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Abstract: Assessing building energy consumption is of paramount significance in sustainability and
energy efficiency (EE) studies. The development of an accurate EE prediction model is pivotal for
optimizing energy resources and facilitating effective building planning. Traditional physical model-
ing approaches are encumbered by high complexity and protracted modeling cycles. In this paper,
we introduce a novel evolutionary dendritic neural regression (EDNR) model tailored to forecasting
residential building EE. Acknowledging the vast landscape and complexity of the EDNR weight
space, coupled with the inherent susceptibility of traditional optimization algorithms to local optima,
we propose a complex network-guided strategy-based differential evolution algorithm for training
the EDNR model. This strategy adeptly strikes a balance between exploration and exploitation during
the search process, significantly enhancing the predictive and generalization capacities of EDNR.
To our knowledge, this study represents the inaugural application of dendritic neural regression in
real-world prediction scenarios. Extensive experimental findings demonstrate the efficacy of EDNR
in accurately predicting building EE with commendable performance. Furthermore, the results of two
nonparametric statistical tests affirm the validity and stability of EDNR. Consequently, our proposed
methodology exhibits high potential and competitiveness in machine learning applications within
the energy domain.

Keywords: energy efficiency; dendritic neural regression; buildings; differential evolution

1. Introduction

With the advancement of urbanization and the continuous improvement in people’s
quality of life, the proportion of urban building energy consumption (EC) is increasing
annually. EC is one of the main causes of the increase in greenhouse gas emissions and the
increased inhalation amount, and building EC accounts for a large proportion of the total
EC [1,2]. Building energy efficiency (EE) and EC are interdependent. Enhancing building
EE is key to achieving sustainable building development, which can be realized through
reducing building EC. Therefore, improving building EE can decrease building EC, which
in turn enhances building EE. As an effective means to reflect the operational characteristics
of buildings, building EE prediction is an important tool for assessing the energy-saving
measures and energy-portal parts of smart buildings and can provide effective support
for the intelligent management of buildings [3]. Therefore, it is important to explore the
mechanism and patterns of building EE and to establish an accurate and effective model
for predicting EE in buildings.

In recent years, numerous scholars have presented various techniques for predicting
building EC and EE [4,5]. Currently, the techniques utilized for building EC prediction
consist mainly of engineering methods, statistical methods, and artificial intelligence
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methods. The engineering approach involves utilizing substantial professional knowledge
of building physics during the modeling phase to obtain building EC data for analysis and
research. This is achieved by developing an accurate building physics model and combining
it with a building operation simulation. Shabunko et al. [6] employed the EnergyPlus V2018
energy simulation software to simulate the EC of three different residential buildings with
a total of four hundred units. They subsequently compared the intensity of the building EC
with real EC data and found that the simulation results were consistent with the actual data.
The authors concluded that EnergyPlus software is an efficient tool for simulating building
EC. Asadi et al. [7] altered the design variables of building materials, including thickness,
appearance, and internal personnel scheduling. To assess the EC of buildings under each
design scheme, tens of thousands of simulations were run using the eQUEST V3.65 and
DOE-2 V.2 building simulation software. This study employed multiple linear regression
equations to predict building EC. The study results indicated that the multiple linear
regression model’s EC predictions deviated less than 5% from the simulation software’s
results. The outcome precision of these approaches depends heavily on the utilization of
specific knowledge in building physics, which is intricate due to the complex system setup
and numerous design parameters involved in the modeling phase [5].

Statistical methods are utilized to construct mathematical models by tabulating his-
torical EC data, following which EC is forecasted and analyzed. Zeng et al. [8] employed
Gaussian process regression to forecast the actual electricity consumption of buildings
of various types. The findings revealed that Gaussian process regression is capable of
predicting not only the electricity consumption of different inputs, but also that of buildings
belonging to diverse categories. Atalay et al. [9] developed a multiple linear regression
model, a time series model, and a discrete grey model for predicting HVAC power consump-
tion in commercial buildings located in Paris, France. The experimental results indicated
that the multiple linear regression model outperformed both the time series model and
the grey model. The ARIMA model predicts the EC and greenhouse gas emissions of iron
and steel enterprises and offers excellent EC prediction performance [10]. Li et al. [11]
introduced an EC prediction model, IPSO-ANN, where the input variables were established
using the dimensionality reduction method of principal component analysis. The results
demonstrated that the IPSO-ANN model provides higher prediction accuracy than its coun-
terparts. Although the aforementioned prediction models can accurately predict EC, the
random and nonlinear nature of building EC data reveals deficiencies in these methods [12].
These deficiencies are reflected in three main ways: first, the general statistical model fails to
account for the nonlinear relationship between the input and output; second, the predictive
performance of extended linear regression relies heavily on the correct selection of the
activity function, which poses a major challenge; third, the multicollinearity of the input
features may influence the prediction results of the statistical model.

In predicting building EC, machine learning methods, also referred to as data-driven
methods, can be more efficient than traditional approaches such as engineering methods.
Modeling relies on a range of mathematical and statistical algorithms and a wealth of histor-
ical data regarding building EC. Typically, building operational data, weather data, internal
load data, and other relevant information are used as the inputs, and the corresponding
building EC is used as the output. Models for predicting EC can be obtained through
training. At present, the prevalent models include artificial neural networks [13], support
vector machines [14,15], random forests [16,17], and decision trees (DTs) [18]. Due to the
complexity of building EC behavior and the volatility of energy demand, obtaining accurate
and reliable building EC prediction results remains a challenging task. Furthermore, in
recent years, the scale and dimensions of building EC data have increased significantly
due to continuous hardware upgrades and more frequent data collection. This increase
poses a significant challenge to the prediction ability of building EC models. Consequently,
an increasing number of researchers are focusing on deep learning algorithms that offer
superior learning abilities [19,20].



Electronics 2024, 13, 1803 3 of 20

Energy efficiency prediction is a typical machine learning problem. Single prediction
models are widely used due to their rapid calculation speed and ease of implementation.
However, there are still some shortcomings. First, the multiple linear regression method,
which is fast and easy to implement, is inadequate for complex problems. Second, sup-
port vector machines are better at balancing prediction accuracy and calculation speed,
but determining the optimal kernel function is challenging. Furthermore, in comparison
to the previous two approaches, artificial neural networks can handle nonlinear issues
and have relatively high forecasting accuracy; however, they require significant histori-
cal data for model training and the determination of numerous parameters. Traditional
optimization algorithms, such as the back propagation (BP) algorithm, are sensitive to
initial conditions and easily fall into local optima [21]. However, evolutionary algorithms
differ from traditional algorithms; they are population-based intelligent search methods
with self-adaptability, self-adjustment, and parallel search capabilities. Evolutionary al-
gorithms are capable of solving functions that are nondifferentiable, nonmicroscopic, or
discontinuous, even for high-dimensional decision variables. Additionally, they can find
approximations of optimal values for uncertain functions after several iterations. The
common evolutionary algorithms include the genetic algorithm (GA) [22], the states of
matter search (SMS) algorithm [23], particle swarm optimization (PSO) [24,25], the cuckoo
search (CS) algorithm [26], the firefly algorithm (FA) [27], the gravitational search algo-
rithm (GSA) [28], and differential evolution (DE) [29]. The “no free lunch” theorem has
been proven, which states that there is no universally applicable optimization algorithm
or learning method when searching for the optimal solution or learning the best model.
In other words, there is no one method that performs best in all situations for different
problems. This theorem emphasizes the importance of algorithm selection and design,
as the performance of an algorithm depends on the characteristics of the problem [30,31].
Therefore, to address the task of EE prediction, we designed a variant algorithm based
on DE. In DE, the best individuals are used to generate the next generation via mutation,
recombination, crossover, and selection operations. This evolutionary mechanism exhibits
superior search performance in comparison to the conventional evolutionary algorithm.
Conventional DE performs optimally in addressing optimization issues featuring relatively
simple function structures, but falls short in addressing complex optimization issues. This
is particularly applicable in optimization models that have complex structures, where the
decision variables have high dimensionality and the objective function has multiple local
optima. In such situations, DE converges slowly and may experience stagnation during the
search process.

By considering the energy field and relevant data features in detail, we attempt to
apply an improved dendritic neuron model to energy-related fields. In our previous
work, the effectiveness of the dendritic neuron model was established in various areas,
including medical diagnosis [32,33], classification [21,34–36], time series prediction [37–40],
and multiobjective optimization [41,42]. This paper proposes the evolutionary dendritic
neural regression (EDNR) model for predicting building EE. As the weight space involved
in EDNR is complex and has a large landscape, we further propose a complex network-
based differential evolution (CNDE) algorithm as a global optimization algorithm for
training EDNR. The proposed CNDE algorithm can increase individual diversity during
the optimization search process while maintaining computational efficiency. This enables
DE to achieve the global optimum, which enhances the accuracy of EDNR in building
energy efficiency prediction. The extensive experimental results demonstrate that EDNR
possesses considerable potential for predicting building EE, leading to satisfactory results
in the prediction of both heating and cooling loads. Using simulated datasets, we propose
EDNR, which effectively captures the nonlinear relationships between features and labels.
Thus, this work aims to provide more competitive prediction methods for the field of
building EE, while further expanding the interdisciplinary research between machine
learning and other domains.
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In summary, the primary innovations and contributions of this study are as follows:
(a) A new method for residential building EE prediction is proposed and applied for the
first time. (b) A population guidance strategy based on the scale-free property of complex
networks is proposed to enhance the optimization capability of DE. (c) The proposed CNDE
algorithm can achieve a better balance between exploration and exploitation in the search
process, and the experimental results show that EDNR has better accuracy and stability in
predicting EE.

The remainder of this paper is organized as follows: Section 2 introduces the relevant
work on EDNR and CNDE in detail; Section 3 describes the experimental setup, parameter
settings, experimental data, evaluation metrics, experimental results, and discussion; finally,
Section 4 provides a summary and discusses future work.

2. Materials

In this study, we present an EDNR model trained through the differential evolution of
complex network structure topologies. It is capable of effectively performing prediction or
classification tasks in machine learning by mapping the nonlinear relationship between
input feature information and target results. In this section, we first introduce the structural
framework of DNR and then present its learning algorithm in detail.

2.1. Dendritic Neural Regression

DNR and traditional MLP models share relatively simple topologies. MLPs utilize
information interactions among multiple neurons to realize nonlinear relations, which
may result in slow model training and the easy attainment of local optimal solutions. In
contrast, DNR uses a unique dendritic structure to acquire a nonlinear interpretation of the
problem. Additionally, it exhibits a faster convergence rate and higher prediction accuracy.
A DNR model comprises four layers: synaptic, dendrite, membrane, and cellular layers. It
exemplifies a typical feedforward model, as illustrated in Figure 1. Following appropriate
calculations within each layer, the data are transmitted to the subsequent layer until the
model produces its final output.

…

Branchm
x1 x2 xi xn

… …Input

x1 x2 xi xn
… …Input

x1 x2 xi xn
… …Input

Branch2

Dendrite1 Dendrite2 Dendrite… Dendritem Soma

Branch…

Synapse1 Synapse2 Synapsei Dendrite2Synapsen
…

Synapse1 Synapse2 Synapsei Dendrite1Synapsen
… …

Branch1…x1 x2 xi xn
…Input

Output

Synapses

After training

0

1

Direct

Inverse

Constant 0

Constant 1

Membrane

Figure 1. Architectural description of EDNR.

2.1.1. Synaptic Layer

The synaptic layer, which typically links another neuron or cell body, is a vital structure
for signaling. In DNR, the input signal passes through the synaptic layer of each branch
before being transmitted to the dendrite layer. We define the function related to the synaptic
layer for the i-th input on the m-th branch as follows:

Si,m =
1

1 + e−k(wi,mxi−hi,m)
, i ∈ [1, 2, . . . , n], m ∈ [1, 2, . . . , M], (1)
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where Si,m represents the output of the synaptic layer and serves as the input for the next
layer; xi denotes the i-th input, which must be standardized within the range of 0 to 1;
and wi,m and hi,m represent the weights and thresholds, respectively, which are obtained
through the training of the learning algorithm. Additionally, depending on the values
of wi,m and hi,m, as illustrated in Figure 2, the synaptic layer encompasses six connection
states, which may be interpreted as follows:

(a) Constant 1 connection: If there is any input, Figure 2a shows that the output is
approximately 1.

Ca = {(w, h) | hi,m < 0 < wi,m or hi,m < wi,m < 0} (2)

(b) Constant 0 connection: If there is any input, Figure 2b shows that the output is
approximately 0.

Cb = {(w, h) | 0 < wi,m < hi,m or wi,m < 0 < hi,m} (3)

(c) Direct connection: The output is proportional to the input, as illustrated in
Figure 2c.

Cc = {(w, h) | 0 < hi,m < wi,m} (4)

(d) Inverse connection: The output is inversely proportional to the input, as illustrated
in Figure 2d.

Cd = {(w, h) | wi,m < hi,m < 0} (5)

-1 -0.5 0 0.5 1 1.5 2

0.5

1

-1 -0.5 0 0.5 1 1.5 2
0

0.5

1

-1 -0.5 0 0.5 1 1.5 2
0

0.5

1

-1 -0.5 0 0.5 1 1.5 2

0.5

1

-1 -0.5 0 0.5 1 1.5 2
0

0.5

1

-1 -0.5 0 0.5 1 1.5 2
0

0.5

1

0

0

InverseConstant 0Constant 0

Constant 1 Constant 1 Direct 
(a) (a) (c)

(b) (b) (d)

Figure 2. Connection cases of synapses.

2.1.2. Dendritic Layer

The dendritic layer connects the synaptic layer nodes of each branch in series, and
due to the nonlinearity of the synaptic layer, the collected information is multiplied by the
following formula:

Dm =
N

∏
i=1

Si,m, (6)

where Dm represents the output of the m-th layer branch and N denotes the number of
synaptic layers.

2.1.3. Membrane Layer

The cell membrane connects the dendritic layers of each branch, gathers incoming
information from those layers, and delivers it to the cell body layer via a summation
operation. This operation can be defined as

V =
M

∑
m=1

Dm, (7)

where V denotes the calculated output result of the membrane layer and M represents the
number of dendritic layers in the DNR model.
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2.1.4. Cell Body (Soma)

After multiple layers of processing, the data from the sample are eventually conveyed
to the cell body layer. By utilizing the sigmoid function as the activation function to
calculate the final output, the cell body layer can be represented as

O =
1

1 + e−ksoma(V−θsoma)
, (8)

where θsoma is the threshold value controlling the activation or inhibition of neurons. Both
θsoma and ksoma are positive integers.

2.2. Learning Algorithm

This section initially outlines the structure of the conventional DE algorithm, followed
by an introduction to existing complex network models, including the principles and char-
acteristics of scale-free network models in complex networks. Subsequently, by integrating
the concept of the node degree in complex networks into DE, a complex network model
based on the DE algorithm is proposed, including a description of the framework and
implementation process of CNDE.

2.2.1. Differential Evolution

DE is a population-based stochastic optimization algorithm that utilizes genetic evolu-
tion. Similar to other evolutionary algorithms, DE incorporates four genetic operations:
initialization, mutation, crossover, and selection. DE leverages the difference information
between population individuals to facilitate mutation, followed by a probability-based
approach for integrating crossover. Finally, the algorithm enhances the population through
a greedy selection mechanism. Obviously, DE can retain superior individuals in the up-
coming generation, leading to a larger number of high-quality individuals. The algorithm’s
comprehensive procedure is outlined below:

A. Initialization:
First, a random function conforming to a uniform distribution is employed in DE to

generate the initial population. The population size Ps and the search space dimension D
are determined by the following formula:

x(o)i,j = x(low)
i,j + rand(0, 1) ·

(
x(up)

i,j − x(low)
i,j

)
, (9)

where i∈ [1, 2, . . . , Ps], j∈[1, 2, . . . , D], and x(i, j)(up) and x(i, j)(low) denote the upper and
lower bounds that individuals search within the j-th dimension, respectively. Additionally,
rand(0,1) represents decimal values that are uniformly distributed within the interval (0, 1).

B. Mutation:
In evolutionary computation, mutation refers to altering the value of a particular

location through random perturbations. The preservation of population diversity through
the manipulation of mutations is a critical evolutionary technique in DE. Several typical
mutation methods are listed as follows:

• DE/rand/1

V (t)
i = X (t)

1 +R ·
(
X (t)

2 −X (t)
3

)
, (10)

• DE/best/1

V (t)
i = X (t)

best +R ·
(
X (t)

1 −X (t)
2

)
, (11)

• DE/rand/2

V (t)
i = X (t)

1 +R1 ·
(
X (t)

2 −X (t)
3

)
+R2 ·

(
X (t)

4 −X (t)
5

)
, (12)
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• DE/best/2

V (t)
i = X (t)

best +R1 ·
(
X (t)

1 −X (t)
2

)
+R2 ·

(
X (t)

3 −X (t)
4

)
, (13)

where R, R1, and R2 are scaling factors with values between 0 and 1 and X (t)
best represents

the current leading individual after the t-th iteration. The aforementioned four mutation
strategies exhibit varying search effects, thus requiring a reasonable balance between
exploration and exploitation depending on the status of global and local searches when
tackling optimization problems.

C. Crossover:
The previous mutation operation generates a vector Vi. Recombination will be per-

formed on the target vectors Xi and Vi during the crossover operation to enhance popula-
tion diversity. The formula for the j-th dimension is defined as follows:

u(t)
i,j =

 v(t)i,j , i f randj(0, 1) ≤ Cr or j = jrand

x(t)i,j , otherwise
, (14)

where Cr represents the crossover probability, and it is clear that Cr determines the number
of target vector individuals; rand(0,1) indicates a random decimal value between 0 and 1;
j = jrand represents a random integer within the interval [1, D].

D. Selection:
To maintain a constant population size during the iteration process, DE generates

offspring using one-to-one greedy selection between the target and test individuals. This
means that the individuals with better fitness are retained for the next generation. The
process is as follows:

X (t+1)
i =

{
U (t)

i , i f f
(
U (t)

i

)
≤ f

(
X (t)

i

)
,

X (t)
i , otherwise.

. (15)

Notably, DE employs a greedy selection process, which can swiftly arrive at the
optimal solution of a function. However, excessive greediness can cause the algorithm to
converge early before reaching the global optimum, resulting in the model falling into a local
optimum. Therefore, maintaining diversity within the population is crucial throughout the
algorithm’s iterations. To achieve this goal, we developed a complex-network-model-based
DE algorithm that effectively ensures population diversity during the execution of DE.

2.2.2. Complex Network Model

Complex networks exhibit self-organization, self-similarity, attractor, small-world, and
scale-free properties. These networks can be categorized into random, small-world, and
scale-free networks. Many real-world networks typically originate at a small scale and
progress through the inclusion of new nodes and relationships. Barabási and Albert (BA)
identified two evolutionary mechanisms for growth and preferred connection, from which
they established a BA scale-free network evolution model. The degree distribution of nodes
in this model follows a power-law distribution:

P(k) ∝ k−β, (16)

where β represents the scale-free factor, which typically takes a value of (2,3), and P(k)
denotes the probability that a node is connected. The BA model is generated as follows:

• Initialization:
First, a network is created with m0 nodes at time t0, which are typically fully connected
or regular in a particular topology. The total number of nodes is subsequently recorded
as N0 for the initialized network T(0).
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• Growth:
A new node ni enters the current network T(i) at ti (i ∈ Z+) with m (m ≤ m0) initially
connected edges, and ni is connected in the selection of m nodes in the network T(i)
without repeating connections.

• Preferential connections:
The probability of node nj in the current network T(i) acquiring a connected edge to a
new node ni is determined by the following equation:

∏
(
k j
)
= k j/

Ni

∑
h=1

kh, (17)

where Ni represents the scale of the current network T(i) at ti and the denominator
denotes the total degree of T(i). Figure 3 illustrates the evolution of the initial network
scale and total degree for m0 = 3 and N0 = 6, respectively. Notably, there is only one
new node connecting edges in this process (m = 1), and the number of evolutions T is
5. As shown in Figure 3, the majority of edges connecting new nodes to the network
are linked to nodes with higher degrees, suggesting incipient power law behavior in
the degree distribution of the network T(i).

n1 n2

n3

n4

n5

t0 t1 t2 t5t4 Tt3

Figure 3. The generation process of the scale-free network.

2.2.3. Proposed Complex-Network-Based DE

To utilize EDNR for regression or prediction, effective supervised training is a pre-
requisite and is generally considered an optimization problem of the weight space. While
DE algorithms have demonstrated satisfactory performance in numerous optimization
problems, the efficacy of DE is dependent on relevant parameters and genetic operators,
including the mutation operator, crossover operator, population size, and crossover prob-
ability. Although the performance of DE algorithms has improved somewhat with the
implementation of parameter tuning strategies or operator design [43,44], it remains unsat-
isfactory in addressing complex optimization problems. Therefore, regarding the diversity
of the population involved in generating new individuals, the scale-free network model is
incorporated into the DE search process. To enhance accuracy and efficiency, the population
is sorted after each iteration based on the node degree and individual fitness from the
lowest to the highest in the complex network model. Consequently, the proposed algorithm
is called CNDE.

From the process of generating the BA model, the network exhibits a greater number
of nodes with a low degree and fewer nodes with a high degree. The scale-free property of
this intricate network model necessitates altering the positions of individuals after each
iteration of the DE model to efficiently sustain the disparity between individuals. Notably,
to enhance the search efficiency of CNDE, a scale-free network that corresponds to the
population size must be developed before executing DE. This model stores the individuals
after each DE execution and selects nodes based on the relative degree of fitness. Figure 4
displays the network model in the search space. During the CNDE search process, high-
quality individuals are deposited in high-degree nodes, while lower-quality individuals
are placed in low-degree nodes. Furthermore, each individual randomly selects a neighbor
for position swapping, thereby preventing a superindividual from leading the population
into a local optimum. Based on this mechanism, CNDE can effectively balance exploration
and exploitation. The algorithm framework of our proposed CNDE is essentially similar
to that of traditional DE. The complexity of CNDE is not greatly increased, but individual
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positions are adjusted after each iteration. To achieve this, we modified the update rules for
individual locations in DE:

V (t)
i = X (t)

i + rand(0, 1) ·
(
X (t)

i,neighbor −X (t)
i

)
, (18)

where V (t)
i represents the updated solution and X (t)

i,neighbor is a neighbor randomly selected

from the current state of X (t)
i . From the above formula, it is evident that the exchange of

information among proficient individuals will decrease, while inferior individuals will have
a greater probability of gaining more beneficial information from competent individuals to
enhance their knowledge, thereby efficiently sustaining population diversity, indicating
that CNDE produces a trade-off between global exploration and local exploitation. The
procedure for implementation is outlined in Algorithm 1.

Algorithm 1: Complex-network-based DE (CNDE).

Input: Parameters m0, F0, Cr0, Ps, and Gmax
Output: Globally optimal solution
begin

The maximum number of iterations of DE (Gmax) and population size (Ps) are
determined.

A BA model with scale-free properties is created based on the initialized m0.
A complex network is built until the number of nodes is Ps.
The Ps solution space is randomly initialized.
The fitness of each solution is evaluated.
while t < Gmax do

The solutions are sorted and labeled according to their fitness.
The solutions are placed in order into the generated complex network

nodes.
Neighbors are randomly selected, and the positions of the solutions are
updated.

v(t)i,j = x(t)i + rand(0, 1)
(

x(t)i,neighbor − x(t)i

)
for j = 1 : D do

Mutation and crossover operations are performed.

v(t)i = x(t)i +R(t)
1

(
x(t)best − x(t)i

)
+R(t)

2

(
x(t)

ri
1
− x(t)

ri
2

)
,

u(t)
i,j =

 v(t)i,j , i f randj(0, 1) ≤ Cr ∪ j = jrand

x(t)i,j , otherwise

The fitness of each current solution is evaluated.
A selection operation is performed to determine the individuals for the

next iteration.

X (t+1)
i =

{
U (t)

i , i f f
(
U (t)

i

)
≤ f

(
X (t)

i

)
,

X (t)
i , otherwise.

t = t + 1.

The globally optimal solution is returned.
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Figure 4. Complex network model with scale-free characteristics in the search space.

3. Experimental Studies

To validate the predictive ability of the proposed EDNR model for building EE, we
conducted comprehensive comparative experiments, including DNR training with different
heuristic algorithms to enhance its performance, and popular machine learning models
were chosen as competitors. The experimental findings demonstrate that the proposed
CNDE algorithm can train a DNR model effectively, and the resulting EDNR model excels
in predicting both heating and cooling loads for building EE. The experiments described in
this section had the following components: description of the dataset, experimental setup,
normalization of the data, parameter configuration and discussion, interpretation of the
performance evaluation metrics, comparison and analysis of the experimental results, and
computational complexity analysis. Finally, a statistical analysis of the experimental results
was performed. To confirm the efficacy and superiority of the proposed method, we selected
eight widely used intelligent algorithms as competitors to CNDE for training DNR models.
Additionally, eight competitive machine learning models were selected for comparative
experiments with EDNR. To prevent the possibility of experimental error, we conducted
the experiments for each set of methods 30 times independently and calculated the average
of the results. The experiments were conducted on a personal computer equipped with
a 13th Gen Intel(R) Core(TM) i7-13770F 2.10 GHz CPU, with 32 GB of memory, and the
MATLAB R2020a software.

3.1. Dataset Description and Normalization

In this study, we used a standard dataset created by Angeliki Xifara, a British engineer,
and processed by the Centre for Industrial and Applied Mathematics at the University
of Oxford, U.K., to study and model the heating and cooling load requirements (energy
efficiency) of buildings. This dataset is mainly used to study or model the heating and
cooling loads of buildings. The researchers used Ecotect to simulate the energy profiles
of 12 different building shape characteristics, such as building orientation, height, roof
area, glazing distribution, and size. A total of 768 building samples were obtained from the
simulation, where each data sample set contains eight features and two real values of EE
loads and all attributes are positive integers or decimals.

Data normalization is a crucial step in data preprocessing and has significant impli-
cations for both machine learning and time similarity searches. Normalization aims to
provide equal weight to all data attributes, simplifying comparisons and aggregations
between attributes. Since the input range of the EDNR synaptic layer is between 0 and
1, applying a normalization operation to the raw data is necessary, which can not only
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reduce the computational complexity, but also aid in algorithm convergence. The formula
for normalization is as follows:

x′i =
xi − xmin

xmax − xmin
, (19)

where xmax and xmin represent the maximum and minimum values of the data, respectively,
and x′i denotes the normalized data. Notably, since the soma layer of the EDNR model
outputs within the interval of [0,1], the final objective of the experiment is to determine
the predicted and actual values. Hence, we need to perform inverse normalization on the
EDNR output and subsequently calculate the error between the predicted and actual values.

3.2. Parameter Settings

For EDNR to achieve outstanding performance, we must initially determine and
evaluate the most appropriate parameter combinations for CNDE. In Section 2.2.2, we
generated a complex network model with an initial node value of 3, as illustrated in
Figure 3. Consequently, the initial node m0 is a critical parameter that directly influences
the topology of the final network model. Therefore, to obtain the optimal m0 value while
ensuring that the other parameters remain the same, we conducted two sets of experiments
on heating and cooling loads. Each set consisted of 20 independent experiments, and the
experimental results are summarized in Table 1. The optimal values of m0 are 5 and 6 for
dealing with heating and cooling load problems, respectively.

For our proposed CNDE optimization algorithm, in addition to the initialization pa-
rameter m0 used in constructing complex network models, the population size Ps is crucial
in determining computational accuracy. Thus, it is essential to determine an appropriate
Ps value that balances both computational cost and optimization performance. In general,
larger Ps values tend to result in better optimization performance, albeit at the expense
of higher computational costs and slower convergence rates. Conversely, reducing Ps
can decrease the optimization ability. According to the prediction task and considering
both the computational cost and the fairness of the algorithmic competition, we set the Ps
values of all population-based optimization algorithms to 50, with the maximum number
of function evaluations being 105 ∗ D in our experiments. For EDNR, the number k of
the synaptic layer, M of the branch number, and the threshold θsoma of the cell body layer
are crucial customized parameters. To identify enhanced parameter combinations, we
conducted 16 sets of experiments employing the L16(43) orthogonal array method and
established two distinct parameter combinations based on different prediction targets,
and the results are shown in Table 2. Additionally, Table 3 lists the significant parameter
settings of all algorithms and models involved in the experiments, which were derived
from relevant literature.

Table 1. Prediction results for energy consumption based on EDNR processing at different m0 values.

Heating load m0 = 3 m0 = 4 m0 = 5 m0 = 6 m0 = 7 m0 = 8

MSE 8.229 5.004 3.794 4.873 5.980 6.116

Cooling load m0 = 3 m0 = 4 m0 = 5 m0 = 6 m0 = 7 m0 = 8

MSE 9.451 7.502 3.557 1.621 4.983 5.754

Table 2. EDNR prediction results (RMSE) for heating and cooling loads with different parameter
combinations.

No. k θsoma M Heating Load Cooling Load

1 3 0.1 3 4.841 6.101
2 3 0.3 5 4.295 4.229
3 3 0.6 7 3.510 5.913
4 3 0.9 10 2.029 3.991
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Table 2. Cont.

No. k θsoma M Heating Load Cooling Load

5 6 0.1 5 6.174 5.644
6 6 0.3 3 3.916 6.973
7 6 0.6 10 2.811 3.814
8 6 0.9 7 1.607 6.118

9 9 0.1 7 7.221 7.007
10 9 0.3 10 5.177 2.951
11 9 0.6 3 3.009 1.307
12 9 0.9 5 1.993 2.374

13 12 0.1 10 4.224 7.210
14 12 0.3 7 2.099 5.221
15 12 0.6 5 5.287 6.791
16 12 0.9 3 4.667 3.222

Table 3. Parameter settings for the learning algorithms and machine learning models.

Algorithms/Models Parameters

GA [34] Var = 0.1, Cop = 0.3
CS [26] α = 0.01, Pa = 0.25
FA [45] α = 0.2, γ = 1, β0 = 1
GSA [28] α = 20, G0 = 100
PSO [46] w ∈ [0.4, 0.9], c = 2

SMS [23] α ∈ [0.8, 0.2, 0], γ ∈ [0.8, 0.4, 0.1]
β ∈ [1.0, 0.6, 0.1], H ∈ [0.9, 0.2, 0]

DE [47] Cr = 0.9, F = 0.7
JADE [48] Cr = 0.5, F = 0.5
ENN [49] Learningrate = 0.01
MLP [50] Hiddenlayer = 10, learningrate = 0.01
SVRs [51] Cost(c) = 0.5, g = 0.2
DT [52] Minlea f = 25
BP [37] Learningrate = 0.05
EDNR k = 6/9, θsoma = 0.9/0.6, M = 7/3

3.3. Evaluation Metrics

The accuracy pertains to the level of resemblance between the predicted and actual
values. To demonstrate the dissimilarities in performance between the different methods,
we selected four frequently utilized evaluation metrics:

• The mean absolute error (MAE) is the average error between the predicted and actual
values without considering outliers and can be expressed using the following formula:

MAE =
1
n

n

∑
i=1

|Ti − Oi|. (20)

• The mean absolute percentage error (MAPE) is a relative measure that is sensitive to
errors. Its formula is as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣Ti − Oi
Ti

∣∣∣∣. (21)

• The mean squared error (MSE) represents the expected value of the square of the
difference between the predicted and actual values. This indicator reflects the accuracy
of the prediction method and its sensitivity to errors. The smaller the MSE is, the
better the prediction accuracy. The calculation method is as follows:
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MSE =
1
n

n

∑
i=1

(Oi − Ti)
2. (22)

• The root-mean-squared error (RMSE) is the square root of the MSE, and it is calculated
arithmetically so that its magnitude aligns with that of the original indicator. The
definition is as follows:

RMSE =

√
1
n

n

∑
i=1

(Oi − Ti)2. (23)

where Ti and Oi represent the actual and predicted values, respectively, and n is the
sample size. Notably, all the error results were derived from the test datasets, and the
experimental training and test sets were randomly divided.

3.4. Performance Comparison

In this section, we present detailed experimental results and comparative analyses.
The experimental results are categorized into two parts: prediction results, which were
obtained via various optimization algorithms that were employed to train the DNR models,
and EDNR results, which were obtained via machine learning models. For the fairness of
the experiments, both the experimental training and test sets were randomly selected at a
ratio of 7:3. Additionally, each experiment was independently performed 30 times.

3.4.1. Comparison with Different Learning Algorithms

In this study, we present CNDE, a complex-network-model-based DE algorithm. To
verify the optimization capabilities of CNDE, we conducted comparative experiments with
eight population-based heuristic algorithms: GA, CS, FA, GSA, PSO, SMS, DE, and JADE.
To compare each algorithm at its optimal performance, the optimal parameter combination
for each algorithm participating in the experiment was selected according to the pertinent
literature. The nine aforementioned algorithms were applied as learning algorithms to
train the DNR models, and the resulting models were subsequently utilized to predict the
EE of buildings. The results of the experiment are displayed in Tables 4 and 5. We highlight
the performance of the best performing method in terms of the four evaluation indicators.
Tables 4 and 5 illustrate that the CNDE algorithm outperformed the others in forecasting
both heating and cooling loads, indicating its superior optimization performance in model
training; hence, it effectively aids EDNR in overcoming the issue of local optimization
during the search process. In addition, it is essential to consider the convergence speed
of the model as a crucial performance indicator of the method. Figure 5 shows the error
convergence curves of all the models. According to Figure 5, the EDNR model that was
obtained via CNDE training exhibited the fastest convergence and the lowest error rate,
irrespective of the predicted heating or cooling load. This demonstrates the excellent
performance of CNDE in addressing such problems.

To enhance the clarity of the experimental results, error bar charts that display both
the result details and interexperiment variability are presented. Furthermore, each algo-
rithm’s stability is demonstrated through the use of a box-and-whiskers graph. Figure 6
illustrates the results in detail, while Figure 7 depicts the MAE of each method following
the 30 experiments. The dots in the figure correspond to the results of a single experiment.
As shown in Figures 6 and 7, CNDE, an EDNR learning algorithm, exhibited both reduced
error and enhanced stability. Moreover, from Tables 4 and 5 and Figures 6 and 7, it can be
observed that SMS and JADE also obtained superior performance, indicating their high
generalization ability for addressing common optimization problems.
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Figure 5. Convergence curves of the heating and cooling loads predicted by all the models.

Table 4. Heating load prediction results of DNR after training using different optimization algorithms.

MAE MAPE MSE RMSE
Mean ± Std Mean ± Std Mean ± Std Mean ± Std

GA 4.84 × 100 ± 9.75 × 10−1 (↓) 2.11 × 10−1 ± 5.63 × 10−2 (↓) 3.18 × 101 ± 9.44 × 100 (↓) 5.58 × 100 ± 8.33 × 10−1 (↓)
CS 6.16 × 100 ± 1.07 × 100 (↓) 2.82 × 10−1 ± 5.31 × 10−2 (↓) 5.09 × 101 ± 1.57 × 101 (↓) 7.06 × 100 ± 1.10 × 100 (↓)
FA 4.72 × 100 ± 1.05 × 100 (↓) 2.08 × 10−1 ± 6.61 × 10−2 (↓) 3.07 × 101 ± 9.32 × 100 (↓) 5.47 × 100 ± 9.16 × 10−1 (↓)

GSA 7.63 × 100 ± 3.09 × 100 (↓) 3.27 × 10−1 ± 9.62 × 10−2 (↓) 9.12 × 101 ± 9.92 × 101 (↓) 8.82 × 100 ± 3.72 × 100 (↓)
PSO 3.01 × 100 ± 9.71 × 10−1 (↓) 1.22 × 10−1 ± 4.25 × 10−2 (↓) 1.41 × 101 ± 8.78 × 100 (↓) 3.62 × 100 ± 1.01 × 100 (↓)
SMS 2.40 × 100 ± 2.95 × 10−1 (↓) 1.01 × 10−1 ± 1.17 × 10−2 (↓) 8.57 × 100 ± 9.39 × 10−1 (↓) 2.92 × 100 ± 1.64 × 10−1 (↓)
DE 4.78 × 100 ± 9.44 × 10−1 (↓) 2.03 × 10−1 ± 5.62 × 10−2 (↓) 3.31 × 101 ± 8.54 × 100 (↓) 5.71 × 100 ± 7.36 × 10−1 (↓)

JADE 2.91 × 100 ± 5.17 × 10−1 (↓) 1.20 × 10−1 ± 2.00 × 10−2 (↓) 1.18 × 101 ± 3.81 × 100 (↓) 3.39 × 100 ± 5.35 × 10−1 (↓)
CNDE 1.26 × 100 ± 1.06 × 100 5.70 × 10−2 ± 5.31 × 10−2 3.81 × 100 ± 7.07 × 100 1.54 × 100 ± 1.22 × 100

Table 5. Cooling load prediction results of DNR after training using different optimization algorithms.

MAE MAPE MSE RMSE
Mean ± Std Mean ± Std Mean ± Std Mean ± Std

GA 3.71 × 100 ± 6.01 × 10−1 (↓) 1.38 × 10−1 ± 2.98 × 10−2 (↓) 2.16 × 101 ± 5.09 × 100 (↓) 4.61 × 100 ± 5.61 × 10−1 (↓)
CS 5.43 × 100 ± 1.75 × 100 (↓) 2.03 × 10−1 ± 5.39 × 10−2 (↓) 4.86 × 101 ± 3.40 × 101 (↓) 6.63 × 100 ± 2.19 × 100 (↓)
FA 3.90 × 100 ± 4.32 × 10−1 (↓) 1.54 × 10−1 ± 2.38 × 10−2 (↓) 2.17 × 101 ± 3.29 × 100 (↓) 4.64 × 100 ± 3.58 × 10−1 (↓)

GSA 9.11 × 100 ± 3.18 × 100 (↓) 3.08 × 10−1 ± 9.06 × 10−2 (↓) 1.45 × 102 ± 9.27 × 101 (↓) 1.14 × 101 ± 3.91 × 100 (↓)
PSO 2.98 × 100 ± 5.86 × 10−1 (↓) 1.10 × 10−1 ± 2.49 × 10−2 (↓) 1.50 × 101 ± 4.33 × 100 (↓) 3.84 × 100 ± 5.52 × 10−1 (↓)
SMS 2.31 × 100 ± 2.41 × 10−2 (↓) 8.67 × 10−2 ± 1.36 × 10−3 (↓) 9.75 × 100 ± 1.20 × 10−1 (↓) 3.12 × 100 ± 1.92 × 10−2 (↓)
DE 4.04 × 100 ± 5.71 × 10−1 (↓) 1.54 × 10−1 ± 2.56 × 10−2 (↓) 2.43 × 101 ± 5.20 × 100 (↓) 4.90 × 100 ± 5.37 × 10−1 (↓)

JADE 2.50 × 100 ± 3.12 × 10−1 (↓) 9.18 × 10−2 ± 1.07 × 10−2 (↓) 1.12 × 101 ± 2.32 × 100 (↓) 3.33 × 100 ± 3.31 × 10−1 (↓)
CNDE 9.82 × 10−1 ± 1.57 × 10−1 3.85 × 10−2 ± 6.91 × 10−3 1.65 × 100 ± 4.79 × 10−1 1.27 × 100 ± 1.83 × 10−1

0

50

100

150

M
SE

Learning algorithms

GA      CS       FA    GSA     PSO   SMS    DE    JADE  CnDE

Heating Load

0

50

100

150 Learning algorithms

GA      CS       FA    GSA     PSO   SMS    DE    JADE  CnDE

M
SE

Cooling Load

Figure 6. Error bars of the results of 30 experiments after DNR training using different optimiza-
tion algorithms.
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Figure 7. Box-and-whiskers plots of the results of 30 experiments after DNR training using differ-
ent algorithms.

3.4.2. Comparison with Other Machine Learning Models

The preceding sections examined and confirmed the effectiveness and consistency
of the CNDE algorithm. To further demonstrate the superior performance of EDNR, in
addition to comparing intelligent algorithms as DNR training algorithms internally, we
selected eight prevalent machine learning models as competitors for EDNR. These models
include the Elman neural network (ENN), multilayer perceptron (MLP), four different
kernel function support vector regressions, SVR(L), SVR(P), SVR(R), and SVR(S), DT
models, and the original DNR (ODNR) model, which is trained using the conventional
BP algorithm. Table 3 summarizes all the model parameters referenced in the relevant
literature. Tables 6 and 7 present the experimental results, which show that EDNR achieved
the best performance in both heating and cooling EE prediction. Additionally, the DT model
demonstrated robust performance in predicting the heating load, with evaluation metrics
similar to those of EDNR. This suggests that DTs can accurately capture the nonlinear
relationships between the feature input and output for heating load prediction. Nonetheless,
as shown in Figure 8, the DT model exhibited erratic performance when dealing with
cooling loads.

It is obvious from Figures 8 and 9 that both SVR(S) and ODNR exhibited poor per-
formance. On the one hand, ODNR is optimized by the BP algorithm, which employs
a gradient-based mechanism and is easily affected by the initial point during the search
process, eventually leading to local optimization. Consequently, ODNR fails to achieve
optimal performance. On the other hand, SVR(S) employs the sigmoid function as its
kernel function, thereby rendering it equivalent to a multilayer perceptron neural network.
Although this function automatically determines the weights of the hidden layer nodes
with respect to the input nodes during the training process, it may increase the complex-
ity of the model, and it may be challenging to understand the balance between model
overfitting and underfitting. However, SVR(R) with only one parameter performed better,
indicating that SVR(R) is more effective at handling tasks with diverse decision boundaries.
During the optimization process of CNDE, the complex node ordering operation ensures
population diversity and balances exploration and exploitation. This results in a better
qualified EDNR model for EE prediction after training. In summary, numerous experimen-
tal results demonstrate that our proposed EDNR model exhibited robust competitiveness
in predicting building EE and has achieved satisfactory outcomes.

3.4.3. Computational Complexity

Computational complexity is a crucial measure for evaluating algorithm effectiveness,
providing a qualitative description of an algorithm’s runtime. Figure 10 depicts the indepen-
dent runtimes for each model. On the one hand, the ENN required the most time to execute
both heating and cooling load predictions as a result of its specific algorithmic structure.
On the other hand, both SVR and DT required small amounts of time, owing to their typical
machine learning models, and efficiently obtained the globally optimal solution while
dealing with convex optimization problems, avoiding the curse of dimensionality. From
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Figure 10, it can be observed that the DNR model trained by the evolutionary algorithm
had a similar time cost, while the ODNR model trained by the BP algorithm took a short
time. The heuristic algorithm requires a slightly more intricate computational process and,
thus, consumed more time. However, the BP algorithm relies on gradient information
and is susceptible to falling into local optima, resulting in premature convergence of the
algorithm. Upon closer inspection, it can be found that the EDNR model trained by CNDE
required slightly less time than the other evolutionary algorithms. Notably, as shown in
Figure 5, EDNR can converge in relatively few iterations, which means that EDNR actually
does not take much time to train; in other words, the unique network-node-guided search
mechanism enables it to converge rapidly, resulting in a shorter running time.

Table 6. Experimental results of different models in heating load prediction.

MAE MAPE MSE RMSE
Mean ± Std Mean ± Std Mean ± Std Mean ± Std

ENN 2.45 × 100 ± 9.82 × 10−2 (↓) 1.02 × 10−1 ± 4.62 × 10−3 (↓) 8.90 × 100 ± 4.54 × 10−1 (↓) 2.96 × 100 ± 6.99 × 10−2 (↓)
MLP 4.19 × 100 ± 1.11 × 100 (↓) 1.60 × 10−1 ± 4.62 × 10−2 (↓) 3.28 × 101 ± 1.64 × 101 (↓) 5.57 × 100 ± 1.37 × 100 (↓)

SVR(L) 3.03 × 100 ± 1.36 × 10−15 (↓) 1.46 × 10−1 ± 5.65 × 10−17 (↓) 1.28 × 101 ± 3.61 × 10−15 (↓) 3.58 × 100 ± 4.52 × 10−16 (↓)
SVR(P) 2.32 × 100 ± 1.36 × 10−15 (↓) 9.71 × 10−2 ± 1.41 × 10−17 (↓) 9.18 × 100 ± 5.42 × 10−15 (↓) 3.03 × 100 ± 0.00 × 100 (↓)
SVR(R) 2.44 × 100 ± 4.52 × 10−16 (↓) 9.74 × 10−2 ± 2.82 × 10−17 (↓) 8.65 × 100 ± 3.61 × 10−15 (↓) 2.94 × 100 ± 0.00 × 100 (↓)
SVR(S) 1.14 × 101 ± 0.00 × 100 (↓) 5.00 × 10−1 ± 1.13 × 10−16 (↓) 2.07 × 102 ± 2.89 × 10−14 (↓) 1.44 × 101 ± 9.03 × 10−15 (↓)

DT 1.64 × 100 ± 0.00 × 100 (↓) 6.28 × 10−2 ± 0.00 × 100 (↓) 4.66 × 100 ± 9.03 × 10−16 (↓) 2.16 × 100 ± 1.81 × 10−15 (↓)
ODNR 1.47 × 101 ± 4.77 × 100 (↓) 5.24 × 10−1 ± 1.64 × 10−1 (↓) 3.34 × 102 ± 1.28 × 102 (↓) 1.74 × 101 ± 5.59 × 100 (↓)
EDNR 1.26 × 100 ± 1.06 × 100 5.70 × 10−2 ± 5.31 × 10−2 3.81 × 100 ± 7.07 × 100 1.54 × 100 ± 1.22 × 100

Table 7. Experimental results of different models in cooling load prediction.

MAE MAPE MSE RMSE
Mean ± Std Mean ± Std Mean ± Std Mean ± Std

ENN 2.23 × 100 ± 8.19 × 10−2 (↓) 8.27 × 10−2 ± 3.60 × 10−3 (↓) 9.41 × 100 ± 4.11 × 10−1 (↓) 3.07 × 100 ± 6.67 × 10−2 (↓)
MLP 3.89 × 100 ± 9.68 × 10−1 (↓) 1.39 × 10−1 ± 4.28 × 10−2 (↓) 2.95 × 101 ± 1.26 × 101 (↓) 5.32 × 100 ± 1.11 × 100 (↓)

SVR(L) 2.25 × 100 ± 9.03 × 10−16 (↓) 8.69 × 10−2 ± 2.82 × 10−17 (↓) 1.00 × 101 ± 1.81 × 10−15 (↓) 3.17 × 100 ± 2.26 × 10−15 (↓)
SVR(P) 2.51 × 100 ± 9.03 × 10−16 (↓) 9.53 × 10−2 ± 2.82 × 10−17 (↓) 1.05 × 101 ± 5.42 × 10−15 (↓) 3.24 × 100 ± 2.26 × 10−15 (↓)
SVR(R) 2.14 × 100 ± 1.36 × 10−15 (↓) 7.81 × 10−2 ± 4.23 × 10−17 (↓) 9.06 × 100 ± 0.00 × 100 (↓) 3.01 × 100 ± 4.52 × 10−16 (↓)
SVR(S) 1.11 × 101 ± 1.81 × 10−15 (↓) 4.44 × 10−1 ± 1.13 × 10−16 (↓) 1.97 × 102 ± 5.78 × 10−14 (↓) 1.40 × 101 ± 5.42 × 10−15 (↓)

DT 1.66 × 100 ± 2.26 × 10−16 (↓) 5.95 × 10−2 ± 1.41 × 10−17 (↓) 4.75 × 100 ± 9.03 × 10−16 (↓) 2.18 × 100 ± 1.36 × 10−15 (↓)
ODNR 1.10 × 101 ± 4.37 × 100 (↓) 3.52 × 10−1 ± 1.34 × 10−1 (↓) 2.18 × 102 ± 1.05 × 102 (↓) 1.38 × 101 ± 5.33 × 100 (↓)
EDNR 9.82 × 10−1 ± 1.57 × 10−1 3.85 × 10−2 ± 6.91 × 10−3 1.65 × 100 ± 4.79 × 10−1 1.27 × 100 ± 1.83 × 10−1
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Figure 8. Box-and-whiskers plots of the results of 30 experiments with different models.
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Figure 10. Time consumptions of all models for predicting heating and cooling loads (s).

3.5. Statistical Analysis

To comprehensively evaluate the performance of EDNR in predicting building EE, we
used two statistical tests to analyze the results of 30 independent experiments: the Friedman
test and the Wilcoxon rank-sum test [53,54]. The significance level p of the Wilcoxon rank-
sum test was set at 0.05. p < 0.05 indicates that EDNR significantly outperformed the
competitor. The results of the Friedman test and Wilcoxon rank sum test are summarized
in Table 8.

In Table 8, the symbols ↑, ↓, and ◦ indicate the relative strengths and weaknesses of
the method compared to EDNR. ↓ shows a significant difference, meaning that EDNR
had significant advantages compared with the other methods; ◦ represents no significant
difference between the two methods; ↑ shows that EDNR performed less effectively than the
other methods. w/t/l is the number of ↓/◦/↑ in each corresponding method. According
to the rankings presented in Table 8, there is minimal discrepancy in the ranking order
between the two sets of techniques for both the heating and cooling load prediction tasks.
Notably, EDNR obtained the lowest scores, i.e., the highest rankings, for both types of
problems, indicating that EDNR not only demonstrates high accuracy in predicting EE, but
also shows model stability. In addition, the w/t/l values of EDNR in predicting the EE
were 15/1/0 and 16/0/0, respectively, which fully demonstrates the superior performance
of EDNR in addressing building EE forecasting. In fact, these results can be inferred from
previous data tables or visualization images. In summary, the two nonparametric statistical
analysis methods validate the effectiveness and comprehensiveness of EDNR in assessing
heating and cooling loads in buildings.

Table 8. Statistical test results of all competitive methods for energy efficiency forecasting.

Models EDNR(CNDE) GA CS FA GSA PSO SMS DE JADE

Heating load

Score 4.5661 9.0057 10.1014 8.9091 12.2119 8.1216 5.4071 9.4005 7.5515
Ranking 1 11 14 10 15 9 3 13 7
p-value - 0 (↓) 0 (↓) 0 (↓) 0 (↓) 0 (↓) 0.0320 (↓) 0 (↓) 0 (↓)

w/t/l 15/1/0 ENN MLP SVR(L) SVR(P) SVR(R) SVR(S) DT ODNR(BP)

Score 6.0111 9.3310 7.8082 6.5651 5.6670 13.1127 4.8025 14.0512
Ranking 5 12 8 6 4 16 2 17
p-value 0.0008 (↓) 0 (↓) 0 (↓) 0.0001 (↓) 0.0101 (↓) 0 (↓) 0.0520(◦) 0 (↓)

Models EDNR(CNDE) GA CS FA GSA PSO SMS DE JADE

Cooling load

Score 3.0755 6.0029 7.7072 6.1910 9.2001 5.7708 4.9814 6.3055 5.3011
Ranking 1 10 14 11 15 9 5 12 8
p-value - 0 (↓) 0 (↓) 0 (↓) 0 (↓) 0 (↓) 0.0081 (↓) 0 (↓) 0 (↓)

w/t/l 16/0/0 ENN MLP SVR(L) SVR(P) SVR(R) SVR(S) DT ODNR(BP)

Score 4.8122 6.7776 5.0291 5.1148 4.7002 9.7118 3.9221 10.0812
Ranking 4 13 6 7 3 16 2 17
p-value 0.0097 (↓) 0 (↓) 0.0008 (↓) 0 (↓) 0.0122 (↓) 0 (↓) 0.0339 (↓) 0 (↓)

4. Conclusions

Enhancing the ability to monitor and forecast EE in the building sector holds promise
for optimizing energy scheduling and improving building efficiency. This paper introduces
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a novel model, EDNR, tailored for predicting residential building EE. To bolster the model’s
predictive ability, we proposed a new DE algorithm guided by complex network princi-
ples to optimize the parameter space of EDNR. The guided search strategy ensures both
individual diversity and enhances the algorithm’s search efficacy. The results obtained
by employing various optimization algorithms for DNR model training highlight the sig-
nificant optimization capability of CNDE. Comparative experiments with eight machine
learning models demonstrated that EDNR exhibits superior predictive performance and
stability. Consequently, EDNR has emerged as a viable and competitive approach for
EE prediction.

Although the CNDE algorithm boasts powerful search capabilities, integrating the
complex-network-guided search strategy with current mainstream DE variants such as
jSO [55] and OLSHADE-CS [56] presents challenges. This is due primarily to the difficulty
in maintaining the scale-free properties of the network model when reducing the popu-
lation size, which is analogous to reducing the number of nodes in a complex network.
Consequently, the population size of the optimization algorithm compatible with the pro-
posed guidance mechanism must remain relatively stable. Furthermore, EDNR grapples
with the curse of dimensionality, where the parameter space expands exponentially when
tackling high-dimensional problems, resulting in a sluggish learning process. In our future
research, we aim to address these challenges by developing adaptive methods for cus-
tomizing the parameters of EDNR. Additionally, we plan to explore combining EDNR with
feature selection or feature extraction techniques to mitigate the curse of dimensionality
when dealing with high-dimensional problems. Moreover, efforts will be made to enhance
the generalizability of EDNR across various domains.
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