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Abstract: Blockchain technology has generated an influx of transaction data and complex interactions,
posing significant challenges for traditional machine learning methods, which struggle to capture
high-dimensional patterns in transaction networks. In this paper, we present the disentangled
prototypical graph convolutional network (DP-GCN), an innovative approach to account classification
in Ethereum transaction records. Our method employs a unique disentanglement mechanism that
isolates relevant features, enhancing pattern recognition within the network. Additionally, we apply
prototyping to disentangled representations, to classify scam nodes robustly, despite extreme class
imbalances. We further employ a joint learning strategy, combining triplet loss and prototypical
loss with a gamma coefficient, achieving an effective balance between the two. Experiments on
real Ethereum data showcase the success of our approach, as the DP-GCN attained an F1 score
improvement of 32.54%p over the previous best-performing GCN model and an area under the ROC
curve (AUC) improvement of 4.28%p by incorporating our novel disentangled prototyping concept.
Our research highlights the importance of advanced techniques in detecting malicious activities
within large-scale real-world cryptocurrency transactions.

Keywords: scam detection; node classification; graph neural network; representation learning;
blockchain; cryptocurrency transaction network

1. Introduction

Blockchain technology has revolutionized the digital transaction landscape, offering
decentralized ledger systems that record transactions across multiple computers, to ensure
data integrity and transparency. Initially conceptualized for cryptocurrency transactions,
blockchain technology has seen rapid adoption across various industries, resulting in an
explosion of transaction data and complex interactions [1]. Challenges of efficiently pro-
cessing and analyzing the massive volume of data generated within blockchain networks
accompany this growth.

One such blockchain network is Ethereum, a platform allowing the creation of
customizable, self-executing contracts (smart contracts) and decentralized applications
(DApps). As Ethereum gains traction, the vast and intricate web of transactions between
accounts (nodes) becomes increasingly complex [2,3]. Ethereum accounts, either externally
owned or controlled by smart contract code, interact through transactions, forming a dy-
namic and complex network structure that constantly evolves with the execution of the
smart contracts.

The Ethereum transaction network poses unique challenges due to its sheer size and
intricate interactions. The network generates massive amounts of data from high transaction
volumes [4], with its ledger containing hundreds of millions of transactions. Extreme class
imbalance in the network makes it difficult to accurately identify malicious activities, as
certain classes, such as scam nodes, are underrepresented [4]. Traditional machine learning
techniques struggle to capture high-dimensional topological and transactional patterns [5].
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A concrete illustration of this challenge is shown in Figure 1. This figure visualizes the
Ethereum transaction graph, highlighting a suspicious transaction pattern. The transaction
sequence marked in red depicts a possible case of wash trading, in which an NFT is minted
and this is followed by a series of sales where the final sale that may be artificially inflated,
including a loop indicating potential wash trading. This example underscores the need for
advanced techniques capable of identifying subtle malicious activities within the complex
transaction network of Ethereum.

Figure 1. Ethereum transaction graph showcasing a suspicious transaction pattern, highlighted in
red, indicative of potential wash trading and an artificially inflated sale.

Understanding and addressing these challenges is crucial for ensuring Ethereum’s
security and integrity and for promoting trust and confidence in blockchain technology
adoption. In the context of extreme class imbalance and massive, noisy real-world graph
structures, there is a pressing need for advanced methods to model the Ethereum transac-
tion network, disentangle transaction features, and tackle account classification and fraud
detection challenges.

In this research, we introduce the disentangled prototypical graph convolutional
network (DP-GCN) for account classification in Ethereum transaction records. Our method
employs a novel approach, which we term disentangled prototyping, to enhance pattern
recognition in Ethereum transaction networks. The contributions of our work can be
summarized as follows:

• Disentangled Prototyping: We propose a new approach that uses disentangled proto-
typing to effectively recognize patterns in Ethereum transaction networks by isolating
relevant features and leveraging prototypical networks, to enhance account classification.

• Joint Learning: We incorporate a joint learning strategy that combines curriculum
learning, triplet loss, and prototypical loss with an adjustable gamma coefficient for
optimal performance.

• Empirical Success: Our method achieved significant improvements over existing
methods in experiments on real Ethereum transaction data, demonstrating its practical
effectiveness in analyzing large-scale cryptocurrency transactions.
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2. Related Works

The analysis of blockchain transaction graphs has received significant attention in
the literature, with various methods employed to achieve different objectives. Table 1
provides an overview of the relevant literature, detailing the approach, objective, method,
transaction network, and performance.

Earlier research explored graph traversing techniques for analyzing blockchain transac-
tion data. For instance, Lin et al. utilized a graph representation method that captures time-
dependent patterns in Ethereum transaction networks by encoding temporal information
into walk strategies [3]. This approach provides a robust representation of time-evolving
blockchain transaction graphs [6]. Similarly, Ofori-Boateng et al. employed a topological
analysis technique to detect anomalous transaction patterns in Ethereum and Ripple net-
works [5]. Their method highlights the importance of topological features in blockchain
anomaly detection. Further advancing the field, Bai et al. adopted temporal graphs to
capture dynamics in the Ethereum transaction network [6]. By incorporating temporal
information, their approach provides a comprehensive analysis of blockchain networks.

The use of graph embedding techniques has become increasingly prevalent in recent
research. Jin et al. combined a graph convolutional network (GCN) with hierarchical feature
augmentation (HFAug) to detect Ponzi schemes in blockchain networks [7]. Their approach
underscores the effectiveness of augmenting node features for improved performance
in graph-based anomaly detection. Expanding upon this idea, Liu et al. proposed a
feature augmentation-based graph neural network (FA-GNN) for account classification
in Ethereum transaction data [8]. Their method emphasizes the significance of feature
augmentation in achieving accurate blockchain account classification.

Meanwhile, Xia et al. introduced an ego-graph embedding approach coupled with a
skip-gram model for phishing detection [9]. Their method demonstrated enhanced pattern
recognition capabilities in blockchain transaction graphs. Building on the concept of graph
embedding, Huang et al. developed an edge heterogeneous graph convolutional network
(EH-GCN) for account classification in Ethereum transaction data [2]. Their approach
highlights the importance of modeling edge heterogeneity for accurate node classification
in blockchain networks. Lastly, Zhou et al. designed Ethident for de-anonymization across
multiple Ethereum transaction datasets [10]. Their method showcased the benefits of a
unified approach to de-anonymization across various types of transactions.

In this study, we propose a unique disentanglement and prototyping process, em-
ploying a custom loss function that enables the separation of transaction features into
interpretable and meaningful representations. By isolating distinct transactional behaviors
and interactions within the network, our method allows for the creation of accurate and
informative prototypes.

Table 1. Summary of approaches and methods for transaction graph modeling in cryptocurrency networks.

Approach Objective Method Transaction Network Performance

Traversing
Graph representation Temporal Walk Strategies [3] Ethereum AUC 0.9383

Anomaly Detection Clique Persistent Homology [5] Ethereum, Ripple Acc. 0.9540

Traversing
Embedding

Ponzi Scheme Detection GCN with HFAug [7] Ethereum Success rate 0.8405

Account Classification FA-GNN [8] Ethereum F1-Score 0.8880

Embedding

Phishing Detection Ego-Graph Embedding,
Skip-gram Model [9] Ethereum F1-Score 0.8199

Account Classification EH-GCN [2] Ethereum Acc. 0.8620

De-Anonymization Ethident [10]
ETH-Mining,

ETH-Exchange, ETH-Phish F1-Score 0.9798

Unlike the existing approaches, our method combines the power of unsupervised learn-
ing with a carefully designed loss function, which allows the model to capture non-trivial,
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high-level patterns in the transaction graphs. This process enhances the interpretability of
the embeddings, making it easier to discern relationships and anomalies within the data.

3. Proposed Method
3.1. Overview of the Proposed Method

Our proposed method, the disentangled prototypical graph convolutional network
(DPGCN), is a novel approach to detecting fraudulent transactions in cryptocurrency
transaction networks. It integrates disentangled representation learning and prototypical
networks within a graph convolutional framework, aiming to provide a robust and inter-
pretable mechanism for classifying nodes as either scam or benign. Figure 2 illustrates the
structure of the proposed DPGCN, showcasing the flow of information from the transaction
network to the disentangled prototypes.

Figure 2. Overview of the disentangled prototypical graph convolutional network (DPGCN) architecture.

The DPGCN model operates in three main stages: subgraph extraction, triplet sam-
pling of nodes, and learning disentangled prototypes. We utilize a graph convolutional
network (GCN) to learn node embeddings [11,12], which captures both transactional and
topological features from the Ethereum transaction network. Given a graph G = (V, E),
where V is the set of nodes and E is the set of edges, the GCN layer computes the embed-
dings for each node using the following equation:

H(l+1) = σ

(
∼
D
− 1

2 ∼
A
∼
D
− 1

2
H(l)W(l)

)
(1)

where H(l) is the node feature matrix at layer l,
∼
A is the adjacency matrix with added self

connections,
∼
D is the degree matrix of

∼
A, W(l) is the weight matrix at layer l, and σ is the

activation function. This formula allows the DPGCN model to capture complex patterns
within the transaction graph by aggregating information from neighboring nodes and
transforming the node features through multiple GCN layers.
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3.2. Disentangled Prototyping of a Transanction Network

The disentanglement mechanism within our disentangled prototypical graph convolu-
tional network (DPGCN) is achieved by employing a triplet loss function. Given an anchor
node a, a positive node p sharing similar characteristics with a, and a negative node n that
is dissimilar to a, the triplet loss function aims to ensure that the embeddings of similar
(same class) nodes are closer in the latent space than the embeddings of dissimilar nodes,
by at least a margin of α:

Ltriplet = max
(

0,
∥∥ea − ep

∥∥2
2 − ‖ea − en‖2

2 + α
)

(2)

where ea, ep, and en are the embeddings of the anchor, positive, and negative samples,
respectively, and α is the margin parameter.

Once the disentangled embeddings are learned, our next step is to prototype these
embeddings for the task of scam node detection. Prototyping involves learning a represen-
tative embedding for each class (i.e., scam or benign), which serves as a “prototype” in the
embedding space. The prototype Pc of class c is computed as the mean of the embeddings
of the samples in that class:

Pc =
1

Nc

Ne

∑
i=1

ei (3)

where ei is the embedding of the ith sample in class c and Nc is the number of samples in
class c.

To classify a node, we measure the distance between its embedding and the prototypes
of all classes, assigning it to the class with the closest prototype:

yi = arg min
c
‖ei − Pc‖2

2 (4)

where yi is the predicted class of node i.
During training, we minimize the prototypical loss:

Lproto =
1
N

N

∑
i=1
− log

 exp
(
−
∥∥ei − Py

∥∥2
2

)
K
∑

c=1
exp

(
−‖ei − Pc‖2

2

)
 (5)

where Lproto is the prototypical loss, N is the total number of samples, and K is the number
of classes.

To put the disentanglement and prototyping process into practice, we employed
Algorithm 1, which trained our DPGCN on the Ethereum transaction graph (ETG) with
disentangled embeddings. This algorithm utilized curriculum weighting to gradually shift
the emphasis between the triplet loss and the prototypical loss over the training epochs.

3.3. Joint Learning with Gamma Coefficient and Curriculum Learning

The overall loss of our model L is a linear combination of the prototypical loss Lproto
and the triplet loss Ltriplet. The coefficient γ is introduced to modulate the weight between
the two losses, where a higher γ emphasizes prototypical loss and a lower γ emphasizes
triplet loss:

L = γLproto + (1− γ)Ltriplet (6)

To smoothly transition the emphasis between the two losses, we adopted a sigmoidal
curriculum weighting scheme to adjust the weights at different training epochs:

w(t) =
1

1 + exp(−κ(t− τ))
(7)
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where w(t) is the curriculum weight at epoch t, κ is the sigmoid scaling factor, and τ is the
sigmoid shift parameter.

Algorithm 1: Disentangled Prototypical Graph Convolutional Network (DPGCN) Training

Training a DPGCN on the Ethereum transaction graph with disentangled embeddings, utilizing curriculum weighting to balance
emphasis between triplet and prototypical losses during the training epochs.
Input:
- ETG: Ethereum Transaction Graph
- transaction_features: Features for each transaction in ETG
- num_classes: Number of different classes (or types) of transactions
- num_epochs: Number of training epochs
- α: Margin for triplet loss
- γ_init: Initial value for dynamic gamma adjustment
- γ_final: Final value for dynamic gamma adjustment
- τ: Epoch threshold for aggressive γ adjustment
Output:
- dpgcn_model: Trained DPGCN model for disentangled embeddings
Initialization
1: function train_DPGCN(ETG, transaction_features, num_classes, num_epochs, α, γ_init, γ_final, τ)
2: Initialize DPGCN model parameters with disentangling mechanisms specific to transaction characteristics.
3: Initialize class_prototypes as zero vectors of embedding dimension.
Main Training Loop
4: for epoch = 1 to num_epochs do
Dynamic Gamma Adjustment
5: if epoch < τ then
6: γ = γ_init + (epoch/τ) * (0 − γ_init)
7: else
8: γ = 0 + ((epoch − τ)/(num_epochs − τ)) * (γ_final − 0)
9: end if
Disentangled Prototyping
10: embeddings = []
11: triplets = sample_triplets(ETG, transaction_features, num_classes)
12: for triplet in triplets do
13: anchor, positive, negative = triplet
14: //Compute disentangled embeddings for each node in triplet and extend embeddings list
15: embeddings.extend([DPGCN(node, transaction_features) for node in [anchor, positive, negative]])
16: end for
17: //Compute prototypes for each class by averaging embeddings
18: for c = 1 to num_classes do
19: class_members = get_transactions_of_class(ETG, c)
20: class_prototype[c] = average(embeddings[class_members])
21: end for
Loss Computation and Model Update
22: //Compute triplet loss
23: triplet_loss = compute_triplet_loss(embeddings, α)
24: //Compute prototypical loss
25: prototype_loss = compute_prototypical_loss(embeddings, class_prototypes)
26: //Total DPGCN loss
27: loss = ((1 − γ) * triplet_loss + (1 + γ) * prototype_loss)
28: Update DPGCN model parameters using backpropagation with the computed loss.
29: end for
30: return dpgcn_model

The sigmoidally weighted triplet loss Ltriplet and prototypical loss Lproto are defined
as below, respectively:

Lw
triplet = w(t)Ltriplet (8)
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Lw
proto = (1− w(t))Lproto (9)

The curriculum weight w(t) dynamically determines the contribution of each loss
to the overall training objective. The gamma coefficient γ serves as a hyperparameter
that regulates the balance between the two loss components, where a higher value γ
corresponds to greater emphasis on prototypical loss, and vice versa.

Algorithm 2 illustrates the process of detecting potentially fraudulent transactions in
an Ethereum transaction graph (ETG) using disentangled embeddings from the trained
DPGCN model. By comparing transaction embeddings to class prototypes, the algorithm
classifies each transaction as a scam or benign.

Algorithm 2: Transaction Scam Detection using Disentangled Prototypical Graph Convolutional Network

Algorithm 2 outlines the process of detecting potentially fraudulent transactions in the Ethereum transaction graph using
disentangled embeddings from DPGCN. By comparing transaction embeddings to class prototypes, the algorithm classifies each
transaction as scam or benign.
Input:
- ETG: Ethereum Transaction Graph
- transaction_features: Features for each transaction in ETG
- dpgcn_model: Pre-trained Disentangled Prototypical Graph Convolutional Network model
Output:
- scam_labels: Predicted scam/benign labels for transactions in ETG
1: function ScamDetection(ETG, transaction_features, dpgcn_model)
2: //Obtain disentangled embeddings for all transactions
3: embeddings = dpgcn_model.get_embeddings(ETG, transaction_features)
4: //Calculate class prototypes
5: class_prototypes = dpgcn_model.compute_class_prototypes(embeddings)
6: scam_labels = []
7: for each transaction in ETG do
8: //Derive its disentangled embedding
9: transaction_embedding = embeddings[transaction]
10: //Determine its class by the nearest prototype
11: nearest_class = find_nearest_prototype(transaction_embedding, class_prototypes)
12: if nearest_class is scam:
13: scam_labels.append(‘scam’)
14: else:
15: scam_labels.append(‘benign’)
16: end if
17: end for
18: return scam_labels
19: end function

4. Experimental Results
4.1. Dataset and Preprocessing

We conducted our experiments on the Ethereum transaction history, focusing on a
large connected component of the transaction graph. The dataset utilized in this study
was obtained from the research conducted by Chen et al. [13], which offered an in-depth
description of the data collection and preprocessing techniques. This connected component
was extracted through initiating random walks from 1165 source nodes, resulting in a
subgraph that encompassed 2,973,382 nodes and 13,551,214 edges. Among these nodes,
1157 were labeled as phishing nodes.

In the context of this study, when we refer to the graph size, we are specifically alluding
to the number of nodes in the graph. While both the node and edge counts provide vital
insights into the structure and characteristics of a graph, we chose the number of nodes to
represent the graph’s size for clarity and simplicity.
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The average degree of a node provides another essential metric. This signifies the av-
erage number of edges connected to a node in a graph. For a directed graph with |V| nodes
and |E| edges, the average degree D can be mathematically expressed as D = |E|

|V| . Within
our Ethereum transaction dataset, this metric offers insight into the average transactional
connectivity of an entity in the network.

To ensure a comprehensive and consistent evaluation of our models, we selected the
largest connected component of the transaction graph. We deliberately excluded other
connected components, to mitigate potential biases that could arise from analyzing smaller,
disconnected transaction patterns. The expansive nature of this component allows it to aptly
capture the intricate relationships embedded within the Ethereum transaction network.

To establish experimental samples, we embarked on random walks, starting each from
a unique node, with the aim of generating subgraphs of varying sizes. For this research, we
zeroed in on subgraphs encompassing 30,000, 40,000, and 50,000 nodes, aligning with the
comparative methods adopted. Such a methodological approach facilitated an exploration
into the performance of our proposed model against a backdrop of diverse graph sizes,
each reflecting differing complexity levels of the Ethereum transaction history. Table 2
offers a summarized view of our dataset specifications and the subgraph sizes we engaged
in our experiments.

Table 2. Specifications of the Ethereum transaction dataset used in the experiments, detailing the
dataset collection period and graph sizes.

# Nodes (Scam) # Edges Average Degree

Ethereum transaction history (7 August 2015–19 January 2019)
2,973,382 (1165) 13,551,214 9.1147

Subgraph [13]
30,000 (113) 774,379 51.6252
40,000 (134) 994,410 49.7205
50,000 (172) 1,388,156 55.5262

4.2. Implementation Details and Evaluation Metrics

For the implementation of our experiments, we used the Python deep learning li-
brary PyTorch (version 2.0.1) in conjunction with the graph deep learning library Spektral
(version 1.3.0), TensorFlow-gpu (version 2.9.0), and Scikit-learn (version 1.3.0) for preprocessing
and evaluation purposes. We conducted our experiments on NVIDIA Tesla V100 GPUs.

For the node features, we opted to use an identity matrix, due to the lack of available
node data other than class labels. Edge features, however, were constructed using the
transaction amount and timestamp associated with each transaction.

As for the hyperparameters, we set the margin parameter α for the triplet loss to 0.2.
The embedding vector used for calculating the prototypes was set to a dimension of 16. To
ensure a robust evaluation, all experiments were conducted with 5-fold cross-validation,
with 20% of the data reserved for testing in each fold. In each experiment, the number of
triplets was fixed at 2000. Given the high class imbalance in our dataset, we used precision,
recall, and F1 score as the primary evaluation metrics.

Considering the significant class imbalance inherent in our dataset, we anchored our
evaluation around precision, recall, and the F1 score. It is pertinent to highlight that the
F1 score serves as the harmonic mean of the precision and recall, acting as a balanced
metric between the two, particularly in scenarios with an imbalanced class distribution.
The formula for the F1 score is given by F1 = 2×precision×recall

precision+recall .
AUC offers insight into the classifier’s ability to discern between the classes, indicating

the probability that a randomly selected positive instance is ranked higher than a randomly
selected negative one. This metric becomes especially invaluable when dealing with
imbalanced datasets.
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4.3. Performance Comparison

Table 3 presents a comparison of precision, recall, and F1 scores for different graph
sizes (30,000, 40,000, and 50,000). We compared our proposed DPGCN method with Deep
Walk, Node2Vec, and LINE for graph traversing and embedding, as well as GNN, GAT,
and GCN. Additionally, we assessed variants of our proposed method, such as DPGCN
w/o prototyping and DPGCN w/o disentanglement.

Table 3. Precision, recall, and F1 score comparison of the different methods for graphs of sizes 30,000,
40,000, and 50,000.

Model
Graph Size = 30,000 Graph Size = 40,000 Graph Size = 50,000

Precision Recall F1 Precision Recall F1 Precision Recall F1

Graph traversing/embedding
Deep Walk [14] 0.1251 0.7108 0.2049 0.1453 0.5754 0.2227 0.1575 0.5945 0.2426
Node2Vec [15] 0.1094 0.6956 0.1832 0.1424 0.6689 0.2267 0.1554 0.6475 0.2426

LINE [16] 0.1409 0.5352 0.2163 0.1332 0.5597 0.2087 0.1726 0.5222 0.2538

Comparatives
GNN 0.8447 0.5536 0.5658 0.6382 0.6267 0.6117 0.6458 0.6284 0.6079
GAT 0.8483 0.5662 0.5818 0.6629 0.6485 0.6381 0.6717 0.6392 0.6338

GCN [2] 0.8748 0.5714 0.5949 0.6419 0.6520 0.6466 0.6494 0.6449 0.6471

Ours
DPGCN 0.9637 0.8898 0.9203 0.9666 0.8958 0.9250 0.9394 0.9410 0.9402

w/o prototyping 0.9060 0.5984 0.6384 0.9022 0.6028 0.6433 0.8825 0.6073 0.6535
w/o disentanglement 0.9168 0.6712 0.7293 0.9037 0.6753 0.7339 0.6882 0.9004 0.7801

Several state-of-the-art graph embedding and traversing methods served as bench-
marks in our comparative analysis against DPGCN. Deep Walk [14] is a popular approach
that generates embeddings by simulating random walks across a graph, allowing a deep
representation of vertex sequences. Node2Vec [15], an extension of Deep Walk, provides
a more flexible and generalized random walk, offering enhanced node homophily and
structural equivalence. LINE [15], on the other hand, focuses on large-scale informa-
tion network embeddings, striving to preserve both local and global network structures.
On the graph neural network (GNN) front, GAT and GCN [2] stand out as prominent
models. GAT introduces attention mechanisms, enabling nodes to weigh their neighbors’
features, while GCN focuses on creating a layered propagation model to effectively repre-
sent graph-structured data. Our proposed DPGCN aims to advance beyond these methods
by introducing disentangled prototyping, enabling refined embeddings, particularly for a
Ethereum transaction graph.

From Table 3, several insights can be drawn. First, the overall performance improved
as the graph size increased, with the highest performance achieved when the graph size
was 50,000. This was likely due to the extremely sparse and class-imbalanced nature of
the dataset. Furthermore, the graph-traversing or embedding methods such as Deep Walk,
Node2Vec, and LINE exhibited relatively low performance, likely due to their inability to
effectively model edge information (transaction amount and timestamp), which is crucial in
this dataset. In contrast, the graph neural networks such as GNN, GAT, and GCN displayed
significantly better performance, as they effectively model edge information.

The proposed DPGCN model, along with its variants (DPGCN w/o prototyping and
DPGCN w/o disentanglement), consistently achieved the highest F1 scores across all graph
sizes compared to the conventional GCN and other methods. Specifically, our method
experimentally demonstrated the validity of the disentangled prototyping strategy for this
problem, achieving a maximum F1 score of 0.9402, in comparison to the GCN method,
which scored 0.6471 F1. This result highlights the effectiveness of disentangled prototyping
in classifying transactions in the Ethereum transaction graph.
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4.4. Effects of Disentangled Prototyping

To further investigate the effectiveness of our disentangled prototyping approach, we
visualized the feature space using the t-SNE technique and compared the AUC scores for
different models.

Figure 3 provides a visualization of the feature space for (a) the input space, (b) the
GCN embedded space, and (c) our DPGCN model, using the t-SNE technique. The visual-
ization highlights the differences in the feature spaces across the three cases. In the input
space, the features are likely to be scattered randomly with no discernible pattern. In the
GCN-embedded space, while there may be some clustering, the features are still likely to be
entangled, making it challenging to distinguish between classes. In contrast, the DPGCN
model produces a feature space that is clearly distinguishable and less entangled. This visu-
alization emphasizes the advantages of our disentangled prototyping approach, which can
help in creating more informative and less entangled feature spaces for better classification.

Figure 3. Feature space visualization using the t-SNE technique for (a) input space, (b) GCN[2]-
embedded space, and (c) our DPGCN model.

Figure 4 compares the area under the ROC curve (AUC) for DPGCN and DPGCN
w/o disentangled prototyping. A higher AUC indicates a better model, as it measures the
model’s ability to distinguish between positive and negative classes. As shown in the figure,
DPGCN achieved a higher AUC compared to DPGCN w/o disentangled prototyping. This
result further validates the effectiveness of the disentangled prototyping in our proposed
model. By disentangling the feature space, our DPGCN model could more effectively
differentiate between the classes, leading to an improved classification performance.
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Figure 4. Comparison of area under the ROC curve (AUC) for DPGCN and w/o disentangled prototyping.

4.5. Discussion

We consider the implications of our experiments by performing case analyses on
transactions with differing classifications between the GCN model and our DPGCN model,
as presented in Table 4.

Table 4. Case analysis of transactions, showing differences in classification between GCN and our
DPGCN method, providing node name, block number, from and to destination, and transaction
value information.

Node Name Reported as Block from To Value (ETH)

Case 1
(Misclassified
by GCN but

correct in Ours)

0 ×
950bb8abd2419da2c867
97a23d43bbb2da067848

Phishing scam
4200269 Self 0 ×

7965. . .F29A 372.999

4186015 Enigma presale Self 373.000

0 ×
8760d59d64fc8082d278
8f1e17e844f4e47230fe

Fraud

7795229 Self Spindle Token 0.000

7795217 Self Playgame
Token 0.000

7042857 Self Exchange
(Malaysia) 0.000

Case 2
(Both

misclassified)

0 ×
9844f5c5f9aa7146a74f
fc7b9227742acfa71dea

Phishing scam

5986398 Self Other scam
node 4.144

5985936
Exchange

(Bittrex, Seattle,
WA, USA)

Self 0.084

5976675 Other scam
node Self 1.000

• Case 1: DPGCN effectively detected scams associated with presale, low-quality to-
kens, and transfers to small exchanges. Despite limited information (amount and
timestamp), our method captured and differentiated scam and benign transactions,
successfully classifying such cases. This ability is crucial for robust fraud detection.

• Case 2: A scam node transaction transferred to the large exchange Bittrex was falsely
detected. This highlights the limitations of our model in the absence of destination
information. Incorporating additional transfer destination data could improve classifi-
cation for such cases.
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In summary, our DPGCN model offers advantages over the GCN method for detecting
fraudulent Ethereum transactions, demonstrated by its ability to effectively separate scam
and benign transaction histories. Incorporating additional features could further enhance
its performance.

In the pursuit of refining our DPGCN model and enhancing Ethereum transaction
security, we must also be cognizant of broader implications. Ethical considerations come
to the forefront, especially as cryptocurrency transactions bear significant legal and moral
weight. The repercussions of false positives, which could unjustly tarnish legitimate entities,
are as concerning as the dangers posed by false negatives, which may let malicious activities
go unchecked. Moreover, while our model aims to distinguish transaction patterns, there is
an inherent risk of infringing upon the privacy rights of users, even if indirectly. Ensuring
network integrity is vital, but it should not come at the cost of the very principles of privacy
and fairness that underpin the cryptocurrency world.

5. Conclusions

In this study, we introduced the disentangled prototypical graph convolutional net-
work (DPGCN) for identifying fraudulent Ethereum transactions. Our approach combines
the strengths of prototypical networks, disentangled representations, and graph convolutional
networks for effective transaction network modeling and enhanced fraud detection. Using
a real-world Ethereum dataset, we demonstrated the superiority of our model over conven-
tional graph traversal methods and comparatives, such as GNN, GAT, and GCN. Our results
highlighted the ability of our method to accurately distinguish between scam and benign
transaction histories, showcasing the potential of disentangled prototypical representations.

As we look ahead, several avenues emerge to refine our model further. The potential of
integrating richer destination information is evident; however, this comes with challenges,
such as assessing the authenticity of these addresses. While our results advocate for the
inclusion of more intricate features into the graph for improved performance, it is pivotal to
weigh the benefits of adding meta-information, such as transaction frequency or associated
notes. This could enhance the model’s precision, albeit with the task of filtering potential
data noise. Additionally, as we aspire to synergize enhanced graph features, harmonization
with the disentangled prototypical loss framework necessitates careful evaluation. Moving
forward, we are driven to develop more advanced graph neural networks that can handle
vast and intricately complex graphs, beyond only Ethereum transaction analysis, and to
unlock further insights in the realm of large-scale network data.
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