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Abstract: A smart contract is a digital contract on a blockchain. Through smart contracts, transactions
between parties are possible without a third party on the blockchain network. However, there are
malicious contracts, such as greedy contracts, which can cause enormous damage to users and
blockchain networks. Therefore, countermeasures against this problem are required. In this work, we
propose a greedy contract detection system based on deep learning. The detection model is trained
through the frequency of opcodes in the smart contract. Additionally, we implement Gredeeptector,
a lightweight model for deployment on the IoT. We identify important instructions for detection
through explainable artificial intelligence (XAI). After that, we train the Greedeeptector through
only important instructions. Therefore, Greedeeptector is a computationally and memory-efficient
detection model for the IoT. Through our approach, we achieve a high detection accuracy of 92.3%.
In addition, the file size of the lightweight model is reduced by 41.5% compared to the base model
and there is little loss of accuracy.

Keywords: smart contract; greedy contract detection; deep learning; explainable artificial intelligence;
lightweight

1. Introduction

Blockchain has recently been used in various fields [1–3]. The reason why blockchain
can be used in such a variety of fields is because of smart contracts. A smart contract is a
digital contract based on blockchain. Smart contracts allow parties to conclude contracts
without the involvement of a third party. However, as a result of analyzing some smart
contracts deployed on Ethereum, it was confirmed that greedy contracts are included [4].
A greed contract locks the Ether indefinitely so that it cannot be withdrawn within the
contract. Therefore, executing a greedy contract causes enormous damage. There can be
events in which the parity multisig wallet is frozen. Due to a code flaw discovered in
the multisig wallet library smart contract, approximately 510,000 Ether users were locked
indefinitely. Since these problems pose a very critical threat to the blockchain network, they
must be prevented.

To prevent this problem, methodologies are needed to prevent malicious activity. There
are two main ways to detect malicious activity: malicious node detection and malicious
smart contract detection. Among the latter, various malicious smart contract detection
models have been proposed [5–7] to detect malicious smart contracts. Most deep-learning-
based methods detect malicious smart contracts by learning the features of smart contracts.
In addition, research has been conducted to image smart contracts and train them to
implement a detection model [8].

However, since the transaction speed is directly related to the scalability of the
blockchain, the transaction speed in the blockchain must also be considered. If detection
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takes too much time, it incurs computational and memory overhead. However, existing
deep-learning-based detection models are designed only to increase accuracy. Therefore,
existing deep learning detection models may cause computational and memory over-
head. Moreover, a lot of research on IoT blockchain has been conducted recently [9–11].
Therefore, a lightweight detection model as well as a detection rate is essential. In other
words, a lightweight deep learning detection model that does not reduce the scalability of
blockchain is needed.

In this paper, through XAI, we identify important instructions when deep learning
detects greedy contracts. We propose a Greedeeptector trained through important instruc-
tions. Greedeeptector is a lightweight detection model for the Internet of Things (IoT).
Greedeeptector identifies greedy contracts in a computationally and memory-efficient
manner without compromising the scalability of the blockchain or detection accuracy.
The efficiency of speed and memory is very important for low-end devices, such as IoT
devices. Also, in terms of blockchain scalability, the lower the computational and memory
usage, the higher the scalability.

1.1. Contribution
1.1.1. In-Depth Analysis of Greedy Contract Instruction Using Explainable
Artificial Intelligence

Through integrated gradient and gradient SHAP, instructions that affect the prediction
of the model are identified. We select several important instructions for benign and greedy
smart contracts, and we analyze them in depth. In addition, we analyze which instructions
have important characteristics and are frequently used in greedy contracts.

1.1.2. Implementation of a Lightweight Neural Network Based on Important Instructions

Important instructions extracted through XAI have fewer data dimensions. We implement
a lightweight model using these important instructions for the training process. The lightweight
model is about 50% lighter than the previous model. In addition, the lightweight model shows
little loss of accuracy.

1.1.3. Improving the Stability of Blockchain Networks through Detection When
Executing Contracts

Unlike previous work, our work performs greedy contract detection when the smart
contract is executed. That is, detection can be performed not only for newly deployed smart
contracts but also for already deployed smart contracts. Thus, it improves the stability of
the blockchain network.

The remainder of this paper is organized as follows: In Section 2, related technologies,
such as artificial neural networks, smart contracts, and previous work, are presented. In
Section 3, the proposed method to detect greedy contracts is introduced. In Section 4,
a comparison between the default model and the lightweight model and an in-depth
analysis of the contract’s instructions are described. Finally, Section 5 concludes the paper.

2. Related Works
2.1. Artificial Neural Networks

An artificial neural network [12] refers to a computer-implemented structure of the
neurons in the human brain. Deep learning performs learning by stacking multiple layers
of artificial neural networks and consists of an input layer, a hidden layer, and an output
layer. The input layer refers to the layer that receives the data to be learned. The hidden
layer calculates the weight, and the final result is output through the output layer. Unlike
machine learning, deep learning extracts and learns features from data by itself. Due to
these characteristics, deep learning is used in various fields, such as computer vision, speech
recognition, natural language processing, and signal processing. Multi-layer perceptron
(MLP) and convolutional neural networks (CNN) [13] are representative deep learning
models and are mainly used for classification problems. In addition, recurrent neural
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networks (RNNs) [14], which are good for training time-series data, and generative neural
networks, such as generative adversarial networks (GANs) [15], also exist.

2.2. Lightweight Deep Learning

Lightweight deep learning is deep learning that reduces the size of the model and
reduces computational complexity while maintaining the performance of models with deep
and complex layers [16]. If a non-lightweight deep learning model is used in a low-end
IoT device, memory overhead may occur in the process of loading numerous parameters.
Therefore, such lightweight deep learning is essential for low-end IoT devices with limited
computing resources, such as mobile environments, autonomous vehicles, and robots. We
utilize XAI to implement lightweight models.

2.3. Explainable Artificial Intelligence (XAI)

Artificial intelligence is a black-box model and inside the model learns complex
relationships and characteristics about data. Therefore, it is not clear what the reasons and
grounds for decisions made by AI models are. However, in fields where important decisions
must be made, such as medicine, finance, and law, a clear basis for the AI output may be
required. XAI [17] is a technology created to solve these problems. XAI is a technology that
provides the reasons and rationale for decisions made by deep learning models. XAI can
increase the reliability of deep learning technology and has the advantage of facilitating
debugging to achieve the result requiired [18]. In addition, by improving understanding
of the training result, it can be developed into a better model. XAI can determine which
features are needed for prediction. That is, it is possible to learn a deep learning model
with necessary features only, excluding unnecessary features. In this way, the deep learning
model can be optimized and a lightweight model can be implemented. Therefore, XAI is
useful for implementing efficient and lightweight models. We used Captum [19] to apply
various algorithms. Captum is a unified, open-source model interpretability library for
PyTorch. There are several methods of XAI (e.g., integrated gradients and gradient SHAP).
We utilize these two algorithms to implement a lightweight deep learning model.

Integrated gradients (IG) [20] is an XAI algorithm that calculates the importance of
each feature by accumulating and multiplying the gradient information and the difference
between the input and baseline. Since IG calculates the importance of each feature locally,
it does not have a global interpretation function. IG satisfies the sensitivity and implemen-
tation invariance conditions. The sensitivity condition states that, if the difference between
the baseline and the input is only one feature, the model should have non-zero attribution if
it makes different predictions for the two inputs. The implementation invariance condition
is a condition that when different models predict the same for the same input, the two
models must have a constant attribution for the same input. IG has the advantage of being
simple to implement and can be applied to various datasets, such as text and images.

Gradient SHAP [21] is an XAI algorithm that approximates Shapley values through
gradients. The Shapley value quantifies the contribution of each player participating in the
game based on game theory. In other words, the Shapley value represents the contribution
of a specific player when they cooperate with all other players. Recently, it has mainly
been used to interpret deep learning models. This allows us to interpret how the features
contribute to the output. The Shapley value is useful for feature analysis because it can
be analyzed both locally and globally. In addition, the Shapley value has the advantage
of high accuracy by considering the interaction between inputs. However, it also has
the disadvantage that the computation increases exponentially as the number of features
increases. To overcome this shortcoming, Gradient SHAP calculates the Shapley values
through gradients.

2.4. Blockchain

Blockchain is a peer-to-peer distributed ledger network in which all network partici-
pants share the same ledger [22]. All transaction data in the network are included in blocks,
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and the blocks are linked to each other in a chain form. Blockchain is a decentralized
method in which nodes in the network each own a ledger, rather than a method in which
a central server manages data. Therefore, as the nodes in the network directly verify the
transaction, the transaction is performed without a third party and does not require a
server. If hackers want to manipulate data, they must manipulate the blockchains of the
majority nodes in the network. However, since this is virtually impossible, the integrity of
the transaction is guaranteed. Due to these advantages, blockchain is used in various fields,
such as digital asset transactions and medical care.

2.5. Smart Contract

A smart contract is a digital contract based on blockchain [23]. In the past, contracts
were made in writing, but smart contracts are implemented through code. Smart contracts
are automatically executed only when certain conditions are met. Therefore, the decen-
tralization pursued by the blockchain is realized by the two parties signing a contract
through a smart contract without the involvement of a third-party certification authority.
Smart contracts can be written in a variety of high-level programming languages, but
are typically written in the Solidity language. Code written in a high-level programming
language is converted to Ethereum bytecode through a compiler and is then deployed on
the blockchain.The Ethereum bytecode consists of an opcode and a value. An opcode rep-
resents an instruction to be executed by a computer, and there are currently 140 opcodes in
Ethereum. The deployed smart contract is executed through the Ethereum virtual machine
(EVM). EVM provides an execution environment for smart contracts and executes smart
contracts in the form of a bytecode. In addition, in order to execute a smart contract, it is
necessary to have a certain amount of gas, which is used as a fee for the transaction. This is
the cryptocurrency paid to miners as the computational cost of smart contract execution.

Once deployed, the smart contract cannot be deleted and its code cannot be modified.
This is because smart contracts are deployed on a blockchain that has immutability charac-
teristics. Information stored on the blockchain is permanently maintained and cannot be
modified. In other words, even if errors or security vulnerabilities are found in the smart
contract code, they cannot be corrected, which can cause big problems.

2.6. Greedy Contract

A greedy contract [4] is a smart contract that can reach a state where it locks indefinitely
so that the Ether cannot be withdrawn. A greedy contract can receive the Ether. However,
since there is no instruction to process the received Ether or the instruction cannot be
reached, the Ether is locked in the contract forever. Therefore, the Ether sent to the greedy
contract cannot be recovered even by the node that deployed the contract. Executing a
greedy contract can cause enormous damage.

2.7. Malicious Smart Contract Detection

ACSAC ’18 classified malicious smart contracts into three types: greedy, suicidal,
and prodigal contracts [4]. In addition, the authors implemented MAIAN, a tool that detects
malicious smart contracts through symbolic analysis. The MAIAN tool is the most represen-
tative smart contract detection tool. It detects bug-causing transactions by processing the
bytecode of smart contracts. In the symbolic analysis method, the symbolic execution is
started at the first instruction in the bytecode. Execution then proceeds sequentially until
the terminating instruction (e.g., STOP, RETURN) is found. If a function call occurs while
tracing an instruction sequence, it is searched considering the branch condition. If the
terminating instruction is not valid, it is backtracked in the depth-first search process to
try another path. Then, concrete validation is performed to verify the results of symbolic
analysis. For this, malicious contract candidates are executed on a fake Ethereum network
created through a private fork. In order to distinguish between the three types of malicious
contracts, the following procedures are performed: Ether check (prodigal), check if the



Electronics 2023, 12, 3893 5 of 15

contract can be killed (suicidal), instruction check (greedy), etc. If the contract is determined
to be malicious even after this process, MAIAN finally classifies the contract as malicious.

The MAIAN tool is developed in Python, and it can detect a smart contract in less than
10 s on average.

In [5], the authors proposed a system that detects malicious contracts after first detect-
ing malicious users. This is the latest work in the field of malicious smart contract detection.
In this system, if a user deploys a malicious smart contract, the user is classified as a mali-
cious node and can no longer deploy smart contracts. LSTM, GRU, and ANN were used as
models to detect malicious smart contracts. The AUCs of LSTM, GRU, and ANN achieved
0.99, 0.99, and 0.97, respectively. In the scenario considered, detection is performed before
deploying smart contracts, so detection is not possible for smart contracts that have already
been deployed.

In [6], SmartCheck, which analyzes XPath patterns by converting Solidity codes into
XML-based intermediate representations, was proposed. SmartCheck detects vulnerabili-
ties in smart contracts by analyzing the XPath. However, a weak smart contract without an
XPath pattern has a critical problem in that it is difficult to detect.

In [7], SNC ’21 proposed a model that analyzes the vulnerability of smart contracts
based on machine learning by introducing a shared child node. The model can predict
eight types of vulnerabilities including re-entrancy, arithmetic, access control, unchecked
low-level calls, bad randomness, front running, and denial of service. However, the model
is not stable because it does not secure enough malicious smart contracts.

3. Greedeeptector

For the well-known MAIAN tool, various detection methods have been proposed. In
previous work [5], the latest deep learning-based detection technique is described, which
can also detect malicious contracts, but the number of datasets used is very small. Therefore,
the reliability is not high, and it is difficult to state that it is robust. Also, the methods
cannot perform detection on already deployed smart contracts.

In this paper, we present a robust greedy contract detection system using lightweight
deep learning implemented through XAI. Our approach works both for contracts to be
deployed and contracts that have already been deployed. Therefore, the proposed method
can ensure the safe execution of smart contracts on the current Ethereum network. In
addition, we design a lightweight detection system that can operate efficiently on the
blockchain. Moreover, in this work, we evaluate and discuss our detection system. Our
work is applied to the blockchain network. That is, the deep learning model is run on
blockchain nodes (e.g., computers or low-end devices). Evaluation of the execution of the
actual blockchain network will be carried out in future work.

Figure 1 and Algorithm 1 show the mechanism of Greedeeptector. nodes on the
Ethereum network can obtain information about smart contracts and execute smart con-
tracts. Before executing a smart contract, each node runs Greedeeptector to detect
a greedy contract. For this, pre-processing is performed. As mentioned in line 2 of
Algorithm 1, the smart contract’s bytecodes are converted to opcodes (https://github.
com/daejunpark/evm-disassembler accessed on 11 September 2023). Then the frequency
for each opcode is counted. Finally, the opcode frequency of the target smart contract
is input into Greedeeptector. If the result (isGreedy) is 0, then the contract is executed
because it is a benign contract. Conversely, if it is a greedy contract, it is not executed.
Table 1 represents the key points of the proposed system.

https://github.com/daejunpark/evm-disassembler
https://github.com/daejunpark/evm-disassembler
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Greedeeptector

Node 1

Deployed
smart contract

Node 2

Node 𝑛

⋮

Blockchain Network

Benign or Greedy

Smart contract
Execute or Stop

Before smart contract is executed, 
Greedeeptector is executed.

Figure 1. Diagram of our Greedeeptector.

Algorithm 1 Greedeeptector mechanism

Require: Bytecode of smart contract (BSC), Extracted opcodes of smart contract (OPsc),
Frequency of opcodes (FOP), Deep learning model for greedy contract detection
(Greedeeptector)
Opcodes={00:STOP, ..., FF:SELFDESTRUCT} . Set up dictionary mapping opcodes to
bytecodes
for op in BSC do

if op in Opcodes then
OPsc.append(op) . Bytecode to opcode

end if
end for
Initialize FOP to zero
for op in OPsc do

FOP[op]←FOP[op]+1 . Calculate frequency of opcode
end for
isGreedy←Greedeeptector (FOP) . Greedy contract detection
if isGreedy == True then

Stop the smart contract
else

Execute the smart contract
end if

Table 1. Key points of the proposed system.

Key Points Descriptions

Greedy contracts Greedy contracts have potential risk (e.g., Ether
can be lost.).

Blockchain network Blockchain network can execute smart contract
(e.g., Ethereum, Bitcoin).

Explainable artificial intelligence Since it can interpret the results of training, it
can be used for lightweighting.

Lightweight deep learning It increases the scalability of blockchain and
can be applied to lightweight devices.

3.1. Base Model

In this section, we present the base model of Greedeeptector. Figure 2 shows a
diagram of the base model. First, the opcodes are extracted from the smart contract.
The extracted opcodes are converted into an array representing the frequency of each
opcode. The frequencies for each opcode are input to the neural network, and the neural
network classifies greedy and benign contracts. If the target smart contract is classified as a
greedy contract, its execution is stopped.
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Extract
opcodes

Smart
contract

Neural Network

Benign
or

Greedy

Execute or Stop

Frequency of
opcodes

Figure 2. The diagram of the base model.

3.1.1. Pre-Processing

As explained earlier, the frequency of smart contract opcodes is required to detect
greedy contracts. Therefore, the frequency of the opcode must be extracted from the
bytecode of the smart contract through pre-processing. Figure 3 shows the pre-processing
process. A smart contract can be expressed as a bytecode composed of opcodes (instructions)
and values used for operation. We extract the opcodes among them. Then, a sequence
of opcodes used in the smart contract is generated. Since one opcode is 1 byte, a total
of 256 opcodes (00 to FF) can exist. However, Ethereum only provides 140 opcodes. So,
we generate an array of length 140 representing the opcode frequency. The index of the
frequency array means each opcode and the value means the frequency. That is, it contains
information about how many times each opcode is used in a smart contract. The generated
array of the opcode frequency is used as a dataset for greedy contract detection.

Figure 3. Converting bytecode to the frequency of opcodes in pre-processing.

3.1.2. Detection

The neural network is used to detect greedy contracts. Our proposed system is
designed to perform detection without compromising blockchain scalability. Due to the
large size of time-series models, like recurrent neural networks, we opted for a more
lightweight deep neural network. Figure 4 shows the structure of the deep learning
network used in our work. First, the opcode frequency data generated through the pre-
processing is input to the deep learning network. Each element of the frequency array is
assigned to one neuron of the input layer. That is, the number of neurons in the input layer
is equal to the number of opcodes in Ethereum. As a hidden layer, a fully connected layer
(linear layer) is used. Before passing to the output layer, it goes through a dropout layer
that discards random neurons to prevent overfitting. In the output layer, a value between
0 (benign) and 1 (greedy) is output as a predicted value for the data through the sigmoid
activation function. Equation (1) shows the formula for the sigmoid activation function.
Finally, the loss between the actual label and the predicted value is calculated through the
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binary cross-entropy loss function. Equation (2) represents the binary cross-entropy loss
formula. y hat means the continuous sigmoid function output value between 0 and 1, and y
means the discontinuous actual value. The neural network is updated to minimize the
loss. Through this training process, a neural network can distinguish greedy contracts from
benign contracts.

σ(x) = 1
1+e−x (1)

BCE(y, ŷ) = −(y log(ŷ) + (1− y) log(1− ŷ)) (2)

Figure 4. The structure of the base model.

Table 2 shows the hyperparameters of the base model. The hyperparameters of the base
model are chosen through experimentation to achieve the optimal performance. To the best
of our knowledge, these hyperparameters yield the maximum performance. The number
of input layers is 140 (the number of opcodes used). Also, to prevent overfitting, a dropout
value of 40% is used, and the epoch is set to 200.

Table 2. Hyperparameters of the base model.

Hyperparameters Descriptions

Epoch 200
Batch size 256

Units of the input layer 140
Dropout 0.4

Optimizer (learning rate) Adam (0.0001)

3.2. Lightweight Model Using XAI

We used XAI to design a computation and memory-efficient lightweight model.
Figure 5 shows the process of implementing a lightweight model using XAI. We imple-
mented the base model using the frequency of 140 opcodes. Subsequently, we computed
the IG and SHAP values of the base model. In Figure 5, the red color in the graph represents
the IG values, while the blue represents the SHAP values. Even though there are values for
all 140 opcodes, the graph only captures 17 of them. These values indicate the influence
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each feature of the input data has on the prediction; the larger their absolute value, the more
significant the feature becomes. Furthermore, a positive value suggests that the feature
contributes to the greedy contract, whereas a negative value implies a contribution to
the benign contract. Thus, we can identify opcodes that have a significant impact on the
classification between benign and greedy contracts.

Figure 5. Design of lightweight model; the red color in the graph represents the IG values, while the
blue represents the SHAP values.

The lightweight model uses only important opcodes among 140 opcodes. That is,
fewer than 140 opcodes can be used. This usually allows the construction of a simpler
model, since the number of input data features is reduced. As a result, the number of
neurons in the input layer is reduced and the parameters of the neural network are reduced.
Here, only opcodes that can reduce the parameters of the model as much as possible
without degrading the accuracy should be selected. So, we chose the top n opcodes on the
basis of experiment.

However, since a large number of data samples are used for training, some of them
may have outliers. If there are outliers, the IG and SHAP values of a specific sample
have a large effect on the average. Furthermore, the more positive the IG and SHAP
values, the higher the contribution to greedy contracts, whereas the more negative the
values indicates a higher contribution to benign contracts. The reliability is then reduced,
so outliers should be removed. We use the inter-quantile range (IQR) [24] to remove
outliers. In the inter-quartile range (IQR) approach, the dataset is segmented into quartiles,
with the 25th percentile denoted as Q1 and the 75th percentile as Q3. The lower bound
is established at Q1− 1.5 · IQR and the upper bound at Q3 + 1.5 · IQR. Any data points
falling outside this interval are deemed outliers. The constant multiplied by IQR is usually
1.5. In summary, after removing outliers, our lightweight model can reduce the number
of parameters while maintaining accuracy by learning only the top n opcodes from the
average IG and SHAP.

Table 3 shows the hyperparameters of the lightweight model designed via XAI. The hy-
perparameters of the lightweight model are chosen through experimentation to achieve
optimal performance. To the best of our knowledge, these hyperparameters yield the
maximum performance. In the lightweight model, the same epoch, batch size, dropout rate,
optimizer, and learning rate as the base model were used. In other words, the difference
in hyperparameters between the lightweight model and the base model is the number
of neurons in the input and hidden layers. In this work, the frequency of one opcode
is assigned to one neuron. In the lightweight model, the number of units in the input
layer is reduced because only the frequency for important opcodes is used as data (it is set
experimentally, see Section 4.3). That is, since the number of features of the input data (the
number of important opcodes) is reduced, the number of neurons in the model is reduced.
As a result, lightweight models can reduce file size and computational complexity.
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Table 3. Hyperparameters of the lightweight model.

Hyperparameters Descriptions

Epoch 200
Batch size 256

Units of the input layer 58
Dropout 0.4

Optimizer (learning rate) Adam (0.0001)

4. Experiments and Evaluation

For this experiment, we use Google Colaboratory Pro+, a cloud-based service with
Ubuntu 20.04.5 LTS and GPU (Tesla T4) 15GB RAM. Python 3.9.16 and PyTorch 2.0.0 are
used as the programming environment.

4.1. Dataset

In this experiment, the Google BigQuery dataset (https://cloud.google.com/blog/
products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics?hl=en
accessed on 11 September 2023) provided by Google is used. The Google BigQuery dataset
contains datasets for smart contracts deployed on Ethereum. A dataset of 14,716 benign
and greedy contracts is generated through MAIAN, a malicious smart contract detection
tool. The training dataset includes both benign contracts and greedy contracts. Additionally,
the test dataset also encompasses both benign and greedy contracts. The ratio of benign to
greedy contracts is set at 1:1.

4.2. Result for Base Model

Table 4 shows the performance of the base model using 140 Ethereum instructions.
The base model achieves an average test F1-score of 92.6%. The number of parameters of
the base model is 15,297.

Table 4. Performance of the base model.

Performance Metric Descriptions

Training F1-score 95.0%
Validation F1-score 92.3%

Test F1-score 92.6%
The number of parameters 15,297

4.3. Result for Lightweight Model

We use XAI to design a lightweight model that is computation- and memory-efficient.
The lightweight model consists of a process of extracting important opcodes, removing
outliers, and learning the frequency of important opcodes. In this section, we discuss the
implementation and performance of the lightweight model.

Extract the Important Instructions Using XAI

Before selecting important opcodes, we need to remove outliers in IG and SHAP.
This is because it improves the reliability of selecting important opcodes by reducing the
impact of specific data samples on average for IG and SHAP. Figure 6 is an example of
removing outliers using the IQR method described above. Most of the values are clustered
between −1 and 1, and there are a few outliers. As shown on the right side in Figure 6, we
successfully removed outliers.

https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics?hl=en
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics?hl=en
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Figure 6. An example of outlier removal using the IQR ; Before (left), After (right).

The important instructions are selected by calculating IG and SHAP for the base
model. The reason for considering both properties is to secure reliability. A total of 50
opcodes are selected from IG and SHAP to reduce the size of the model as much as possible
while maintaining accuracy. This is the optimal number of opcodes obtained as a result
of experimentation while reducing the number of instructions from 140 opcodes. Then,
duplicates are removed from the 50 opcodes selected from IG and SHAP, respectively. This
makes it possible to select important opcodes with both IG and SHAP.

However, the important opcodes are slightly different in each experiment. Therefore,
it is difficult to obtain stable performance when using important opcodes obtained through
one experiment. Therefore, we construct a lightweight model using instructions that
appeared more than k times (k = 5, 7, 10) out of 10 trials.

Table 5 shows the experimental results for each case. The experimental findings
indicate that the F1-score in Case1 achieved the best accuracy with 92.3%. In Case2 and
Case3, the performance was lower than Case1. This seems to be because some opcodes
that affect prediction are excluded.

Table 5. Comparison of performance according to the number of opcodes used (Case1, Case2, Case3
(k = 5, 7, 10, respectively)).

Case1Case1Case1 Case2Case2Case2 Case3Case3Case3

The number of opcodes 58 51 37
Training F1-score 0.93 0.92 0.90

Validation F1-score 0.92 0.92 0.90
Test F1-score 0.92 0.91 0.90

The number of
parameters 5855 4861 3167

As the number of opcodes used decreases, the number of neurons in the input layer of
the neural network decreases. Accordingly, the number of parameters in the entire model
is also reduced. Therefore, Case3 has the smallest number of parameters. However, Case3
is unsuitable for use because of the large loss of accuracy compared to the base model.
Therefore, we adopted Case1, which is lightweight with minimal loss of accuracy, as our
Lightweight Greedeeptector model.

Table 6 shows the performance of the lightweight model. As noted earlier, the lightweight
model has fewer parameters than the base model. Therefore, it is efficient in terms of computa-
tional complexity and memory usage. However, performance loss may occur. Nevertheless,
the accuracy of the lightweight model was 92.3% So, our lightweight model provides mem-
ory and computational efficiency without loss of performance. Therefore, our work has the
advantage of reducing computational and memory overhead in a blockchain network when
blockchain nodes perform greedy contract detection in a real scenario.
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Table 6. Performance of the lightweight model.

Performance Metric Descriptions

Training F1-score 92.6%
Validation F1-score 91.6%

Test F1-score 92.3%
The number of parameters 5855

4.4. Comparison between Base Model and Lightweight Model

In this section, we report various experiments undertaken to build a lightweight model.
We also compare the model size and detection accuracy of the base and lightweight models.

4.4.1. Performance

Table 7 shows a comparison between the base and lightweight model. The lightweight
model size is reduced by 41.5%, and the space complexity decreases as the model size
decreases. The parameter (weight of the model) is reduced by 61.8%, and the computational
complexity decreases as the model has fewer parameters. The model size is a very important
advantage in lightweight deep-learning models. A small-size model is equivalent to a deep-
learning model with fewer parameters. The fewer the parameters, the smaller the amount
of computation. Therefore, a small model size means low computational complexity. Thus,
when detecting greedy contracts on the blockchain, our implementation is memory and
computationally efficient. The accuracy of the base model and the lightweight model are
similar. However, since we reduced the size of the model by 41.5%, this small performance
loss is negligible.

Table 7. Comparison between base and lightweight model.

Model Model Size Parameters Speed F1-Score

Base 0.89 MB 15,297 0.015 ms 92.6%
Lightweight 0.53 MB 5855 0.013 ms 92.3%

In our scenario, our implementation is deployed on each node (IoT device) on the
blockchain (currently, it is a prototype.). The efficiency of speed and memory is very
important for low-end devices, such as IoT devices. In terms of blockchain scalability,
the lower the computational and memory usage, the higher the scalability. In other words,
our target node is a low-power node on the blockchain, so the small-size model is a
significant advantage on the blockchain.

4.4.2. Instruction Analysis

Tables 8 and 9 show a comparison of the top eight important opcodes for benign
and greedy contracts depending on the XAI algorithm. In IG and SHAP, it stands out
that instructions related to branching (JUMP, JUMPDEST, JUMPI) are important. JUMP
is an unconditional branch instruction, and JUMPI is a conditional branch instruction.
JUMPDEST means the branch destination address. The branch instructions related to the
benign contract are JUMP and JUMPDEST. Conversely, the branching instruction associated
with greedy contracts is JUMPI. JUMPI is a conditional branch instruction, and JUMP and
JUMPDEST are instructions that branch regardless of conditions. Due to greedy contract
characteristics, the greedy contract uses conditional branch instructions to bypass the ability
to process the Ether [4]. In fact, through our experiments, it is confirmed that the JUMPI
instruction is an important instruction—it is thought that the JUMPI instruction greatly
affects classification as a greedy contract. Conversely, in benign contracts, conditional
branch instructions are not an important characteristic.
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Table 8. Top 8 important opcodes in the benign contract.

Algorithm
Sorted by Values of IG and SHAP

1 2 3 4 5 6 7 8

IG JUMPDEST DUP1 SUB JUMP EQ PUSH4 REVERT SLT

SHAP DUP1 SUB JUMP JUMPDEST PUSH4 EQ MLOAD LT

Table 9. Top 8 important opcodes in the greedy contract.

Algorithm
Sorted by Values of IG and SHAP

1 2 3 4 5 6 7 8

IG JUMPI CALLVALUE SWAP1 SWAP2 STOP CALLDATASIZE AND ADDRESS

SHAP JUMPI PUSH2 CALLVALUE SWAP2 POP STOP SWAP1 CALLDATASIZE

4.5. Comparison with Existing Method

MAIAN detects prodigal, suicidal and greedy contracts. Its file size is very small. How-
ever, the disadvantage is that detection takes a long time.

The previous work represents the latest deep-learning-based approach. It categorizes
several types of malicious smart contracts into one class. Therefore, various malicious smart
contracts can be detected. However, the methods used do not work on blockchain networks
and are not valid for already deployed smart contracts. In other words, it is operable only
for newly deployed smart contracts. Therefore, it is not suitable for blockchain networks
where numerous malicious contracts have already been deployed. In addition, data from a
total of 781 contracts (650 benign contracts and 131 malicious contracts) only were used.
Therefore, it is considered that the reliability of the previous approach is not high. The
elements mentioned in Table 10 are the result of our implementation of the previous model
as it is.

Many models have been proposed in previous work, but we reproduce the model
with the highest performance. These values are then measured by the reproduced model.

Table 10. Comparison of smart contract detection methods.

Category MAIANMAIANMAIAN [4] Previous Work [5] This Work (LMLMLM)

Smart contracts Prodigal, suicidal,
greedy (3 classes) Malicious (2 classes) Greedy (2 classes)

Algorithm Symbolic analysis,
Concrete validation Deep learning Deep learning

Parameters - 54,018 5855
File size 0.232 MB 0.74 MB 0.53 MB
Speed Within 10 s Slower than ours 0.013 ms

Our method can classify greedy contracts and benign contracts. However, among the
malicious contracts that occur when using a dataset of about 80,000, the proportion of
greedy contracts is 93.4% (in the Google BigQuery dataset). Therefore, problems caused
by malicious smart contracts in the blockchain can be prevented just by detecting greedy
contracts. We increased the reliability and stability of the model by using a dataset 38 times
larger than in previous work. Our implementation only detects greedy contracts but has the
potential to prevent most malicious smart contracts. Our lightweight model is larger than
the MAIAN, but can detect contracts significantly faster. Compared to the previous work,
the file size and the number of parameters decreased by 28.4% and 89.2%, respectively.
Since our work has far fewer parameters, it is fast and memory efficient. These points
represent a great advantage for the blockchain network.

5. Conclusions

In this work, we identify and analyze opcodes that significantly impact the model in
order to implement a lightweight model. Additionally, based on this, we propose a compu-
tationally and memory-efficient lightweight detection model for the IoT. Unlike previous
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approaches that perform detection at the smart contract deployment phase, the proposed
system performs detection at the smart contract execution phase. Therefore, the proposed
system can perform the detection of already deployed smart contracts. As a result, the pro-
posed system improves the stability and scalability of blockchain networks.

As a summary of our experimental results, the file size of the lightweight model is
reduced by 41.5% compared to the base model. Thus, when our system is running on a
blockchain, it is a memory and computationally efficient system. Finally, despite being
lightweight, our system has a high detection accuracy of 92.3%.

We tried to detect not only greedy contracts but also various malicious smart contracts,
but it is not easy to collect malicious smart contract datasets other than greedy contracts.
Therefore, we implemented a model that detects only greedy contracts.

In future work, we plan to implement a model that can detect various malicious smart
contracts as well as greedy contracts. Additionally, the lightweight model is implemented
to target low-end devices. Therefore, we plan to make the model lighter by using not only
XAI but also knowledge distillation, quantization, and pruning methods. Afterwards, we
plan to conduct additional experiments by deploying the lightweight model on low-end
devices, such as Raspberry Pi.
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