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Abstract: In this paper, a crown-shaped trench gate formed by a sidewall spacer in insulated gate
bipolar transistors (IGBT) is proposed to improve breakdown voltage. When a sidewall spacer is
added to trench bottom corners, the electric field is distributed to the surface of the sidewall spacer
and decreased to 48% peak value of the electric field. Thus, the sidewall spacer IGBT improved
to 5% breakdown voltage. Another study proposed an additional oxide layer for trench bottom
corners and improved breakdown voltage similar to the proposed IGBT. Previous studies have shown
degradation in other electrical characteristics. However, this study shows a sidewall spacer IGBT that
increases the current over 3% compared to a conventional trench IGBT when the applied gate voltage
is under 4 V. Additionally, the turn-off loss characteristic is similar to conventional trench IGBT.
Therefore, the breakdown voltage of the IGBT was improved while maintaining similar electrical
properties to existing IGBTs through the crown-shaped gate.

Keywords: IGBT; breakdown voltage; crown-shaped gate; sidewall spacer; trench gate

1. Introduction

The advance of technology with respect to electrical systems heavily requires power
semiconductors with the characteristic of high breakdown voltage [1]. Recently, power
semiconductors that have a high breakdown voltage have been applied to electrical power
transmission and distribution systems (HVDC) [2–4]. In addition, recent electric vehicles
must operate to very high voltage conditions to charge [5–7]. Therefore, many researchers
have attempted to improve the breakdown voltage of power semiconductors [8–10]. Nor-
mally, power semiconductors are separated to insulated gate bipolar transistors (IGBTs) and
power metal-oxide-semiconductor field effect transistors (MOSFETs) [11–13]. In particular,
IGBTs have very high breakdown voltages and improved turn-off characteristics compared
to power MOSFETs. Therefore, IGBTs are widely used in power systems such as inverters,
motor driver circuits and boost converters of uninterruptible power supplies (UPS), and the
electric vehicle market places great importance on power semiconductors [14–17]. IGBTs
with trench gates are especially used in a various fields because their collector-emitter
saturation voltage (Von) is lower than that IGBTs with planar gates, because low Von causes
a great trade-off in turn-off characteristics [18]. However, IGBTs with planar gates have a
higher breakdown voltage than conventional trench gate IGBTs (C-IGBT) because the area
of the trench gate causes a decreased electric field region [19]. Moreover, in IGBTs with
trench gates, high electric field is concentrated on the bottom corners, causing a reduction in
breakdown voltage [20]. Therefore, C–IGBTs have a drawback with respect to breakdown
voltage degradation because of the electric field crowding (EFC), so other studies have
proposed an increased radius of curvature in the trench corners to improve breakdown
voltage [21]. Several studies have improved EFC without changing the radius of curvature
in the trench gate, but these results cause increased fabrication process or degradation of
C-IGBT characteristics [22].
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In this study, we investigated a sidewall spacer with a trench gate IGBT (S-IGBT)
for improved breakdown voltage [23]. S-IGBT has an expanded area of oxide region at
the gate bottom, for decreased EFC effect on the bottom corners of the trench gate. Thus,
the sidewall spacer reduces the peak value of the electric field and electrostatic potential
on the bottom corners of trench gate. Therefore, we proposed a new IGBT by using a
crown-shaped gate that improves breakdown voltage without changing the other electrical
characteristics, and maintaining the characteristics of a C-IGBT.

2. Analysis of The Structure and Fabrication Method
2.1. Structure of the IGBT

The structures of a C-IGBT, S-IGBT and oxide IGBT (O-IGBT) are described in Figure 1.
We have simulated the electrical characteristics of devices by using the Synopsys Sentaurus
technology computer-aided design (TCAD) simulation tool, and we designed structures
with the parameters in Table 1. The C-IGBT is a type of field-stop IGBT that uses various
electrical systems. The S-IGBT simulation compares the thickness of the sidewall (TS) and
the length of the sidewall (LS) as variable factors, and the sidewall spacer is located on the
bottom corners of the trench gate. According to [24], an O-IGBT can improve breakdown
voltage when optimizing the structure of a rectangular oxide layer without changing the
other electrical characteristics. Therefore, we selected three variable factors—thickness of
oxide layer (TO), length of oxide layer (LO), and depth from top of gate—for optimizing
the rectangular oxide layer beneath the trench gate. The parameters of the S-IGBT and
O-IGBT are very similar to the C-IGBT. The only difference between the C-IGBT, S-IGBT
and O-IGBT is the existence of a sidewall spacer or oxide layer.
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Figure 1. The structures of (a) C-IGBT, (b) S-IGBT and (c) O-IGBT. (d) breakdown voltage according
to the oxide layer parameters in O-IGBT.
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Table 1. Device parameters for simulations.

Parameter C-IGBT S-IGBT O-IGBT

Width/Length 4.8 µm 4.8 µm 4.8 µm

Length 70.0 µm 70.0 µm 70.0 µm

Gate depth 3.24 µm 3.24 µm 3.24 µm

Gate width 0.8 µm 0.8 µm 0.8 µm

Depth of P-base 2.5 µm 2.5 µm 2.5 µm

Depth of N+ emitter 0.25 µm 0.25 µm 0.25 µm

Thickness of oxide 0.02 µm 0.02 µm 0.02 µm

N buffer length 2.5 µm 2.5 µm 2.5 µm

P-collector length 0.5 µm 0.5 µm 0.5 µm

Length of sidewall - 0.1 µm -

Thickness of sidewall - 0.7 µm -

Depth of oxide layer - - 2.85 µm

Oxide layer length - - 0.2 µm

Oxide layer thickness - - 0.5 µm

N+ emitter doping 1 × 1021 cm−3 1 × 1021 cm−3 1 × 1021 cm−3

P-base doping 1 × 1018 cm−3 1 × 1018 cm−3 1 × 1018 cm−3

P-collector doping 1 × 1018 cm−3 1 × 1018 cm−3 1 × 1018 cm−3

N− drift region
doping 3 × 1014 cm−3 3 × 1014 cm−3 3 × 1014 cm−3

2.2. Applied Model in Simulation

Avalanche and Shockley–Read–Hall (SRH) generation-recombination models, Auger
electron spectroscopy (AES) and avalanche generation (Lackner) were used as recombi-
nation models. Additionally, inversion and accumulation layer mobility (IALMob) and
high-field saturation were used as mobility models to include the scattering effects of the
channel mobility. To analyze the electrical and thermal characteristics, band-gap narrowing
(BGN), thermodynamic and analytical expressions to calculate the thermoelectric power
(AnalyticTEP) were used as physics [25,26].

2.3. Comparison Method

As mentioned earlier, the EFC effect reduces the breakdown voltage of an IGBT. To
compare C-IGBTs, S-IGBTs and O-IGBTs thoroughly, the breakdown voltage of an O-IGBT
was obtained by setting the widest variable range possible. We propose a method to
improve the breakdown voltage characteristic of an O-IGBT, as previously described, using
three variable factors. According to Figure 1d, O-IGBT showed between parameters of
oxide layer and breakdown voltage, and we selected oxide parameters that showed the
largest breakdown voltage. Thus, we compare other characteristics based on the TO of
0.5 µm and LO of 0.2 µm when the oxide layer depth from the gate is 2.85 µm. In addition,
the value of the breakdown voltage decreases when the oxide layer is not at a depth from
the gate at least 2.85 µm.

2.4. Fabrication Method

Figure 2 shows a possible fabrication process for the S-IGBT. First, the isolation step
proceeds by using LOCOS for a secure semiconductor active region [27]. Second, photo
resist (PR) is applied to the surface of the oxide layer and exposure light to the selected
trench gate region [28,29]. Third, etching takes place at the region that was exposed to
light during the second step. Fourth, oxide growth is started to form the gate dielectric.
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Fifth, to form the sidewall spacer, SiO2 is deposited on the top of the semiconductor. The
crown-shaped gate uses the existing sidewall spacer process. SiO2 is deposited by using
plasma-enhanced chemical vapor deposition (PECVD) [30]. Sixth, in order to eliminate
the SiO2 film deposited with PECVD, SiO2 is selectively etched using CF4 with the same
method as in the primary etching. The removal of the insulating film proceeds with
‘etch back’, which is a form of etching SiO2 covering the entire wafer surface without
going through a photo process; thus, the sidewall spacer is formed [31–34]. Seventh,
this fabrication uses poly-silicon because poly-silicon has variable advantages for gate
material [35]. Therefore, poly-silicon is deposited to form the trench gate. In the last step,
the residues of poly-silicon are etched, and the remaining fabrication steps proceed using
the same process as the C-IGBT [36–38].
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Figure 2. A fabrication process of the S-IGBT. The crown-shaped gate can be fabricated without
additional photo-lithography.

3. Results and Discussion
3.1. On-State Characteristics

Figure 3a shows the on-state Ic-Vg characteristic curves of a C-IGBT, S-IGBT and O-
IGBT. When the collector voltage applied is 5 V, Ic-Vg curves are carried out. All simulations
were performed at T = 300 K. In addition, we considered the surface roughness that appears
in the trench gate. Therefore, when collector voltage and gate voltage were applied at 5 V,
the channel electron mobility shows a result of 350 cm2 V−1 s−1 [39,40]. When gate voltage
was applied under 4 V, the S-IGBT showed a higher current than the C-IGBT. However,
when we applied gate voltage at 5 V, the collector current of the C-IGBT, S-IGBT and
O-IGBT are 2570 A/cm2, 2240 A/cm2 and 946 A/cm2, respectively. Therefore, the S-IGBT
showed little decrease in collector current with respect to C-IGBT; O-IGBT showed a much
lower collector current than S-IGBT.



Electronics 2023, 12, 474 5 of 9Electronics 2023, 12, x FOR PEER REVIEW 5 of 9 
 

 

 

Figure 3. (a) Ic-Vg characteristic curves of the C-IGBT, S-IGBT and O-IGBT. (b) Collector current 

according to the sidewall spacer parameters. 

Figure 3b shows the collector current according to the sidewall spacer parameters 

when the collector voltage and gate voltage are applied at 5 V. High values of LS and TS 

decrease gate bias effect to the drift region. Therefore, the large size of the sidewall spacer 

interferes with channel formation. In the case of the S-IGBT, only a low LS is added on the 

bottom of the trench gate. Therefore, the S-IGBT is able to form a channel similar to the 

C-IGBT, so the Ic-Vg characteristic curves showed little difference between the S-IGBT and 

C-IGBT. However, the O-IGBT has a thicker oxide layer than the S-IGBT; it needs more 

gate voltage to achieve the same collector current. Therefore, large values of LS and TS 

caused a low collector current when we applied the same bias. When we applied a high 

gate voltage to each device, the difference between the C-IGBT, S-IGBT and O-IGBT 

accelerates more. Therefore, we used values of LS = 0.1 µm and TS = 0.7 µm to maintain 

electrical characteristics. 

3.2. Breakdown Characteristics 

Figure 4a shows that the electric field of the C-IGBT and S-IGBT are cut along the 

y-axis at a depth of 3.26 µm from the gate; we applied a gate voltage 15 V. The C-IGBT 

shows 217,836 V/cm, and 217,955 V/cm is the peak electric field on each bottom corner of 

the gate. However, the S-IGBT shows only 113,224 V/cm, and 113,409 V/cm is the peak 

electric field on each of the bottom corners of the gate. Therefore, the sidewall spacer 

reduces the peak electric field by almost 48%, and so improves the value of the 

breakdown voltage. Figure 4b shows the breakdown voltage characteristics of the 

C-IGBT, S-IGBT and O-IGBT. We can see that the breakdown voltage of the S-IGBT is 700 

V, which is increased by 5% compared to that of the C-IGBT at 667 V. The O-IGBT 

showed a breakdown voltage of 704 V, which is increased by 5.5% compared to the 

C-IGBT. However, as previously described, the O-IGBT showed degradation of electrical 

characteristics. Therefore, the S-IGBT has more advantages with respect to electrical 

characteristics while having a similar breakdown voltage to the O-IGBT. 
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Figure 3b shows the collector current according to the sidewall spacer parameters when
the collector voltage and gate voltage are applied at 5 V. High values of LS and TS decrease
gate bias effect to the drift region. Therefore, the large size of the sidewall spacer interferes
with channel formation. In the case of the S-IGBT, only a low LS is added on the bottom of the
trench gate. Therefore, the S-IGBT is able to form a channel similar to the C-IGBT, so the Ic-Vg
characteristic curves showed little difference between the S-IGBT and C-IGBT. However, the
O-IGBT has a thicker oxide layer than the S-IGBT; it needs more gate voltage to achieve the
same collector current. Therefore, large values of LS and TS caused a low collector current
when we applied the same bias. When we applied a high gate voltage to each device, the
difference between the C-IGBT, S-IGBT and O-IGBT accelerates more. Therefore, we used
values of LS = 0.1 µm and TS = 0.7 µm to maintain electrical characteristics.

3.2. Breakdown Characteristics

Figure 4a shows that the electric field of the C-IGBT and S-IGBT are cut along the y-axis
at a depth of 3.26 µm from the gate; we applied a gate voltage 15 V. The C-IGBT shows
217,836 V/cm, and 217,955 V/cm is the peak electric field on each bottom corner of the gate.
However, the S-IGBT shows only 113,224 V/cm, and 113,409 V/cm is the peak electric field
on each of the bottom corners of the gate. Therefore, the sidewall spacer reduces the peak
electric field by almost 48%, and so improves the value of the breakdown voltage. Figure 4b
shows the breakdown voltage characteristics of the C-IGBT, S-IGBT and O-IGBT. We can see
that the breakdown voltage of the S-IGBT is 700 V, which is increased by 5% compared to that
of the C-IGBT at 667 V. The O-IGBT showed a breakdown voltage of 704 V, which is increased
by 5.5% compared to the C-IGBT. However, as previously described, the O-IGBT showed
degradation of electrical characteristics. Therefore, the S-IGBT has more advantages with
respect to electrical characteristics while having a similar breakdown voltage to the O-IGBT.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 9 
 

 

 

Figure 4. (a) Electric field curves distributions of the C-IGBT and S-IGBT on the oxide surface. (b) 

Breakdown voltage characteristic curves of the C-IGBT and S-IGBT. 

3.3. Trend in Breakdown Voltage 

Figure 5a shows the breakdown voltage trend as the values of the sidewall spacer. 

The breakdown voltage shows an increase after decreasing from a specific point while 

the thickness of the sidewall spacer is increasing. We considered breakdown voltage by 

dividing it into three parts of increase in sidewall spacer thickness. 

 

Figure 5. (a) Breakdown voltage according to the sidewall spacer parameters. Electric field 

distribution when (b) TS = 0.1 µm and (c) TS = 0.2 µm, when each LS = 0.2 µm. 

In case 1, when sidewall spacer thickness converges to zero the influence of the 

sidewall spacer is insignificant and similar to the C-IGBT. Therefore, the electric field is 

similar to the case in which only the trench gate exists, so the channel is formed by only 

one layer. However, as the TS increases and is smaller than the LS spacer, the electric 

field begins to be concentrated in only one region, as shown in Figure 5b. Therefore, 

electric field overlap is caused by increasing carrier density on the surface of the gate and 

low breakdown voltage. 

In case 2, LS and TS are the in same condition, where the sidewall spacer exists in the 

quadrant form of a circle. Thus, electric field peak value is decreased because the electric 

field is not concentrated, as in case 1. However, the electric field is concentrated in two 

regions, as shown in Figure 5c. Therefore, some values of LS and TS showed almost the 

smallest breakdown voltage because they caused peak value of the electric field in the 

sidewall spacer. After sidewall spacer thickness is increased, electric field peak value 

decreases and the breakdown voltage is improved. 

In case 3, if the value of LS is long enough, the electric field is distributed over a 

wider region. Therefore, breakdown voltage is increased instantly. Because the peak of 

the electric field region is separated by enough value of LS, the peak value of the electric 

field decreases. Some values of TS showed a slight decrease in the breakdown voltage 

and then an increase. Therefore, we apply a small value of LS to maintain on-state 

Figure 4. (a) Electric field curves distributions of the C-IGBT and S-IGBT on the oxide surface.
(b) Breakdown voltage characteristic curves of the C-IGBT and S-IGBT.



Electronics 2023, 12, 474 6 of 9

3.3. Trend in Breakdown Voltage

Figure 5a shows the breakdown voltage trend as the values of the sidewall spacer.
The breakdown voltage shows an increase after decreasing from a specific point while
the thickness of the sidewall spacer is increasing. We considered breakdown voltage by
dividing it into three parts of increase in sidewall spacer thickness.
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In case 1, when sidewall spacer thickness converges to zero the influence of the
sidewall spacer is insignificant and similar to the C-IGBT. Therefore, the electric field is
similar to the case in which only the trench gate exists, so the channel is formed by only
one layer. However, as the TS increases and is smaller than the LS spacer, the electric field
begins to be concentrated in only one region, as shown in Figure 5b. Therefore, electric
field overlap is caused by increasing carrier density on the surface of the gate and low
breakdown voltage.

In case 2, LS and TS are the in same condition, where the sidewall spacer exists in
the quadrant form of a circle. Thus, electric field peak value is decreased because the
electric field is not concentrated, as in case 1. However, the electric field is concentrated in
two regions, as shown in Figure 5c. Therefore, some values of LS and TS showed almost
the smallest breakdown voltage because they caused peak value of the electric field in
the sidewall spacer. After sidewall spacer thickness is increased, electric field peak value
decreases and the breakdown voltage is improved.

In case 3, if the value of LS is long enough, the electric field is distributed over a wider
region. Therefore, breakdown voltage is increased instantly. Because the peak of the electric
field region is separated by enough value of LS, the peak value of the electric field decreases.
Some values of TS showed a slight decrease in the breakdown voltage and then an increase.
Therefore, we apply a small value of LS to maintain on-state characteristics and enough
value of TS for the electric field to be distributed over a wider region.

3.4. Turn-Off Characteristics

Figure 6a shows an example of a characteristic curve of the C-IGBT to calculate turn-off
loss (Eoff). Collector voltage (Vce) and collector current (Ic) are as in Figure 6a. Eoff is defined
as the integral of the product of current from the time corresponding to 10% of the current
to the time corresponding to 10% of the voltage. Thus, Figure 6b shows power dissipation
(Vce × Ic) and the filled area is the turn-off loss [41–44]. Figure 6c shows the comparison
of the correlation trends between Eoff and on-state voltage drops of the C-IGBT, S-IGBT
and O-IGBT. In IGBT, trend exists between Eoff and Von. This trend is generally used to
evaluation method for IGBT. The trend curves can be acquired by changing the doping
concentration of P-collector. Eoff tends to decrease as Von increases and the improvement
structure to when the curve is closer to the origin. As a result, the Eoff of the S-IGBT
is similar to that of the C-IGBT. Compared to the S-IGBT, the O-IGBT obtains a 23.7%
decreased Von in the same operating conditions. As a result, this trade-off relationship
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can be described by gate controllability. That is, the gate controllability of the S-IGBT is
weakened due to the sidewall spacer, compared to the C-IGBT. For this reason, the turn-off
characteristic deteriorates. However, our proposed study only requires low values of TS
and LS. Because the proposed IGBT uses lower values of TS and LS, our proposed S-IGBT
shows a low increase in Eoff. Contrary to gate controllability, the breakdown voltage tends
to be largely alleviated due to the sidewall spacer. Thus, breakdown voltage and Eoff have
a trade-off relationship with each other, and the S-IGBT is likely to be an important key
structure to adjust these characteristics.
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at T = 300 K.

4. Conclusions

To improve breakdown voltage, this paper presents a method that uses a crown-shaped
gate using a sidewall spacer. The S-IGBT improves breakdown voltage while maintaining
the Ion and Eoff of a C-IGBT. Based on the results, an S-IGBT reduces 48% of the peak value
of the electric field on the bottom corners of the trench gate. As a result, a 5% increase in
breakdown voltage occurs. Thus, by optimizing values of LS and TS, this study is able to
increase the breakdown voltage without changing other electrical components. However,
we considered LS and TS because the sidewall spacer effects electrical characteristics.
Comparing with other studies with respect to improvement breakdown voltage, the S-IGBT
maintained the electrical characteristics of a C-IGBT and had an easy fabrication process.
Therefore, the crown-shaped gate has the potential to be the important key structure for
the next generation, with high breakdown voltage and similar turn-off loss.
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