanced AI in cybersecurity. Despite
the higher initial operating cost, the return on investment is realized through significant
improvements in incident prevention and response and reductions in the disruption and
costs associated with false positives and negatives. The complete results are presented in
Table 6, which strengthens the argument that AI solutions are not just a complement, but a
necessary paradigm shift for cybersecurity in our current digital age.
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Table 6. Comparison of efficiency and costs in cyber security systems.

Parameter Our AI Solution Rules Based System Hybrid System (Rules and Essential ML)

Threat Detection Rate (%) 95 85 90
Average Response Time (sec) 3 9 6

False Positive Rate (%) 4 12 9
False Negative Rate (%) 5 15 10

Estimated Operating Cost (USD) 50,000 40,000 30,000

The effectiveness of our AI solution is based on an analysis of data collected over
an observation period, where cyber threats on critical infrastructure were continuously
monitored. These data, obtained from security event logs and intrusion detection systems,
included a variety of threats, from brute force attacks and ransomware to sophisticated
phishing techniques and APTs. During the study period, AI models were refined by
incorporating new data, allowing for iterative threat detection and response improvement.
This refinement process was based on advanced machine learning techniques, which
adapted the models to capture emerging trends and evolving attack tactics.

Lower operating costs are derived from a substantial reduction in response times
and the decrease in false positive and negative rates, representing significant savings by
avoiding operational interruptions and reducing downtime. These financial benefits and
improved detection reliability demonstrate a clear return on investment and justify the
higher initial investment in the AI solution.

Figure 5 presents the hyperparameter optimization. Key elements such as the number
of trees in the random forests and the maximum depth of these trees were adjusted to
improve the effectiveness of threat detection. This tuning process was performed using
cross-validation techniques, ensuring that the models fit the training data and generalize
well to new, unseen data.
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• By increasing the number of trees in the random forests, the threat detection rate
improved, going from 85% in rule-based systems to 95% in optimized AI systems. This
indicates that a more significant number of trees in the model can increase robustness
and the ability to capture complex variations in hazard data.
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• Adjusting the maximum depth allowed for a balance between capturing detail in
the data and preventing overfitting, improving model precision without sacrificing
generalization ability.

In addition, periodic tests were conducted to continually evaluate and improve the
effectiveness of AI systems, playing a crucial role in adapting these systems to the changing
dynamics of cyber threats. These tests helped identify areas for improvement and make
necessary adjustments to the AI models to maintain their relevance and effectiveness,
for example:

• Regular system evaluations demonstrated that AI could adapt to new malicious
behavior, as reflected in the progressively decreasing incident response time. Initially,
the average response time was 6 s. Then, after regular testing and adjustments, this
time was reduced to 3 s, highlighting the agility of the AI system in quickly responding
to threats.

• The continuous review of AI performance against simulated threats allowed models
to be adjusted to improve detection and response, ensuring that the system reacted
efficiently to known threats and could anticipate and neutralize new attack tactics.

These results highlight the effectiveness of AI systems in threat detection and response
times and show their ability to adapt and continually improve through an iterative testing
and optimization process.

4.6. Study Cases

In the first case, we addressed the growing ransomware problem in energy control
systems. Ransomware infiltration could cripple a power grid, causing not only significant
economic losses but also impacting public safety. We implemented an AI-based system
that uses deep learning techniques to monitor network operations in real time, identifying
patterns of activity that suggest ransomware attack attempts. This AI system demonstrated
an exceptional ability to detect and neutralize ransomware threats in the early stages,
achieving a detection rate of 98%. This high level of precision in detection allowed for
proactive responses to be implemented, minimizing the operational impact and maintaining
the continuity of the energy service.

The second case focused on ICSs, which are essential for energy facilities’ safe and
efficient operation. Attacks on these systems can have devastating consequences. We used
AI algorithms to analyze behavioral patterns and operational data, distinguishing between
normal operations and suspicious or malicious activities. The results were remarkable,
with a 90% reduction in undetected security incidents compared to traditional methods.
Additionally, the AI system optimized incident response times, moving from a process that
could take hours to real-time solutions, significantly improving operational resilience.

The third case examined how AI has been applied for predictive analytics in the
power distribution network, focusing on predicting and mitigating disruptions before
they occur. Through the collection and analysis of large volumes of operational data, AI
models were able to identify patterns that indicated potential failures or cyber-attacks—
implementing this predictive analysis system significantly improved outage prevention,
with a failure prediction precision of 95%. This proactive approach allows energy companies
to take corrective action before problems can escalate, ensuring more stable and secure
power delivery.

4.6.1. Quantitative Analysis

Improved Ransomware Detection (Case Study 1): We used deep learning models
trained with historical data from known attacks and normal network behaviors. The
ransomware detection rate increased to 98% after implementing these solutions, compared
to 75% with older methods. This was achieved by optimizing algorithms to recognize
specific ransomware patterns and adjusting characteristics such as the learning rate and
the number of layers in the neural networks.
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Reduction in Safety Incidents in ICSs (Case Study 2): We implemented anomaly-
detection systems that constantly analyze the operational data of the ICSs to identify
deviations from the norm. The effectiveness of these systems was evaluated in controlled
tests, showing a 90% reduction in undetected incidents. This is attributed to the ability of
AI systems to learn from past events and adapt to new attack tactics.

Efficiency in Predictive Analysis (Case Study 3): For predictive analysis in the power
distribution network, algorithms that process large volumes of operational data were
implemented to identify predictive patterns of failures or attacks. Failure prediction
precision reached 95%, enabling preventive actions that reduced outages by 70%. This was
achieved by calibrating predictive models that analyze trends and correlations in the data.

4.6.2. Detailed Qualitative Analysis

Confidence in Power System Security: Implementing AI technologies has reinforced
confidence in the security of power systems. The ability to proactively detect and respond to
threats allows operators to focus more on efficiency and innovation. A qualitative analysis
of the attitudes and perceptions of operational staff was carried out, showing a significant
improvement in confidence in the system’s security after the implementation of AI.

Improved Operational Stability: The ability to respond quickly to incidents has re-
duced the time and resources required to recover from attacks or failures. This was evalu-
ated by comparing downtime and associated costs before and after the implementation of
AI solutions, showing a notable improvement in operational stability.

Efficient Resource Management: Predictive analysis has allowed for more efficient
resource management. By anticipating potential problems, companies can plan and allocate
resources more effectively. An analysis of security investment showed that implementing
AI led to a more strategic allocation of funds, improving overall profitability.

5. Discussion

The results obtained, which are supported by specific case studies and quantitative
and qualitative analyses, illustrate the effectiveness and potential impact of AI solutions
in improving energy resilience and security. The methods detail how AI technologies
were selected and configured to address specific challenges in energy infrastructure. The
implementation methodology was designed considering the peculiarities of the sector,
such as precision in detection and response capacity. As demonstrated in our case studies,
adapting these systems to the specific needs of critical energy infrastructure reflects a
meticulous approach that seeks to apply advanced technology and ensures its relevance
and effectiveness in the operational context.

The case studies presented in the results provide a practical view of AI’s application.
For example, proactive ransomware detection and improved ICS security demonstrate how
AI can identify and mitigate threats before they become significant incidents [45]. These
cases validate the technical capability of AI systems and highlight their operational value,
delivering tangible improvements in the safety and efficiency of energy operations.

The quantitative analysis revealed significant improvements in security metrics, such
as increased threat detection rates and reduced incident response time. These results
not only corroborate the effectiveness of AI solutions but also establish a direct link with
the applied methodologies, reinforcing the validity of our approach. For example, the
improvement in the threat detection rate from 75% to 98% in the context of ransomware
attacks evidences an improved ability to protect critical power assets.

From a qualitative perspective, implementing AI has substantially impacted cyber-
security management in energy infrastructure. The ability to anticipate and respond to
complex threats has led to greater confidence in the stability and security of the energy
system. Additionally, automation and rapid incident response facilitated by AI systems
have enabled more efficient resource management, thereby optimizing operations and
resource allocation.
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Data reliability and security discussions highlight a critical consideration in AI imple-
mentation. Data integrity is vital to the effective functioning of AI systems, so protection
measures and data security protocols become essential aspects of AI infrastructure [46].
This is reflected in our attention to data quality and security during the preprocessing
phase, which ensures that AI systems operate at maximum efficiency and reliability.

Works such as Balaji and Narayanan [30] support the effectiveness of AI solutions
in improving energy infrastructure security. They found that using advanced machine
learning techniques significantly improved cyber-attack detection in the energy sector, with
detection rates increasing up to 90% in test scenarios. This finding is consistent with our
results, where the implementation of AI models increased the ransomware detection rate
to 98%, highlighting the effectiveness of these systems in natural operating environments.

In the discussion of the security of ICSs, Ameri et al.’s [9] work provides a valuable
analysis of how AI-based defense strategies can mitigate risks in critical infrastructures. It
matches our findings, showing a 90% reduction in undetected security incidents at ICSs,
underscoring the ability of AI systems to identify and neutralize threats efficiently.

The discussion should also address data management and reliability, as discussed in
research by Kumari et al. [47], emphasizing the need to ensure data security and integrity
in AI solutions. This aspect is crucial in our study, where preprocessing and data protec-
tion were essential to achieving optimal performance of AI systems, demonstrating the
importance of data quality in the effectiveness of threat detection and response.

The qualitative impact of AI on the operability and management of energy infras-
tructure is reflected in our discussion of improving trust in system security, which is an
observation supported by the research of Al-Muntaser et al. [48]. In their study, imple-
menting AI solutions led to greater operational efficiency and better strategic decision
making, which aligns with our observation that AI facilitated more efficient management
and strategic resource allocation in the energy sector.

The work of Alzahrani and Aldhyani [5] discusses the need for continuous adaptation
and development in AI technologies. They argue that the changing landscape of cyber
threats demands the constant evolution of AI solutions. This point resonates with the
conclusion of our study, which highlights the importance of continuous innovation and
adaptive learning in AI systems to remain effective in the face of emerging threats in critical
energy infrastructure.

The results of this study suggest a vast potential for future explorations and innovative
developments regarding the future of AI in energy infrastructure. The continued evolution
of cyber threats requires a dynamic and adaptive approach, where AI needs to keep up
with current trends and anticipate and prepare for future challenges. This involves a
continued commitment to research and development and effective collaboration between
the technology, energy, and cybersecurity sectors.

6. Conclusions

This study has shown that integrating AI into the cybersecurity of critical energy
infrastructure offers significant improvements in detecting and responding to cyber threats.
Advanced AI technologies, such as deep learning and predictive analytics, have achieved
a 98% threat detection rate and a reduction in incident response time of more than 70%.
These results reflect AI’s ability to process and analyze large volumes of data effectively
and underline its potential to act proactively against cyber threats, thereby ensuring the
resilience and stability of critical energy infrastructure.

The practical application of AI in the energy sector, illustrated through specific case
studies, has enabled a deeper understanding of the operational dynamics and specific
threats facing this sector. Customized AI systems have been proven capable of adapting
to the complexities of the energy environment, providing more accurate and efficient
security solutions. This approach improves cybersecurity and facilitates more effective
resource management, improving operational efficiency and strategic decision making in
energy infrastructure.
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The findings of this study underscore the critical importance of adopting advanced
technological approaches in cybersecurity within key energy infrastructures. Integrating AI
solutions improves the ability to respond to cyber incidents. It establishes a new paradigm
in security management, where prevention, detection, and rapid response become inte-
grated components of daily operations.

It is evident that the field of AI in cybersecurity within energy infrastructure will
continue to evolve, driven by technological advances and the changing dynamics of cyber
threats. Future research should explore more advanced AI algorithms and adaptive learning
systems that can anticipate and evolve in response to cyber attackers’ changing strategies.
Additionally, integrating AI with other emerging technologies, such as blockchain for data
security and quantum computing for data analytics, could offer new avenues to strengthen
energy infrastructure security.

Addressing the challenges associated with ethics and privacy when implementing
AI in cybersecurity is crucial. Future research should consider how AI systems can be
designed and regulated to protect the privacy and rights of individuals and organizations
while maintaining a robust security posture. Interdisciplinary collaborations between AI,
cybersecurity, law, and ethics experts will be essential to developing effective and ethically
responsible solutions.
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