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Abstract: Federated learning (FL) has emerged as an extremely effective strategy for dismantling data
silos and has attracted significant interest from both industry and academia in recent years. However,
existing iterative FL approaches often require a large number of communication rounds and struggle
to perform well on unbalanced datasets. Furthermore, the increased complexity of networks makes
the application of traditional differential privacy to protect client privacy expensive. In this context,
the authors introduce FedGM: a method designed to reduce communication overhead and achieve
outstanding results in non-IID scenarios. FedGM is capable of achieving considerable accuracy,
even with a small privacy budget. Specifically, the authors devise a method to extract knowledge
from each client’s data by creating a scaled-down but highly effective synthesized dataset that can
perform similarly to the original data. Additionally, the authors propose an innovative approach to
applying label differential privacy to protect the synthesized dataset. The authors demonstrate the
superiority of the approach over traditional methods by requiring only one communication round
and by testing using four classification datasets for evaluation. Furthermore, when comparing the
model performance for clients using their method against traditional solutions, the authors find that
the approach achieves significant accuracy and better privacy.

Keywords: federated learning; differential privacy; dataset distillation; edge computing

1. Introduction

Federated learning (FL) is a powerful approach designed to leverage decentralized
computing and data resources to overcome data silos [1]. Despite its potential, FL encoun-
ters significant challenges when applied to modern neural networks, which often consist
of hundreds of millions of parameters [2,3]. These challenges are compounded by the
traditional FL approach, which requires numerous communication rounds, exacerbating
the issues of scalability and communication load. This dual burden of excessive parame-
ters and frequent communications significantly hinders the efficiency of FL methods and
can impede the widespread deployment of FL models, especially in environments where
communication resources are limited [4,5]. Additionally, the uneven distribution of data
across different clients typically seen in real-world settings makes it difficult to optimize a
global model [6–8]. This often results in model biases and suboptimal performance. These
issues highlight the need for a new FL framework that not only reduces the communica-
tion overhead but also enhances the performance of the global model in scenarios with
non-independent identically distributed (non-IID) data [9].

In this aspect, though FL offers the advantage of allowing participants to retain their
raw data locally, which inherently addresses some aspects of data privacy [10], the privacy
concerns in FL are far from being fully resolved, as both the model parameters exchanged
during training and the outputs from the trained models can still be exploited for privacy
attacks [10–12]. To counter these vulnerabilities, various strategies have been developed to
enhance privacy in FL, including the use of trusted aggregators and complex cryptographic
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techniques such as homomorphic encryption [13,14]. Despite these efforts, these methods
often do not allow for personalized privacy settings and may not effectively protect against
breaches involving high-dimensional parameter vectors, which are particularly challenging
to secure [10].

In response to these privacy limitations, the LDP-fed model has been introduced as
an innovative FL framework that supports local differential privacy. This model allows
each participant to apply their own privacy settings, thus offering tailored privacy protec-
tion based on individual preferences [15,16]. However, this approach is weak given the
increasing complexity and dimensionality of models used in modern FL applications, such
as those based on deep learning architectures like ResNet and BERT [2,3,17]. Traditional
privacy protection methods struggle to scale with the size of these models and often per-
form inadequately under high privacy requirements, necessitating extensive computational
resources [8,18]. Therefore, LDP-fed requires innovations in protection mechanisms or
greater efficiency and adaptability.

In this paper, a novel federated framework is designed to address issues related to
both privacy and communication volumes. Traditional approaches often require each client
to maintain and train its own model and send gradients or weights to a central server for
aggregation. Instead, this work proposes creating compact yet high-performance surrogate
data for each client. These surrogate datasets, which encapsulate knowledge from the
original data, are difficult to visually interpret, thus preserving privacy. Meanwhile, only a
one-shot communication round is required, achieving great server performance.

These local surrogate datasets are sent to the server, which constructs a global sur-
rogate function to facilitate updates by minimizing this function. The surrogate data are
generated through a process inspired by data distillation techniques. Local surrogate
functions are crafted by synthesizing datasets that approximate the objectives; this is
achieved by aligning gradients of the original and surrogate datasets across different neural
network initializations.

Moreover, the paper explores the challenge of maintaining privacy when surrogate
datasets are used. Visual inspection alone does not reveal sensitive information from
these datasets; however, using labels could potentially expose privacy-sensitive category
information. To address this, an optimized label perturbation method tailored for fed-
erated learning (FL) scenarios is developed, striking a balance between data utility and
privacy protection.

The framework, including the processes for creating and utilizing surrogate data,
and the method for label perturbation are detailed in Figure 1. This approach significantly
reduces communication costs and enhances privacy without compromising the usability of
the data in federated learning environments. The contributions of this work are summarized
as follows:

• A method called FedGM is introduced, which utilizes iterative gradient matching to
learn a surrogate function. This technique involves transmitting synthesized data to
the server rather than sending local model updates, significantly enhancing commu-
nication efficiency and effectiveness. Additionally, a novel strategy for selecting the
original dataset reduces the number of training rounds required while improving the
training effectiveness of the distilled dataset.

• Label differential privacy is employed to protect the privacy of approximate datasets
for each client. This method is found to be highly capable even with a small privacy
budget and outperforms other methods.

• Comprehensive experiments are conducted on three tasks and show that the proposed
framework can achieve high performance with just one communication round in
scenarios marked by pathological non-IID conditions.

The remainder of this paper is organized as follows: Section 2 reviews the related
work of the paper. Section 3.1 presents the difference between the FedGM method and
traditional FL. Section 3.2 provides a detailed introduction to the FedGM method, includ-
ing its advantages and innovative aspects. Section 3.3 experimentally demonstrates that
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the surrogate dataset sent by each client to the central authority in the FedGM setup is
visually private, and label protection is achieved using an innovative approach to label
differential privacy. In Section 4, numerous experiments are conducted to demonstrate the
superiority of the work in terms of handling non-independent and identically distributed
(non-IID) data, reducing communication overhead, and by comparing it with traditional
LDP-fed approaches.
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Figure 1. Total framework of the paper. Decentralized distilled datasets on federated CIFAR10 are
divided into i clients. Each client has only n classes of data, and the class combination in each client is
individual. Each client distills a surrogate dataset and perturbs it then sends the noise dataset to the
server for training.

2. Related Works
2.1. Federated Learning

FL was first introduced by [1] and has the goal of training models collaboratively.
Some well-known FL methods, such as FedAvg [1], involve aggregating models received
from individual client devices and updating the global model by averaging the model
parameters with appropriate weights. However, due to its reliance on iterative model
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averaging, FedAvg encounters challenges related to heterogeneity in the FL system, par-
ticularly when dealing with non-IID data partitioning. This leads to a degradation in
the overall performance of the global model and contributes to increased communication
overhead. To mitigate this issue, several modifications and improvements to FedAvg
have been introduced. For example, FedProx [9] adjusts the loss function, while Fed-
Nova [19] and SCAFFOLD [20] utilize additional information to address distribution shifts.
In addition to enhancing learning algorithms for faster convergence, another approach to
enhance efficiency is the explicit reduction in communication costs. However, the majority
of current improved algorithms for non-IID scenarios in FL require multiple rounds of
gradient and model exchange, resulting in a significant number of communication rounds.
At the same time, the privacy of client models and their private data is also challenged by
these approaches.

2.2. One-Shot Federated Learning

FL with one-shot communication has been explored in various projects. For instance,
ref. [21] presents an algorithm for training a support vector machine in a one-shot manner
and proposes a framework that not only uploads models but also includes information
about the local dataset distribution: a task that is highly inappropriate when dealing with
privacy-sensitive datasets. Meanwhile, ref. [22] employs knowledge transfer to distill
models within each client, potentially altering the original model structure and incurring
significant communication costs when sharing student models. Furthermore, ref. [23]
attempts to alter the original optimization objective by sending distilled images to the
central server, but it does not take privacy protection into account.

In this work, instead of distilling models, our framework allows each client to create
an approximate dataset that mimics the performance of the original dataset and sends it to
the central server.

2.3. Local Differential Privacy

Differential privacy [24] is a privacy-preserving technique designed to ensure that
sensitive information of individuals is not disclosed when analyzing data. This method
involves adding noise to the data in such a way that the analysis results do not depend
on the data contributions of individual entities, thus preventing re-identification attacks
against individuals. It provides a mathematical framework to balance the trade-off between
privacy and data utility by controlling the introduction of random noise. Local differential
privacy [25] is a variant of differential privacy that focuses on protecting the privacy of
individual data rather than the results of the analysis. In local differential privacy (LDP),
each individual client adds noise to its data locally before reporting it to the data processor
to prevent the data processor from obtaining detailed information about individuals. This
approach allows individuals to have autonomous control over the privacy of their data and
reduces dependence on trusted centralized data processing. Due to the lack of a trusted
central authority in real-world scenarios, recent research on privacy protection in federated
learning has primarily focused on LDP. However, with the increasing complexity of models,
traditional LDP privacy protection methods [15] in FL inevitably face increased compu-
tational requirements. Additionally, as privacy budgets change, users often experience a
significant decrease in accuracy.

2.4. Dataset Distillation

Dataset distillation [26] has emerged as an essential paradigm in the context of machine
learning, particularly when dealing with the challenges posed by the increasing size
of training data. This approach focuses on generating a condensed version of a large
dataset without significantly compromising the model’s performance [27,28], primarily
in terms of test accuracy. Initially proposed by [29], dataset distillation has been refined
through various methodologies such as meta learning [29,30], gradient matching [31–33],
distribution matching [34,35], neural kernels [27,28], and generative priors [36,37]. These
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approaches show significant promise when applied to datasets like CIFAR10, yet they
encounter difficulties when attempting to scale to larger datasets such as ImageNet.

2.5. Dataset Distillation in Federated Learning

Previous research [38] on dataset distillation has mentioned the benefits of dataset
distillation in FL. FedD3 [23] has attempted to build a surrogate dataset in each client
through KIP, but the authors did not use privacy protection technologies to safeguard
the clients’ distilled datasets. FedDM [39] tried to apply distribution matching for each
client to build a surrogate dataset, and they used differential privacy to protect the distilled
dataset. However, in the experiment, the research found that the distilled data itself are not
sensitive, and some researches [40,41] have proven that the distilled data can withstand
membership inference attacks. Thus, the research believes that privacy protection for
distilled datasets should be more focused on the labels of the distilled dataset. Furthermore,
both methods need a great deal of time to train at the client. In this work, the research uses
a clustering process to select representative original images. This gradient matching target
has shifted from randomly sampled original datasets at the outset to intentionally selected
cluster datasets after clustering. Through experiments, the research has observed that the
approach requires fewer training epochs compared to traditional dataset distillation in FL
and achieves better performance more rapidly.

3. Methodology

In Section 3.1, the paper demonstrates the differences between the authors’ framework
and the traditional iterative minimization framework in FL.

In Section 3.2, the paper shows details of the authors’ implementation of FedGM.
The authors also demonstrate a novel method that can reduce the training time.

In Section 3.3, the paper analyzes the visual privacy of distilled images. Then, the au-
thors proceed to demonstrate how to protect the distilled data using label differential privacy.

3.1. Differences between FedGM and the Traditional Iterative Minimization Framework in FL

Traditional FL is a scenario in which a set of clients individually train their own
models using their private data, and a central server receives the models from the clients;
the authors consider there are data D distributed among K clients, and each of the clients
has a local private training dataset Dk = {xi

k, yi
k}, 1 ≤ i ≤ nk, where nk represents the

number of data points assigned to each client, and ∑k
i=1 Dk=D. Each client has its weight

value pk, and ∑k
i=1 pk=1. In a multi-class classification task under FL, the minimization

target is as follows:

min
w
{L(w, D)

△
=

K

∑
k=1

pkLk(w, Dk)} (1)

where Lk(·) is a local objective function that is optimized on the k-th client. The loss function
Lk(·) is formulated as follows:

Lk(w, Dk)
△
=

1
nk

nk

∑
i=1

l(w, xk
i , yk

i ) (2)

where l(·) is loss function for client, and w is model parameters. Most FL algorithms
need the clients to transmit the locally trained models to the server multiple times: the
communication burden cannot be neglected. Though one-shot FL has been proposed to
reduce the cost of communication, its performance is not good. Meanwhile, as each client
can only see local data, which can result in the absence of certain categories of information
during the training process for each client, local updating is always unable to capture
global information. Meanwhile, since the client is trained with biased data, it becomes
challenging for the server to improve the joint update direction by taking into account
more complex interactions among different clients. Regarding these factors, the authors
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have successfully altered the local update strategy. Instead of transmitting the model itself,
the client transmits surrogate data Sk that exhibits similar training performance to the
original data Dk; thus, the authors change the client local objective to

Lk(w) =
1
nk

s

nk
s

∑
i=1

l(w, x̃k
i , ỹk

i ) ≈ Lk(w, Sk) (3)

Therefore, the server can train the local model using the surrogate data transmitted by each
client. The authors can denote the objective as

min
w

L(w, D) ≈ min
w

L(w,
K

∑
k=1

Sk) (4)

where L(·) is a global objective function that is optimized on the server.

3.2. FL with Efficient Local Gradient Matching

The authors show how to build a surrogate dataset in each client in Section 3.2.1, and they
introduce an improvement in the training efficiency for their method in Section 3.2.2.

3.2.1. Local Gradient Matching

Drawing inspiration from recent advancements in data distillation [31–33], it becomes
feasible to train a collection of synthesized data for each client that effectively represents
the original data according to the objective function. The methodology of local gradient
matching revolves around the concept of synthesizing a compact dataset that captures the
essence of the original data distributed across clients in a federated setting. This compact
dataset, denoted as S∗, is obtained by optimizing the following objective:

S∗ = arg min
S

CT(θS) subject to θS = arg min
θ

LS(θ). (5)

Here, LS(θ) represents the loss function computed over the synthetic dataset S,
and CT(θS) denotes the curriculum-based cost function over the course of T iterations.
The process begins by initializing two models with identical architectures and parame-
ters, which are then trained on the client’s local original data and the synthetic dataset,
respectively.

The optimization is carried out by matching the gradients of the synthetic model
parameters (θS) with the target model parameters (θT) at each iteration. This is described
by the equation:

min
S

Eθ0∼Pθ0

[
T−1

∑
t=0

D(θS
t , θT

t )

]
(6)

subject to θS
t+1 = opt-alg(θS

t , ςS)and θT
t+1 = opt-alg(θT

t , ςT) (7)

where D is a distance measure between the model parameters at each step, opt-alg denotes
the optimization algorithm, and ς indicates the number of optimization steps. The primary
goal is to generate synthetic samples that can result in gradient trajectories similar to those
obtained from the original dataset.

In practice, this method leverages an approximate form of the backpropagation al-
gorithm, which allows for a single backpropagation pass per step without the need for
multiple levels of nesting, thereby simplifying the optimization process:

min
S

Eθ0∼Pθ0

[
T−1

∑
t=0

D(∇θ LS(θt),∇θ LT(θt))

]
(8)

This approach ensures that the optimization is both memory-efficient and computa-
tionally feasible for deployment on edge devices within an FL framework.
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3.2.2. Local Gradient Matching with Training Efficiency

The efficiency of training processes in dataset distillation is highly contingent on the
choice of original images. Traditional methods rely on random sampling to select original
images for matching, which often leads to a significant waste of training time. However,
this framework enhances efficiency by employing a strategic sampling technique that not
only reduces the training time of each client but also improves the effectiveness of the
distilled images compared with random sampling.

The authors adopt a novel strategy that clusters samples of the same class from the
client into different regions. A previous study [42] shows that samples closer to the class
distribution center provide smaller backward gradients and more effective supervision,
whereas samples near the boundary offer diverse conditions. This method allows us
to extract surrogate datasets in each client that more accurately reflect the global data
distribution, thereby improving the gradient matching process.

Gradient matching is then performed by aligning the synthetic images with the rep-
resentative samples, which avoids the chaotic targeting that degrades performance in
traditional methods. Furthermore, this approach mitigates the imbalance in mini-batch
coverage of the original class sample distribution, addressing the instabilities in random
sampling and optimization observed in previous approaches.

Inspired by [42], to get representative samples, the authors need to divide sub-clusters.
So the authors utilize the k-means [43,44] algorithm. This clustering occurs within each
class and generates sub-clusters that cover the entire sample space of the class: ensuring an
even distribution and providing the algorithm with a diverse set of samples that accurately
represent the sample density.

This clustering leads to a more balanced gradient distribution across different samples,
aligning perfectly with the principle of maintaining diversity while ensuring an even
distribution. The complete FL training pipeline is then followed, wherein each client distills
the data locally and transmits the distilled dataset to the server. The server leverages the
synthesized data to update the global model, significantly enhancing the training efficiency
and effectiveness of the FL system.

The overall framework is shown in Algorithm 1. Each client distills surrogate data and
transmits them to the server; then, the server updates the global model with the surrogate
data from all the clients.

3.3. One-Shot FL with Label Differential Privacy

The previous study of FL with dataset distillation seldom mentioned data privacy
protection, while some studies that mention privacy protection only focus on the distilled
images themselves. In this part, the authors analyze the visual privacy of distilled images
and find the distilled images themselves are not sensitive when the authors try to protect
privacy. Thus, the authors consider protecting the labels with label differential privacy.
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Algorithm 1 Federated learning with efficient local gradient matching

1: Input: Client training set Dk, set of synthetic samples from client Sk, deep neural
network parameterized with w, probability distribution over parameters Pw, global
learning rate ηg, classes of original data c, size of minibatch gradient matching m,
number of steps for updating weights ζθ and synthetic samples ζS in each inner-loop
step, learning rates for updating weights ηθ and synthetic samples ηS

2: Server executes:
3: for k = 1, . . . , K do
4: Transmit set of synthetic samples from client Sk to the server
5: end for
6: Aggregate synthesized dataset from each client and build the surrogate function update

weights to wr+1 on N by SGD with the learning rate ηg
7: Each client distills data:
8: for e = 1, . . . , E do
9: Initialize θ0 ∼ Pθ0

10: for t = 0, . . . , T − 1 do
11: for c = 0, . . . , C− 1 do
12: Get embeddings for each sample in Dk using θ0
13: Compute L2 distance among samples’ embeddings and using k-means to

cluster them into m subsets
14: Sample a minibatch pair BDk

c ∼ Dk from the center of clusters
15: Sample a minibatch pair BSk

c ∼ Sk

16: BTk
c and BSk

c are of the same class c
17: Compute Lc

T = 1
|BDk

c |
∑
(x,y)∈B

Dk
c

ℓ(ϕθt(x), y) and Lc
S =

1
|BSk

c |
∑
(s,y)∈B

Sk
c
ℓ(ϕθt(s), y)

18: Update Sc ← opt− algSk
(D(∇θ Lc

Sk
(θt),∇θ Lc

Dk
(θt)), ζS, ηSk )

19: Update θt+1 ← opt− algθ(LS(θt), ζθ , ηθ)
20: end for
21: end for
22: end for
23: Output the set of synthetic samples from client Sk
24: Transmit synthetic samples from client Sk to the server

3.3.1. Visual Privacy of Distilled Images

Assume the authors have a malicious server. It can visualize synthetic data directly
and make comparisons with the target sample to deduce membership. The authors use
VGG [45] as the backbone to recognize the synthetic images and measure the similarity
between the synthetic images and the original images using the L2 distance. Figure 2
shows examples of clients’ distilled images and the their (top-two) most similar real images:
images with the lowest L2 relative to the synthetic images at the tops of the columns [40].
The authors observe that the real data share similar contour patterns with the synthetic
images, but the authors cannot observe more fine-grained features from the synthetic
images. Meanwhile, the authors use ResNet [17] as the backbone to classify the distilled
images; the authors input the distilled images as the test set into the network. Figure 3
shows the test accuracy. The authors find that few of the distilled images can be classified
correctly, which means the distilled images themselves are not sensitive. An experiment
is also conducted using the MMAFEDB facial expression recognition dataset provided by
Kaggle to compare a dataset initialized with real images, as shown in Figure 4, and a dataset
synthesized through knowledge distillation performed locally on the client side before
being uploaded to the central party, as shown in Figure 5. It is found that the synthesized
distilled dataset makes it difficult to observe the characteristics of the original data, as facial
expressions and contours are distorted; thereby, the original facial information is protected.
Thus, the authors try to protect the labels of distilled images.
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Figure 2. Examples of synthetic images that are most similar to synthetic data generated by clients
with representative initialization. The value above each image is the L2 distance between the image
and the synthetic data (first row). Lower distance indicates higher similarity. Even though these real
images have outline information, the color or more detail are difficult for the adversary to infer.

Figure 3. Using synthetic data generated from CIFAR10 and Fashionmnist as test sets.

Figure 4. Synthetic data initialized by real images.



Electronics 2024, 13, 1815 10 of 20

Figure 5. Synthetic data trained over 1000 iterations within the client.

3.3.2. Implementation of Label Differential Privacy

To protect the labels of the distilled dataset, the authors apply label differential privacy.
Before analyzing their method, the authors first review some fundamentals of differen-
tial privacy.

Definition 1 (Randomized Response [24]). Given a positive integer K, let [K] = {1, . . . , K}.
The randomized response RR is defined as follows: for a parameter ε ≥ 0 and a true value y ∈ [K]
known to RR, when an observer queries the value of y, the RR mechanism provides a random
response ỹ according to the following probability distribution:

Pr(ỹ = y) =

{
eε

eε+K−1 if ỹ = y,
1

eε+K−1 if ỹ ̸= y.
(9)

Definition 2 (Differential Privacy [24]). Let ϵ, δ ∈ R≥0. A randomized algorithm A taking
as input a dataset is said to be (ϵ, δ)-differentially private (ϵ, δ)-DP) if for any two neighboring
datasets D and D′ and for any subset S of outputs of A, it is the case that Pr[A(D) ∈ S] ≤
eϵ · Pr[A(D′) ∈ S] + δ. If δ = 0, then A is said to be ϵ-differentially private (ϵ-DP).

Definition 3 (Label Differential Privacy [18]). Let ϵ, δ ∈ R≥0. A randomized training algorithm
A taking as input a dataset is said to be (ϵ, δ)-label differentially private (ϵ, δ)-Label DP) if for any
two training datasets D and D′ that differ in the label of a single example and for any subset S of
outputs of A, it is the case that Pr[A(D) ∈ S] ≤ eϵ · Pr[A(D′) ∈ S] + δ. If δ = 0, then A is said
to be ϵ-label differentially private (ϵ-Label DP).

Traditional label differential privacy employs a randomized response algorithm on
the label of each data point equally. However, this approach can significantly impact the
training effectiveness. Motivated by [18], the authors employ RRTop-k and RRwithPrior,
which is shown in Algorithms 2 and 3 and is a method that, by leveraging prior probability
knowledge of labels, achieves better label perturbation, striking a balance between privacy
and data utility.

In detail, the authors consider the global model Mt as a probabilistic classifier to each
client. Given an unlabeled sample x, this classifier enables the assignment of a probability
py for each class y ∈ [K], and each client partitions its distilled data into T non-overlapping
subsets. The probabilistic classifier initially outputs an identical probability distribution
across all classes in the data.
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Algorithm 2 RRTop-k

Require: A label y ∈ [K] k ∈ [K], prior p = (p1, . . . , pK)

Let Yk be the set of k labels with maximum prior probability (with ties broken arbitrarily)
2: if y ∈ Yk then

Then output y with probability ϵ
ϵ+k−1 and output y′ ∈ Yk \ {y} with probability

1
ϵ+k−1

4: else
Output an element from Yk uniformly at random

6: end if

Algorithm 3 RRWithPrior

Require: A label y ∈ [K] prior p = (p1, . . . , pK)

for k ∈ [K] do
Compute wk := ϵ

ϵ+k−1 ·
(

∑j/∈Yk
pj

)
, where Yk is the set of k labels with maximum

prior probability (with ties broken arbitrarily)
3: end for

Let k∗ = arg maxk∈[K] wk
Return an output of RRTop-k (y) with k = k∗

Using the probabilistic classifier obtained from the previous round of training, the
authors assign corresponding probabilities p = (p1, . . . , pK) for each sample xi in the subset.
Utilizing these probabilities, p helps to refine the randomized response (RR): specifically,
through the RRWithPriorp algorithm. The perturbed labels obtained through RRWithPriorp
contribute to the formation of the perturbed dataset. All the data subjected to RRWithPriorp
are combined into a larger noise set and sent to the central server for training. Then, the
server learns the prior knowledge of the dataset and sends the global model Mt to clients
as the probabilistic classifier. The authors explain the entire process in Algorithm 4.

Algorithm 4 One-Shot Federated Learning with Label Differential Privacy

Input: Client synthetic dataset Sk, deep neural network parameterized with w, global
learning rate learning rate ηg, global model M
Output: Noise set for central server training
for each client k do

4: Partition the distilled data into T non-overlapping subsets
for t = 1, . . . , T do

Use the classifier Mt from the previous round to assign probabilities p =
(p1, . . . , pK)

Refine randomized response using the RRWithPriorp algorithm
8: Form the perturbed dataset with the obtained labels

end for
Combine all perturbed data into a noise set
Send the noise set to the central server

12: end for
Server executes:
for k = 1, . . . , K do

Transmit set of synthetic samples from client Sk to the server
16: end for

Aggregate synthesized dataset from each client and update weights to wr+1 on client
noise set by SGD with the learning rate ηg and send the global model Mt as classifier to
clients



Electronics 2024, 13, 1815 12 of 20

3.3.3. Proof of Differential Privacy

To demonstrate that this algorithm conforms to the definition of differential privacy, it
is imperative to demonstrate that the RRWithPrior algorithm satisfies differential privacy.
The authors begin by scrutinizing the differential privacy properties of the RRTop-k mecha-
nism shown in Algorithm 2. Consider two arbitrary inputs y and y′ from the set [K] and an
arbitrary possible outcome ŷ from the set Yk. The authors observe that the probability
Pr[RRTop-k(y) = ŷ] is at its maximum when y is the same as ŷ, while Pr[RRTop-k(y′) = ŷ]
is minimized when y′ is any element of Yk \ {ŷ}. This leads to the following relationship:

Pr[RRTop-k(y) = ŷ]
Pr[RRTop-k(y′) = ŷ]

=
ϵ

ϵ+k−1
1

ϵ+k−1

= ϵ. (10)

Therefore, RRTop-k satisfies ϵ-differential privacy.
Moreover, since RRWithPrior can be conceptualized as the RRTop-k algorithm, which

calculates the threshold k maximizing Pr[RRTop-k(y) = y], it follows that RRWithPrior also
satisfies ϵ-differential privacy.

To further substantiate that this algorithm is compliant with differential privacy, the
authors consider any ϵ > 0 and posit that if RRWithPrior is ϵ-DP, then this one-shot
federated learning with differential privacy (OSFLDP) is ϵ-LabelDP. The algorithm main-
tains ϵ-DP even when disclosing all T models M(1), . . . , M(T) and all randomized labels
y1, . . . , yn. The joint probability for any conceivable set of output models m(1), . . . , m(T)

and corresponding output labels z1, . . . , zn can be partitioned into a product of individual
probabilities for each model and a product of conditional probabilities for each label given
by the trained global model.

When examining two datasets D and D′ that are identical except for the label of a
single user, the probability terms for D and D′ are congruent for all but one term related to
the differing user’s label. This particular term is indicative of the probability that RRTop-k
assigns a specific label. As RRWithPrior guarantees ϵ-DP, it ensures that the discrepancy in
probabilities caused by changing one user’s label is bounded by eϵ. Hence, this algorithm
satisfies ϵ-differential privacy, thereby fulfilling ϵ-LabelDP as desired.

4. Experiments
4.1. Experimental Settings

In this work, the authors conduct experiments on MNIST [46], FashionMNIST [47],
CIFAR10 [48], and SVHN [49]. In the experiments, the authors use a three-layer convolu-
tional network (ConvNet-3) [50] with 128 filters and instance normalization for each client
to employ local gradient matching and to serve as a probabilistic classifier in each client.
The authors select the batch size as 128 for representative real images, and the authors
conduct 300 matching iterations in each client, inside each of which 100 inner loops are
conducted. SGD [51] is set as the optimizer for each clients’ distilled image generator
with a learning rate of 0.01. The clustering process utilizes a matching model for extracting
features. The interval between each clustering iteration, referred to as Dint, is established
at 10 iterations. The training efficiency driven by this clustering process is examined in
Section 4.5 of the analysis. The authors tune the number of images per class (ipc) within
[3, 5, 10] for each client under the IID setting, and the number of clients is 10, but when it
comes to the non-IID setting, the authors consider a thornier scene, which is called a label
distribution skew case. A previous study [52] showed that among different non-IID data
settings, all studied FL algorithms performed worse on the label distribution skew case,
and for the label distribution skew setting, the algorithms have the worst accuracy when
each party only has data from a single label, which is also called pathological non-IID; thus,
the authors focus on this scene to show the performance of the method. The authors design
a pathological non-IID scene wherein each client only has one or two classes of data. In this
non-IID setting, the authors tune the ipc within [30, 50, 100], and each client’s synthetic
images are initialized as representative sampled real images. For the baseline method, the
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authors choose a batch size of 128 for local training. The authors tune the learning rate at
the client from [0.001, 0.01, 0.1] and at the server from [0.01, 0.1, 1], and the local epoch is
from [1, 2, 5, 10, 15, 20]. In particular, the authors tune µ for FedProx in [0.001, 0.01, 0.1, 1].

The authors compare FedGM with four representative model-averaging-based meth-
ods. The federated methods are: FedAvg [1], FedProx [9], FedNova [19], and SCAF-
FOLD [20]; the four federated learning methods and their comparative results are shown
in Table 1.

Table 1. Comparison of results of various methods. For non-IID settings, ipc = 50; for IID settings,
ipc = 10. C represents the number of data classes a client has. The authors also include a Dirichlet
distribution scenario with α = 0.5. The number of clients is 10.

Dataset Partitioning FedAvg FedProx SCAFFOLD FedNova FedGM

MNIST pk ∼ Dir(0.5) 98.9% ± 0.1% 98.9% ± 0.1% 99.0% ± 0.1% 98.9% ± 0.1% 96.1% ± 0.1%
#C = 1 29.8% ± 7.9% 40.9% ± 23.1% 39.9% ± 0.2% 39.2% ± 22.1% 99.3% ± 0.1%
#C = 2 97.0% ± 0.4% 96.4% ± 0.3% 95.9% ± 0.2% 94.5% ± 1.5% 99.2% ± 0.1%

IID 99.1% ± 0.1% 99.1% ± 0.1% 99.1% ± 0.2% 99.1% ± 0.2% 99.2% ± 0.1%
FMNIST pk ∼ Dir(0.5) 88.1% ± 0.1% 88.1% ± 0.4% 88.1% ± 0.5% 88.6% ± 0.3% 89.6% ± 0.3%

#C = 1 10.2% ± 0.1 28.8% ± 0.3% 11.8% ± 0.2% 15.8% ± 0.2% 85.7% ± 0.1%
#C = 2 74.3% ± 0.1% 71.3% ± 0.1% 42.8% ± 28.7% 69.5% ± 5.7% 85.3% ± 0.1%

IID 89.3% ± 0.1% 89.1% ± 0.2% 89.8% ± 0.1% 89.4% ± 0.3% 87% ± 0.0%
CIFAR-10 pk ∼ Dir(0.5) 68.4% ± 0.3% 65.9% ± 0.5% 65.8% ± 0.9% 65.3% ± 1.5% 61.4% ± 0.3%

#C = 1 10.3% ± 0.5% 12.3% ± 2.0% 10.0% ± 0.0% 10.0% ± 0.0% 74.5% ± 0.1%
#C = 2 49.8% ± 3.3% 50.7% ± 1.7% 49.1% ± 1.7% 46.5% ± 3.5% 75.5% ± 0.2%

IID 72.4% ± 0.2% 70.2% ± 0.1% 71.5% ± 0.3% 69.5% ± 1.0% 62.4% ± 0.4%
SVHN pk ∼ Dir(0.5) 86.1% ± 0.7% 86.6% ± 0.9% 86.8% ± 0.3% 86.4% ± 0.6% 86.5% ± 0.3%

#C = 1 11.1% ± 0.1% 18.6% ± 0.2% 6.8% ± 0.0% 10.6% ± 0.2% 85.3% ± 0.2%
#C = 2 79.2% ± 0.5% 80.3% ± 0.5% 64% ± 10.6% 72.4% ± 3.8% 85.7% ± 0.4%

IID 87.5% ± 0.3% 85.5% ± 0.7% 88.5% ± 0.2% 87.4% ± 0.4% 87.9% ± 0.4%

4.2. Comparison with Other One-Shot FL Methods

In this section, the authors compare this new approach with the relatively novel one-
shot FL methods. The novel one-shot FL methods are FedDM [39], DENSE [53], FedD3 [23],
and FedDF [54]. In comparison with the latest one-shot FL methods, FedDM [39] is
essentially a multi-round FL approach. However, due to its methodological approximations,
it has been adapted for evaluation in a one-shot environment. The authors configured the
system with 10 clients and compared the performance of this new method against these
baseline methods on the MNIST [46] and CIFAR-10 datasets [48]. The comparisons were
conducted under both IID settings and a scenario with a Dirichlet distribution with α = 0.5.
Through this comparison, the authors found that FedGM can achieve outstanding results,
as shown in Table 2.

Table 2. Results compared with other one-shot FL methods. For non-IID settings, ipc = 50; for IID
settings, ipc = 10. The authors set ipc = 10 for each method.

Dataset Partitioning FedGM (Ours) FedDM FedDF FedD3 DENSE

MNIST IID 99.21% 98.01% 96.13% 94.71% 99.13%
pk ∼ Dir(0.5) 96.13% 99.01% 92.23% 94.1% 95.82%

CIFAR10 IID 62.41% 58.12% 54.12% 49.31% 64.1%
pk ∼ Dir(0.5) 62.93% 61.83% 53.56% 40.15% 62.19%

4.3. Efficient and Robust Training on Heterogeneous Data

The evaluation of FedGM focuses on two key aspects: the communication volume
required to achieve optimal accuracy and the performance under data heterogeneity; the
authors use one-shot FedAvg as the baseline for comparison.
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In FedGM, communication overhead is generated by transmitting condensed images
(using 1 × 8 or 3 × 8 bits per grayscale or RGB pixel, respectively), whereas in tradi-
tional federated learning approaches, this overhead is due to the transmission of model
parameters and requires 32 bits per parameter.

In Figures 6 and 7, the authors find that with unlimited communication rounds,
FedAvg outperforms the new method under the IID scenario, but the best performance
of one-shot FedAvg (OS-FedAvg) can be reached by using FedGM with only around one-
third of the communication volume on average. However, when the data heterogeneity
across clients increases, the accuracy of the new method remains unchanged, while the
prediction accuracy of FedAvg decreases notably, which demonstrates that the new method
is more efficient under conditions of limited communication resources and significant
data heterogeneity.

Figure 6. MNIST: test accuracy changes with increasing total communication volume in Mb required
in each method on MNIST. The training results are compared with OS-FedAvg under non-IID setting
and IID setting. For non-IID scenario, the ipc is set within [30,50,100], and each client only has one or
two classes of data.

Figure 7. CIFAR10: test accuracy changes with increasing total communication volume in Mb
required in each method on CIFAR-10. The training results are compared with OS-FedAvg under
non-IID setting and IID setting. For IID scenario, ipc is set within [3, 5, 10].
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4.4. Performance with DP Guarantee

As demonstrated in Section 3.3, the labels of the client’s distilled dataset are protected
with label differential privacy when being transmitted to server, and the label differential
privacy in FedGM can satisfy ϵ-differential privacy. In this approach, each client is pre-
configured to divide its distilled dataset into two non-overlapping datasets. One half is
used directly in the RRwithprior process with a probability classifier that operates without
learned prior knowledge, and this portion sends noise data to the server for learning
prior knowledge. The other half utilizes the existing prior knowledge to obtain improved
perturbed labels. These labels are then sent to the server for second rounds of training.
The authors compare FedGM with traditional LDP-FedAvg and find FedGM can achieve
higher accuracy compared with the baseline, as shown in Figures 8–10. The traditional
LDP-FedAvg undergoes multiple rounds of communication with the central party for
training. In contrast, the one-shot method requires only two rounds of communication: the
first round is to acquire prior knowledge, and the second round is for further optimization
training with label differential privacy utilizing the acquired prior knowledge from the
global model.

Figure 8. ϵ = 1: In the context of IID scenarios with the MNIST dataset employing Gaussian
differential privacy with delta parameter set to ×10−5 and exploring an epsilon value of 1.

Figure 9. ϵ = 5: In the context of IID scenarios with the MNIST dataset employing Gaussian
differential privacy with delta parameter set to ×10−5 and exploring an epsilon value of 5.
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Figure 10. ϵ = 10: In the context of IID scenarios with the MNIST dataset employing Gaussian
differential privacy with delta parameter set to ×10−5 and exploring an epsilon value of 10.

4.5. Analyzing the Efficiency Brought by Matching Representative Images

The authors show the training efficiency curve of matching the synthetic images with
only the random or representative samples in Figure 11; different numbers of images
per class are also considered in Figure 11. The authors have observed that by matching
synthetic images with representative samples, the gradient loss between the original and
synthetic datasets decreases more rapidly and significantly. This suggests that the synthetic
dataset exhibits similar training performance to the original dataset. Additionally, it
implies reduced training time and enhanced performance for client-side local private data.
Moreover, the authors also note that a larger ipc correlates with fewer required training
rounds and smaller gradient loss.

Example clustering and sub-cluster center results of matching representative images
are also shown in Figure 12.

In conclusion, the authors find that with matching representative images, each client
needs fewer epochs to train synthetic data, and the training accuracy with synthetic data is
obviously improved.

Figure 11. The authors focus on the variation of client-side gradient loss within an IID distribution
scenario, specifically using the FashionMNIST dataset. This analysis includes the impact of different
ipc values and the effects of two distinct matching selection methods.
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Figure 12. K-means is used for dividing sub-clusters within each class, creating N sub-clusters that
mirror the density of samples. The value of N is predetermined and serves as the hyper-parameter for
the mini-batch size of actual images. This approach ensures that the clustering is specifically tailored
to the characteristics and distribution of the samples within each class.

4.6. Comparison with Transmitting Real Images

The authors’ approach is pitted against REAL, which transmits authentic images with
dimensions identical to those of FedGM (ipc = 10) under the IID setting. To elaborate, REAL
attains a test accuracy of on CIFAR10 using the default configuration. However, it falls
short of surpassing FedGM, which achieves a test accuracy of 67.5% ± 0.2%. This suggests
that the acquired synthetic dataset is capable of encapsulating a more extensive range of
information from the entire dataset as opposed to merely using a handful of images.

5. Conclusions and Limitation

In the endeavor to advance the domain of federated learning, FedGM is introduced;
it is a pioneering one-shot federated learning framework engineered to diminish the
necessity for recurrent communication rounds, which frequently encumber traditional
federated learning systems. This innovative approach not only optimizes communication
efficiency but also significantly enhances the training effectiveness of the distilled dataset.
By capitalizing on the unique strategy of leveraging synthetic datasets that mimic the
original data’s distribution, FedGM achieves remarkable training accuracy and privacy
protection while demonstrating an exceptional balance between performance and efficiency.

FedGM’s methodology of employing label differential privacy further exemplifies
its novel contribution to ensuring data privacy while maintaining high utility in training
models. This strategy, which is meticulously designed to protect the labels of the pseudo
datasets, showcases a sophisticated understanding of the challenges inherent in federated
learning environments. The empirical results, which are corroborated by extensive experi-
ments, underscore the superior performance of FedGM over traditional methods, especially
in the context of non-IID data scenarios and under stringent privacy constraints.

Moreover, the research illuminates the significance of visual privacy in federated learn-
ing, which is a novel area that has received limited attention in prior studies. The findings
reveal that, while the distilled images themselves may not contain sensitive information,
the labels attached to them possess a higher degree of sensitivity, necessitating the innova-
tive approach to label privacy adopted by FedGM.
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However, the study also acknowledges its limitations: particularly concerning the
scalability of the synthetic dataset with an increasing number of clients. This recognition of
potential constraints not only underscores the authenticity and originality of the work but
also paves the way for future research to explore innovative solutions to these challenges.
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