
Citation: Shi, Y.; Yin, Y.; Yu, M.; Chu,

L. CogCol: Code Graph-Based

Contrastive Learning Model for Code

Summarization. Electronics 2024, 13,

1816. https://doi.org/10.3390/

electronics13101816

Academic Editor: Arkaitz Zubiaga

Received: 6 April 2024

Revised: 26 April 2024

Accepted: 4 May 2024

Published: 8 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

CogCol: Code Graph-Based Contrastive Learning Model for
Code Summarization
Yucen Shi 1 , Ying Yin 1,*, Mingqian Yu 1 and Liangyu Chu 2

1 School of Computer Science and Engineering, Northeastern University, No. 195 Chuangxin Road,
Shenyang 110169, China; shiyucen@stumail.neu.edu.cn (Y.S.); 20226525@stu.neu.edu.cn (M.Y.)

2 School of Medicine and Bioinformatics Engineering, Northeastern University, No. 195 Chuangxin Road,
Shenyang 110016, China; 20227274@stu.neu.edu.cn

* Correspondence: yinying@cse.neu.edu.cn

Abstract: Summarizing source code by natural language aims to help developers better understand
existing code, making software development more efficient. Since source code is highly structured,
recent research uses code structure information like Abstract Semantic Tree (AST) to enhance the
structure understanding rather than a normal translation task. However, AST can only represent
the syntactic relationship of code snippets, which can not reflect high-level relationships like control
and data dependency in the program dependency graph. Moreover, researchers treat the AST as the
unique structure information of one code snippet corresponding to one summarization. It will be
easily affected by simple perturbations as it lacks the understanding of code with similar structure.
To handle the above problems, we build CogCol, a Code graph-based Contrastive learning model.
CogCol is a Transformer-based model that converts code graphs into unique sequences to enhance
the model’s structure learning. In detail, CogCol uses supervised contrastive learning by building
several kinds of code graphs as positive samples to enhance the structural representation of code
snippets and generalizability. Moreover, experiments on the widely used open-source dataset show
that CogCol can significantly improve the state-of-the-art code summarization models under Meteor,
BLEU, and ROUGE.

Keywords: code summarization; code graph representation; contrastive learning

1. Introduction

In the software development circle, more than 50% time is spent on software mainte-
nance. In this period, developers often need to repeatedly read existing code and work on
code-related tasks such as code reuse and modification. Code snippets with summarization
can enhance the code readability by providing high-quality natural language annotations,
enabling developers to quickly understand code functionality and reduce misinterpreta-
tions. Moreover, this greatly improves software maintenance efficiency and saves software
development costs.

Code summarization tasks can be categorized into statement-level [1], function-level [2–4],
and file-level [5] summarization, corresponding to explaining specific statement meanings,
function functionalities, and document purposes, respectively. In this paper, we focus on
the function-level code summarization. Existing methods often treat code summarization
as a translation task like natural language processing, where a code snippet (programming
language) is input as the source language into a translation model to obtain the target natu-
ral language (usually English). However, traditional machine translation models struggle
with long-distance dependencies and performance limitations [6–11]. Additionally, with
the exponential growth of code files in open-source software repositories like GitHub, it
has become easier to access code snippets with high-quality natural language summariza-
tion [12], which increases the demand for larger datasets and better performance in neural

Electronics 2024, 13, 1816. https://doi.org/10.3390/electronics13101816 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13101816
https://doi.org/10.3390/electronics13101816
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5717-4090
https://doi.org/10.3390/electronics13101816
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13101816?type=check_update&version=1


Electronics 2024, 13, 1816 2 of 20

machine translation models. More research has begun to use deep learning-based transla-
tion models for code summarization. The process of code summarization based on neural
machine translation is illustrated in Figure 1. Taking the Java programming language as
an example, the complete code snippet of the function convert() is input into the neural
machine translation model in sequence form. The encoder learns the features(green and red
boxes) of the code to generate high-dimensional representations, which are then decoded to
translate into the target natural language sequence, such as “Converts an array of integers
to string”.

Figure 1. Deep learning-based code summary model.

Since code is highly structured, using sequence learning models like Transformer
to treat code as a single sequence often results in the loss of structural information. As
shown in Figure 1, current code summarization models that consider structural informa-
tion typically choose Abstract Syntax Trees (ASTs) as the representation of code structure.
For example, state-of-the-art AST-trans [13] extracts the AST of function-level code as the
structural information of the code. However, Transformer cannot directly handle structural
information (such as tree or graph information). Therefore, Tang et al. optimized the atten-
tion mechanism in the Transformer for learning AST and used a unique preorder traversal
sequence of AST as input for feature learning. However, compared to Program Dependency
Graphs (PDG), which contain advanced semantic information (control and data dependen-
cies), AST only represents certain syntactic information in the code. Moreover, existing code
representation methods only consider the transformed graph or code sequence as the sole
representation information and still lack understanding of codes with similar structures.
Thus, similar code structures and semantics may not be better understood during the code
representation phase and they will be easily affected by simple perturbations.

To address these issues, we propose a code summarization model called CogCol (Code
graph-based Contrastive learning model) based on the contrastive learning of code graphs.
CogCol leverages Transformer [14] models for learning the graph structure information of
PDGs while improving the understanding of structurally similar codes through contrastive
learning of PDG sequences. Firstly, CogCol designs a sequence traversal method based
on G2SC [15] to obtain enhanced PDG (E-PDG) sequences as representations of code
information. Then, considering that any missing node in the code graph may have a
significant impact on code semantics, CogCol proposes a masking strategy based on four
strategies for the edges in the code graph (relationships between code statements) to obtain
positive samples similar to the enhanced E-PDG representation in structure. Finally, based
on the obtained positive sample information, CogCol constructs a Transformer-based
code graph contrastive learning model for code summarization. Experimental results on
open-source datasets comparing six models demonstrate that CogCol achieves the best
performance in code summarization tasks.

Our research makes significant contributions in the following key areas:
(1) We propose a code summarization model called CogCol based on code graph

contrastive learning. CogCol can improve the understanding of code summaries for
structurally similar code while using a sequence-learning model for learning the graph
structure information through contrastive learning on graph sequences.



Electronics 2024, 13, 1816 3 of 20

(2) Regarding the edges in the code graph (relationships between code statements),
we introduce an edge-masking strategy based on four perspectives to obtain and enhance
positive samples with similar structural information as code graphs. Furthermore, based
on the positive sample information, we build a Transformer-based code graph contrastive
learning model for code summarization tasks.

(3) Experiments on six models in open-source datasets show that CogCol achieves the
best performance in code summarization tasks. Specifically, compared to the state-of-the-art
code summarization model, AST-trans, CogCol shows an improvement of 4.1% in BLEU-1,
1.6% in Rouge-L, and 6.1% in Meteor.

2. Related Work
2.1. Code Summarization

Traditional code summarization approaches typically involve extracting textual in-
formation from code, such as keywords and APIs [6–10]. These methods, while saving
time by not requiring training, face challenges in understanding both code and natural lan-
guage semantics. These methods employ manually defined machine rules or search-based
techniques to generate code summarizations. The former often results in comments that de-
viate significantly from human-generated comments, while the latter struggles to improve
accuracy due to the use of alternative code descriptions. However, with the advancement
of deep translation models, an increasing number of researchers are now designing code
summarization methods based on deep learning models, achieving impressive results.

Iyer et al. [16] treated the code summarization task as a generation task and introduced
the first deep learning-based code summarization generation model, Code-NN. Code-
NN initially treats code as text, segments it based on semantics, forming a sequence
of sequentially connected words, and represents the code as a linear order sequence.
Subsequently, the linear order sequence is fed into a Long Short-Term Memory (LSTM)
encoder to embed the code into a high-dimensional vector space. Finally, combining
attention mechanisms, the decoder generates summarizations for the code. Hu et al. [2]
build the semantic segmentation of code and represent the code by parsing the sequence
of API calls from the perspective of the API call sequence. They recognize that both code
text and APIs provide textual information for the code and summary code by using a
sequence-to-sequence translation model. Considering the highly structured nature of code,
Hu et al. [3] proposed a code summarization generation model based on AST. As natural
language translation models cannot handle tree structures, Hu et al. introduced a structured
traversal method to convert the code AST into a tree traversal sequence. This sequence
is then input into a sequence-to-sequence model, with code summarization generation
carried out based on attention mechanisms. Wan et al. [17] enhanced code summarization
generation by introducing reinforcement learning on top of AST. Similarly, Tang et al. [18]
transformed the code AST into a sequence and designed a model, AST-trans, based on a
Transformer for learning structural information in tree-shaped structures. Cai et al. [19] also
used code AST for code representation but avoided traversal-related losses by employing a
Tree-LSTM for learning. Choi et al. [20] parsed code into an AST and improved it into a
modified AST (m-AST) by connecting all child nodes of each node based on their occurrence
order. Treating m-AST as a graph, Choi et al. employed graph convolutional networks
(GNN) for convolutional learning. Wu et al. [21] further enhanced AST representation
by adding relationship edges based on the code’s conduct flow and variable flow. By
constructing a graph based on the AST, they also use GNN for code representation and
summarization. Table 1 shows the classification of current code summarization models and
their applied techniques.



Electronics 2024, 13, 1816 4 of 20

Table 1. Existing code summarization methods.

Features Code Text (Sequence, API) Abstract Syntax Tree (AST)

Machine rules [6–10]
Sequence learning [2,16] [3,18]
Tree learning [17,19]
Graph learning [20,21]

2.2. Deep Code Representation

In software development, numerous other endeavors focus on code representation [22–25],
such as bug location [26], clone detection [27] and code search [12]. Similar to code
summarization, most other traditional deep code representation models also treat code as
textual information and utilize natural language processing models for processing [5].

Considering that code is highly structured, many researchers in different tasks are be-
ginning to explore various methods to introduce code structural information. Code2vec [28]
converted code snippets into ASTs, extracted path information of all leaf nodes, and learned
code features through an attention mechanism to predict the function method names.
Mou et al. [29] used a convolution neural network based on tree structure to capture the
features of neighbor nodes in AST, and obtained the semantic information for program
classification and source code similarity detection. MMAN [30] and GSMM [15] are both
models that use structural information for code search tasks. Wan et al. use GNN to learn
CFG and TreeLSTM to learn AST and create the code retrieval model MMAN. Shi et al.
demonstrate that GNN is weak for code graph learning and convert the code graphs to
unique graph sequences by the G2SC algorithm and use sequence learning models like
LSTM and BERT for code structural learning. Allamanis et al. [31] took AST as the structure
backbone, added data flow information and side information based on AST to transform
AST into a graph containing more information, and applied GGNN to embed it for code
variable misuse task. Liu et al. [32] proposed TAILOR, a graph-neural-network-based
approach to detect functionally similar code snippets. They summarize the program’s
syntactic and semantic features into a code property graph to identify similar functionali-
ties. Yadavally et al. [33] introduce NEURALPDA for the program dependence analysis of
complete and partial code. They use intra-statement context learning and inter-statement
context learning to achieve high accuracy in generating CFG/PDGs and obtain great perfor-
mance on vulnerability detection for partial code snippets. GraphCodeBERT [34] designed
a pre-trained model to learn the relationship between programming language and natu-
ral language. It can be applied to various tasks in code representation through different
downstream tasks, such as the code search task and code clone detection task.

3. Proposed Algorithm

In order to ensure that code summarization tasks can effectively utilize the structural
information of the code and leverage the efficient embedding capability of the Transformer,
in this paper, we propose CogCol for accurate code Summarization. The overall framework
of CogCol is shown in Figure 2.

As shown in Figure 2, firstly, for function-level code snippets (represented by the red
block), we use TinyPDG to extract the PDG p1 in the code snippet. CogCol then performs
data augmentation on the extracted PDG to obtain various positive samples corresponding
to the code PDG for subsequent contrastive learning. For all PDGs and their corresponding
positive samples e1, the enhanced Graph-to-Sequence Converter (E-G2SC) is utilized to
obtain their respective graph sequences (E-PDG sequence). Subsequently, Transformer is
employed to embed all graph sequences into feature matrices Mp1, and the embedding
vectors of all tokens in the matrix are max-pooled to form the vector feature representation
vp1 of the function, which is appended to the end of the embedding matrix. Contrastive
learning losses are designed for the PDG vector vp1 and all augmented PDG vectors vE1
to optimize the embedding representation of the code. Finally, the corresponding code



Electronics 2024, 13, 1816 5 of 20

is summarized in natural language using the decoder based on Transformer. In training
phase, the model is jointly adjusted using decoding loss and contrastive learning loss.

Figure 2. Overall framework of CogCol.

3.1. Background and Basics Knowledge
3.1.1. Code Graph and Code Sequence

Program Dependence Graph (PDG) [35] is a graphical representation method used to
represent dependencies between code statements. PDG effectively captures two types of
dependencies in the program, including control dependency and data dependency. PDG
can help developers analyze, understand, and optimize programs.

As shown in Figure 3, on the left is a function code snippet getCharacter(), and on the
right is its corresponding PDG. The nodes in the PDG represent basic blocks or statements
in the program. Each node contains a basic operation performed during program execution,
such as assignment statements, conditional statements, etc. Two types of edges in the PDG
represent different types of dependencies. (1) data dependency edges: If the execution
of one node requires data produced by another node, there exists a data dependency
edge. Solid arrows in Figure 3 represent data dependency edges, such as the statement
String key having a data dependency edge to the statement Object val == getValue(key).
(2) control dependency edges: If the execution of one node is influenced by the control
flow of conditional statements, there exists a control dependency edge. The dotted arrows
in Figure 3 represent control dependency edges, such as the statement return null being
control-dependent on the statement val == null.

A Control Flow Graph (CFG) is used to represent the sequential control flow rela-
tionship during program execution. As shown in the middle of Figure 3, the nodes in
the CFG represent basic blocks in the program, which are groups of statements executed
sequentially. CFG has only one type of edge representing control flow transitions. For
example, based on the control flow of the if(val == null) statement, there are two executable
blocks return null and return Java.Types.CHARACTER.convert(val) afterward. CFG is
mainly used to analyze the control flow structure of programs, such as detecting loops,
identifying unreachable code, etc.

The graphical representations of PDG and CFG provide powerful tools for software
engineers and researchers to understand the structure and behavior of programs. They
also serve as effective tools for program analysis, optimization, and debugging. In practical
applications, the graphical structures of different languages can be generated and visualized



Electronics 2024, 13, 1816 6 of 20

using open-source tools. In this paper, our research primarily relies on the JAVA PDG
generated by the TinyPDG (https://github.com/YoshikiHigo/TinyPDG accessed on 5
April 2024) tool for analysis. An overview of the pseudocode for extracting CFG and PDG
is outlined in Algorithm 1.

Figure 3. Function-level code getCharacter() and its corresponding CFG and PDG.

Algorithm 1: Extraction for CFG and PDG
Input: Code snippet c
Output: CFG gc, PDG gp

1 initialize gc = {} gp = {};
2 gc = Build_CFG();
3 gp = Build_PDG();

Function: Build_CFG(c)
1 cfg = empty_graph();
2 current_block = None;
3 while line in code is not empty do
4 if line is branch then
5 cfg.add_node(line);
6 if current_block is not None then
7 cfg.add_edge(current_block, line);

8 current_block = line;

9 if current_block is None then
10 cfg.add_node(line)
11 else
12 cfg.add_node(line);
13 cfg.add_edge(current_block, line);
14 current_block = None;

15 return cfg

Function: Build_PDG(c)
1 pdg = empty_graph();
2 while line in code is not empty do
3 pdg.add_node(line);
4 if line is branch then
5 while dependent_line in get_dependent(line) is not empty do
6 pdg.add_edge(dependent_line, line);

7 while data_dependency in get_data_dependencies(line) is not empty do
8 pdg.add_edge(data_dependency, line);

9 return pdg

https://github.com/YoshikiHigo/TinyPDG


Electronics 2024, 13, 1816 7 of 20

3.1.2. Transformer and Contrastive Learning

Transformer is a deep learning architecture model used for sequence-to-sequence
learning tasks, which is powerful for code-related tasks [36]. In this paper, we focus on its
embedding layer, which maps each element in the input sequence to a high-dimensional
vector representation. In the Transformer model, each element of the input sequence
(such as text sentences or time series) is first embedded into a high-dimensional space.
This embedding process is performed by the input embedding matrix. To preserve the
order of the input sequence, the Transformer introduces position encoding, which encodes
the position information as vectors and adds them to the word embeddings. The word
embeddings and position encodings in the input embedding matrix are combined by
addition, incorporating both semantic and positional information into the embedding
representation. The input embedding matrix is obtained by adding word embeddings and
position encodings, with dimensions [sequence length, embedding dimension]. The matrix
obtained by Transformer has dimensions of n × d, where n is the length of the sequence
and d is the corresponding dimension of the vector matrix. Through the embedding matrix,
Transformer maps each element of the input sequence into a high-dimensional vector space,
providing abstract representations of the input. This representation helps the model capture
complex relationships between inputs and is used in the subsequent decoding of neural
network layers.

Contrastive learning [37] is a widely used deep learning algorithm that learns by
comparing the similarity between two or more samples. As shown in Figure 4, contrastive
learning typically involves three main concepts: anchor, positive sample, and negative
sample. The goal of contrastive learning is to optimize the model to increase the similarity
between positive samples and anchors in high-dimensional space while decreasing the
similarity between negative samples and anchors. For example, in Figure 4, the anchor
code snippet performs a sorting algorithm(function sort() with summarization “sort an
array”), so it should have higher similarity with positive samples(green box) implementing
reverse sorting in high-dimensional space and lower similarity with negative samples(red
box) implementing Fibonacci sequence generation. The loss function of contrastive learning
can be formulated as follows:

L(A, P, N) = max(0, margin − similarity(A, P) + similarity(A, N)) (1)

where A represents the anchor vector, P and N represent the corresponding positive and
negative samples, respectively. The function similarity() measures the similarity between
the anchor and the sample, typically calculated using cosine similarity. Additionally, there
is always a margin term, denoted as margin, which ensures that the similarity between
positive samples and the anchor is greater than the similarity between negative samples
and the anchor. Contrastive learning compares the similarity and dissimilarity between
samples, effectively enhancing the generalization of the model.

Figure 4. Process of contrastive learning.



Electronics 2024, 13, 1816 8 of 20

3.2. Code Graph-Based Contrastive Learning Model
3.2.1. Contrastive Learning Sample Construction Based on PDG

In this section, we will first introduce the method of enhancing PDG to obtain E-PDG
and the traversal method to obtain the sequence of E-PDG. Then, we will detail how this
paper obtains the four types of PDG-related contrastive learning positive samples.

Enhanced Program Dependence Graph (E-PDG) Construction Based on Code Con-
trol Flow Graph: As shown in Figure 5, the left two graphs represent the CFG and PDG
corresponding to a functional code snippet “getCharacter()”. PDG contains two types of
edges between statements: control dependency edges and data dependency edges. In the
PDG of Figure 5, the function body contains only one statement “return null”, which has a
control dependency relationship with “val == null”. This control dependency relationship
expresses that the execution of the target statement must pass through the execution of the
source statement. The remaining statements have control dependencies on the program
entry point “Enter”, meaning there are no control dependency relationships between the
other statements. During program execution, although the execution of some statements is
independent of others, the overall execution of the code still follows the order in which the
user wrote it. Therefore, in this paper, we replace the dependency relationships between
statements inside the function body in PDG with control flow relationships in the CFG.
The replaced E-PDG is shown on the right side of Figure 5 and follows three steps: (1) all
data dependency relationships are retained in E-PDG (solid directed edges with attributes,

such as
key−→, value−−−→); (2) all control dependency relationships between statements inside

the function body (solid directed edges without attributes) are retained; (3) the original
directed dashed lines starting from the entry of code will be removed, and these weak
executions dependent on the program entry point will be replaced by the control flow in
the CFG. For example, as shown in Figure 5, according to step (3), the dashed edge between
node <0>→<4> in PDG will be removed and according to CFG a dashed edge between
node <2>→<4> will be added to E-PDG, and according to step (2), the dashed edge starting
from <2>→<3> will be saved as a solid edge and another dashed edge will further be
added according to CFG. Finally, according to step (1), all data dependency edges will be
retained. Following the above steps, E-PDG preserves the dependency information of the
code while further enhancing the understanding of the code’s execution flow, enabling a
richer expression of the code’s structural information.

Figure 5. Process of constructing E-PDG by CFG and PDG.

E-PDG Traversal Algorithm: Based on the code graph transformation algorithm G2SC
proposed by Shi et al. [15] to convert code graphs into unique sequences, to preserve the
structural dependency information of the graph, we incorporate the traversal of execution
dependency edges into the original G2SC. Specifically, the improved E-G2SC execution
for E-PDG follows the following rules: (1) back edges are prioritized over forward edges;



Electronics 2024, 13, 1816 9 of 20

(2) when multiple back edges and forward edges appear simultaneously, control depen-
dency edges are prioritized over data dependency edges, and execution dependency edges
have the lowest priority; (3) when both conditions (1) and (2) are satisfied, select the node
with the smaller numeric identifier of the target node as the highest priority. Overall, it
follows the traversal rules of G2SC and incorporates execution dependency edges into the
traversal process to obtain a unique corresponding E-PDG sequence.

Construction of Contrastive Learning Samples Based on E-PDG: As shown in
Figure 6, to facilitate the explanation of the process of generating E-PDG, we assume
that the left side of Figure 6 represents an E-PDG corresponding to a function-level code
snippet. Unlike constructing contrastive learning samples in fields such as images, masking
any statement (node in PDG) in the code will have a significant impact on the semantics of
the code. Therefore, when constructing contrastive learning samples, we do not consider
node masking in E-PDG. We design the following four strategies (a)–(d) for generating
positive samples for contrastive learning based on the structural information in E-PDG:

Figure 6. E-PDG and its corresponding contrastive learning samples.

(a) Control Dependency Masking (CDM): As shown in Figure 6a, there are two control
dependency edges d → e1 and d → e2 in the PDG. Considering different coding habits
of users for implementing the same method, users may achieve different control depen-
dency relationships using different conditions and loop statements, resulting in functions
implemented with the same statements possibly having different control dependency rela-
tionships. Therefore, when masking control dependencies, one of all control dependency
edges is randomly selected for masking. As shown in Figure 6a, one of the two solid
red directed edges d → e1 and d → e2 will be randomly deleted to serve as a positive
sample for CDM in contrastive learning. CDM is designed to enhance the model’s general



Electronics 2024, 13, 1816 10 of 20

understanding of control dependencies, rather than being limited to the format of control
dependencies provided by the training data.

(b) Data Dependency Masking (DDM): As shown in Figure 6b, there are three data
dependency edges a

v1→ e2, a
v2→ d, and d

v2→ f in the E-PDG. To perform data dependency
masking, all variables in the code are standardized first. For example, variables x, y, i
used by users will be standardized as v1, v2, v3 according to the order of variables in the
program. Considering the different usage habits of variables by users when implementing
the same function, in data dependency masking, the variable with the highest frequency of
occurrence is selected, and all data dependency edges related to that variable are masked
as positive samples for DDM in contrastive learning. The most frequent variable path
reflects the user’s variable usage habits to the greatest extent, thus masking all paths related
to that variable can reduce the bias of the model towards different users’ variable usage
habits. As shown in Figure 6b, two solid red directed edges with attribute v2, a

v2→ d and
d

v2→ f , will be deleted to serve as positive samples for DDM in contrastive learning. DDM
is designed to reduce the impact of users’ variable usage habits in the training set on the
model’s learning of code features.

(c) Statement Position Exchange (Swift): As shown in Figure 6c, for two nodes in
the E-PDG only connected by execution dependency but not connected by other nodes
according to control and data dependencies, swapping the positions of statements in Swift
does not affect the two types of dependencies in the original PDG. Considering that the
positioning of certain elements such as API declarations or variable definitions in code
writing does not affect the function semantics, Swift can mitigate the impact of user coding
order habits on the model during training.

(d) Minimum Spanning Tree (MST): As illustrated in Figure 6d, MST ensures a tree-like
structure with the minimum number of edges while preserving all nodes in the graph.
Therefore, we believe that the MST of the E-PDG represents the minimum number of
relationships required to construct functions using the same set of statements among
different users. In this paper, the E-PDG traversal principle preserves the edges in the
graph based on the priority order of data dependency, control dependency, and execution
dependency edges. MST enhances the model’s ability to represent different structural
implementations of the same code functionality using the same set of statements.

3.2.2. Contrastive Learning Model for Code Structure Sequence Samples

Through Section 3.2.1, we can obtain processed E-PDG and its corresponding se-
quences. To learn the graph features of E-PDG, we use the Transformer encoder to transform
the graph sequences into high-level embedding. During the training phase, the symbol
corresponding to the E-PDG sequence is denoted as P = {p1, p2, . . . , pn}, n represents the
batch size. And the positive sample graph sequences for contrastive learning corresponding
to E-PDG are denoted as E = {e11, e12, e13, e14, . . . , en3, en4}. E is four times larger than P
because each p contains four positive samples. The embedding of p and e will be vp and ve

To embed all graph sequences, p and e, for any given sequence t ∈ {p, e}, they are
embedded according to the following formula:

Mt = Trans f ormeren(t) = so f tmax(
QKT
√

dk
) (2)

vt = maxpooling(Mt) (3)

where Mt represents the attention matrix after Trans f ormeren() embedding, which repre-
sents the sequence features. so f tmax() is the normalization function, dk is the dimension of
queries Q and keys K, and Q, K, V are linear mapping matrices related to t. vt represents
the vector feature representation of the graph sequence, which will be used for subsequent
contrastive learning loss calculation. maxpooling() is the maximum pooling function used
to transform the vector matrix Mt into vector form.



Electronics 2024, 13, 1816 11 of 20

After obtaining the unique graph sequences corresponding to all graphs using the
above method, we propose the following loss function to train the contrastive learning
module based on the inter-loss and intra-loss between samples:

Lctr = − 1
K

K

∑
i=1

log(
e

sim(vp ,vei )
τ

e
sim(vp ,vei )

τ + ∑N
j=1 e

sim(vp ,vnj )

τ

) (4)

where sim(·) represents the similarity calculation between two vectors, with cosine simi-
larity used in this paper. τ is the temperature parameter used to scale the model output.
vnj represents the negative sample vector from the negative candidate set N, which is
composed of other E-PDGs within the same batch and their positive samples. The num-
ber of negative samples selected is usually the same as the number of positive samples.
K represents the batch size.

In addition to the contrastive loss, the decoding loss formula incorporates the joint
representation of matrices from the code and vectors from contrastive learning as the
attention matrix required for Transformer decoding. Therefore, the decoding loss formula
is as follows:

Lcom = Trans f ormerde(concat(Mt, vt)) (5)

where concat() represents the function for concatenating matrices and vectors. Trans f ormerde()
represents the decoding module of the Transformer. In this paper, we use the decoding
module of Transformer. By constructing the aforementioned loss functions, the model is
trained using the following overall loss function:

L = αLctr + (1 − α)Lcom (6)

where α is the joint training parameter between the loss functions to balance the weights
of the two losses in the model. Through the training losses designed in CogCol, we aim
to use contrastive learning to make the model more suitable for learning structured code
language features and to perform more accurate code summarization tasks using more
accurately expressed code features.

4. Experimental Results and Discussion

In this section, we will introduce the experimental dataset, experimental metric, exper-
imental method, and experimental results.

4.1. Experimental Dataset

In this paper, we utilize the newest dataset provided by Hu et al. in their TL-CodeSum
model research [2], which is widely used in code summarization studies. Hu et al. processed
and segmented high-quality open-source projects from GitHub in the years 2015–2016 to
obtain various code snippets along with their corresponding natural language summaries.
The dataset underwent PDG extraction using TinyPDG and filtering for code without
identifiable graph structures. Subsequently, all the code was tokenized, and all tokens were
standardized to lowercase format. Table 2 shows the information of the processed dataset,
with the original dataset quantities indicated in parentheses.

Table 2. Dataset in this paper.

Total Set Training Set Validation Set Test Set

Number 64,825 (69,708) 51,861 6482 6482

Data are available at https://github.com/xing-hu/TL-CodeSum (accessed on 5 April 2024).

As shown in Table 2, we filtered out 4883 (7%) code-summarization pairs. This includes
instances where certain graph structures such as CFG and PDG were unidentifiable, as well

https://github.com/xing-hu/TL-CodeSum


Electronics 2024, 13, 1816 12 of 20

as code snippets that were either too long or too short to their corresponding summaries.
During the model training and evaluation partitioning, we split the data by 8:1:1, providing
80% of the data for training, while the remainder was used for model validation and testing.
Furthermore, we conducted the token features of code and their corresponding natural
language summaries, the statistical results are shown in Table 3.

Table 3. Statistical results of dataset.

Average Token Unique Token Length > 20 Length > 100 Mid.Length

Code 120.16 66,650 - 33.18% 68

Summarization 17.73 46,895 23.01% - 13

As shown in Table 3, the average token count (length) of code is 120.16, with a median
of 68 tokens. Additionally, 33.18% of the code snippets have a length exceeding 100 tokens,
indicating generally high code quality in this dataset and possibly containing rich semantic
and structural information. The average token count of summarization is 17.73, with a
median of 13 tokens, and 23.01% of comments have a token count exceeding 20. These
statistics suggest that natural language summaries typically require a significant amount of
vocabulary to describe code functionality.

4.2. Experimental Metric

In this paper, we employ three widely used evaluation metrics in code summarization:
BLEU, Rouge-L, and Meteor. The detailed explanations of each metric are as follows:

BLEU (Bilingual Evaluation Understudy) [38] is a widely used metric for automatically
evaluating the quality of machine translation. BLEU calculates scores by comparing the
overlap of n-grams between the model-generated translation and the reference translation.
BLEU considers both phrase matching and accuracy, and a higher score indicates better
model performance. The calculation formula for BLEU is as follows:

BLEU = BP × exp(
N

∑
n=1

ωn × log(pn)) (7)

where N is the maximum order of n-grams, pn is the precision of n-gram exact matches
between system output and reference translation, ωn is the weight of n-grams, and BP is
the brevity penalty. In this paper, in addition to the widely used value of 4 for n-grams, we
also include values of 1 and 2 as references.

Rouge (Recall-Oriented Understudy for Gisting Evaluation)-L [39] is used to evaluate
the quality of text summaries, particularly focusing on the overlap between the summaries
generated by the model and the reference summaries. ROUGE-L is based on the Longest
Common Subsequence (LCS), measuring the similarity between long sequences in the
generated summary and the reference summary. A higher ROUGE-L score indicates a
stronger summarization capability of the model. The calculation formula for ROUGE-L is
as follows:

Rouge-L =
LCS(C, R)

len(R)
(8)

where LCS(C, R) represents the length of the longest common subsequence between the
model output C and the reference summary R, and len(R) is the length of the reference
summary.

Meteor (Metric for Evaluation of Translation with Explicit Ordering) [40] is a com-
prehensive metric for evaluating translation quality. Meteor combines various aspects
of evaluation, considering exact matches, stem matches, synonym matches, and other
criteria. Meteor can overcome the limitations of BLEU evaluation and provide a more



Electronics 2024, 13, 1816 13 of 20

comprehensive reflection of translation quality. The calculation formula for Meteor is
as follows:

Meteor = (1 − β)× precision + β × Recall (9)

where β is a parameter balancing precision and recall. The calculation of precision and
recall includes factors such as exact matches, stem matches, and others. In this paper, the
value of β is 0.5.

4.3. Experimental Setup

We select seven models for experimental comparison, including Code-NN [16],
Tree2Seq [41], RL + Hybrid2Seq [17], DeepCom [3], API + Code [2], SIT3 [19], mAST +
GCN [20] and AST-trans [13]. Considering the potential impact of experimental prepro-
cessing on the results, to ensure fairness, for the open-source models DeepCom, SIT3, and
AST-trans were used with the parameters provided in the respective articles, we have tried
our best to fine-tune these models to achieve optimal performance.

To train the deep models, we set the batch size to 32. The Adam optimizer was used
for parameter updates during training. To enhance the model’s generalization capability,
we employ a dropout rate of 0.25. We set the learning rate to 1 × 10−3, the training time
was approximately 20 h, and the maximum number of epochs for training was set to
400. We set the maximum input length to 512, sequences longer than this length will be
truncated. We use the early stopping mechanism to avoid overfitting, following AST-trans,
we set the patience to 20. Our model is based on Transformer 4.17.0. All experiments
were implemented using PyTorch 1.2 and Python 3.7 and conducted on a GPU server
equipped with two Nvidia RTX 2080Ti GPUs. For the models reproduced in this paper,
initial parameters provided by each model were used based on adhering to the proposed
data processing procedure and fine-tuned accordingly.

4.4. Experimental Results

In order to evaluate the effectiveness of the code summary model CogCol based on
code graph contrastive learning, our experiments were guided by answering the following
research questions:

• RQ1: Can CogCol achieve the best performance compared to state-of-the-art code
summarization models?

• RQ2: Can each module in CogCol effectively enhance the performance of code
summarization?

• RQ3: What is the impact of the different parameter settings on CogCol?

4.4.1. Answer to RQ1

To verify whether CogCol can achieve the best performance in current research on
code summarization, we compared CogCol with eight mainstream code summarization
models. To ensure the fairness of the experiments, we reproduced the results of open-source
models on the processed dataset. The comparison results are shown in Table 4.

When compared with non-structural information-based models such as Code-NN,
RL + Hybrid2Seq, and API + Code, CogCol demonstrates significant improvement. For
instance, compared to the best-performing model API + Code, CogCol achieves an in-
crease of 10.12%, 6.79%, and 22.33% in BLEU-4, Rouge-L, and Meteor scores, respectively.
Compared to RL+Hybrid2Seq, CogCol shows improvements of 33.79%, 25.58%, 20.28%,
7.49%, and 27.6% in BLEU-1, BLEU-2, BLEU-4, Rouge-L, and Meteor scores, respectively.
Non-structural models overlook the potential semantics contained within code structure.
CogCol effectively represents code features by enhancing code graphs and transforming
them into graph sequences for learning. Additionally, the introduction of contrastive
learning further enhances model generalization, leading to better summarization results.

In comparison with models based on code structural information (AST) such as
Tree2Seq, SIT3, and AST-trans, CogCol still shows significant improvements. For example,



Electronics 2024, 13, 1816 14 of 20

compared to the state-of-the-art model AST-trans, CogCol outperforms it by 4.1%, 2.3%,
1.0%, 1.6%, and 6.1% across five metrics. Moreover, as reported in various code summariza-
tion studies [42–44], BLEU alone is insufficient to reflect the semantic alignment between
machine translation results and actual results. Therefore, a comprehensive evaluation with
metrics like Rouge-L and Meteor is necessary to assess translation effectiveness. In this
regard, CogCol’s improvements over AST-trans are more pronounced, with a 1.6% increase
in Rouge-L and a 6.1% increase in Meteor scores. Overall, CogCol effectively enhances
the effectiveness of AST-trans in code summarization tasks. AST primarily expresses the
syntactic information of the code, thereby having limited capability in conveying code
semantics. To overcome the limitation of AST, CogCol utilizes PDG to represent relation-
ships between statements, such as control and data dependencies. Furthermore, the PDG
enhancement algorithm proposed in this paper helps the model to further learn knowledge
similar to the original code’s structural information. Furthermore, contrastive learning
further strengthens the model’s generalization to provide better code summarization.

Table 4. Comparing CogCol with code summarization models (The parentheses indicate the improve-
ment compared to the state-of-the-art code summarization model, AST-trans.).

Models BLEU-1 BLEU-2 BLEU-4 Rouge-L Meteor

Code-NN 30.06 29.77 27.60 41.10 12.61

Tree2Seq 40.49 38.62 37.88 51.50 22.55

RL + Hybrid2Seq 40.33 39.13 38.22 51.91 22.75

DeepCom 43.65 41.27 39.78 51.92 24.01

API + Code 46.95 42.91 41.31 52.25 23.73

SIT3 50.77 46.81 45.03 54.42 27.13

mAST + GCN 50.90 46.85 45.17 54.71 27.17

AST-trans 51.82 48.04 45.49 54.91 27.37

CogCol 53.96 (4.1% ↑) 49.14 (2.3% ↑) 45.97 (1.0% ↑) 55.80 (1.6% ↑) 29.03 (6.1% ↑)

4.4.2. Answer to RQ2

To answer RQ2, we conducted experiments by respectively removing the contrastive
learning module from CogCol and replacing the graph learning module with the original
code sequence learning module (proposed by G2SC). Furthermore, to investigate the
impact of different positive samples on the contrastive learning module, experiments were
conducted separately on four types of positive contrastive learning samples. In the positive
sample ablation experiment, to ensure balance in contrastive learning, the number of
negative samples during training was reduced to 25% of the original. Table 5 shows the
results of CogCol using only each module.

In Table 5, “Transformer-base” represents the code summarization performance using
only the Transformer model. “w/o Graph” indicates the performance of CogCol without
using PDG and contrastive learning, after fine-tuning based on the Transformer. “w/o
CL” represents the performance on top of the Transformer where the code sequence
is replaced with E-PDG sequences. For all three models mentioned above in Table 5,
the performance drops significantly compared to CogCol. For instance, in BLEU-4, the
performance of the aforementioned three models decreased by 4.4%, 3.8%, and 3.4%,
respectively. Similarly, in Meteor, they dropped by 4.7%, 3.9%, and 2.9%. This indicates
that both the contrastive learning module and graph structural information are essential
components of the model and significantly enhance the effectiveness of code summarization.
“CL only CDM” represents the contrastive learning model in CogCol, using only control
flow masking. The subsequent three models represent using only data flow masking, only
statement swift, and only the minimum spanning tree for contrastive learning, respectively.
The four models using only one sample for contrastive learning show some improvement



Electronics 2024, 13, 1816 15 of 20

compared to CogCol without contrastive learning (CogCol-w/o CL). Among them, the
model “CL only Swift” using only statement swapping shows the best improvement, with
enhancements across all five metrics compared to the CogCol model without contrastive
learning. Although “CL only MST” shows a relatively small improvement compared to the
CogCol model without contrastive learning, combining the four types of positive samples
in the model “CogCol” yields the best performance regardless of which module is used.
In conclusion, each module in CogCol effectively enhances code summarization, and the
combination of multiple modules achieves the best summarization results.

Table 5. Ablation study for CogCol.

Models BLEU-1 BLEU-2 BLEU-4 Rouge-L Meteor

Transformer-base 49.92 46.27 43.91 53.16 27.66

–w/o Graph 50.46 46.31 44.18 53.93 27.91

–w/o CL 50.87 46.73 44.37 54.42 28.20

–CL only CDM 50.94 47.03 45.12 54.97 28.33

–CL only DDM 51.06 47.12 44.54 55.18 28.29

–CL only swift 51.16 47.26 45.19 55.28 28.47

–CL only MST 50.95 46.98 44.49 54.62 28.37

CogCol 51.82 47.79 45.94 55.80 29.03

4.4.3. Answer to RQ3

To explore the impact of the temperature parameter, the ratio of positive to negative
samples in contrastive learning, the weight parameter in contrastive learning and joint loss
with decoding, and the CogColg’s performance under different epochs, we conducted
experiments with different parameter settings while keeping other parameters fixed. Each
experiment indicator was represented using different colored lines and coordinate systems.
Figures 7–9 show the experimental results under different parameters.

Figure 7. The influence of temperature parameter parameter τ.

Figure 7 shows the experimental results of the influence of the temperature parameter
τ on the model performance in CogCol. In the contrastive loss, the temperature param-
eter τ amplifies the similarity comparison proportionally. The magnitude of similarity
between positive and negative examples serves as the exponent of the natural logarithm
e in the calculation of contrastive loss. Therefore, during contrastive learning, the model
prioritizes learning the differences between negative examples. As shown in Figure 7, if
the temperature parameter gradually decreases, the performance of the model slightly
decreases. However, when the temperature parameter τ decreases to 0.01, the model’s



Electronics 2024, 13, 1816 16 of 20

performance increases, and subsequently, as the temperature parameter decreases further,
the model’s performance does not improve. Although smaller temperature parameters can
increase the distance between anchor points and negative samples to improve the quality
of representation, setting the temperature parameter too small may cause the model to
overly focus on negative samples [45], resulting in poorer generalization ability. Therefore,
in this paper, we set the temperature parameter to 0.01.

Figure 8. The influence of joint learning parameter α.

Figure 8 shows the influence of joint training parameters of contrastive learning and
decoding loss on the model in CogCol. In model training, it is necessary to balance the
weights of different modules to achieve the best fit for the current task. For the experiment
on balancing joint training parameters, specific values of α (between 0 and 1 with an
interval of 0.05) should be first selected, and we chose the range between 0.65 and 1 as
the reference range. As shown in Figure 8, when α is set to 0.75, CogCol can achieve the
best balance between contrastive learning loss and decoding loss, resulting in the best code
summarization effect.

Figure 9. The influence of the ratio of negative samples to positive samples in contrastive learning.

Figure 9 shows the influence of the selection of positive and negative samples in
contrastive learning for CogCol. In this paper, for the collection of negative samples in
contrastive learning, sequences outside the batch (a batch contains 32 samples) of E-PDG
or their corresponding contrastive learning positive samples were selected. Increasing
the number of negative samples can increase the distance of unrelated representations in
high-dimensional space. However, too many negative samples will cause the model to



Electronics 2024, 13, 1816 17 of 20

focus more on the training related to negative samples and ignore the relationship between
positive samples and anchor points. As shown in Figure 9, when no negative samples
were selected, the model’s performance was poor. As the proportion of negative samples
increased, all indicators reached higher points when balanced with the number of positive
samples, and with further increase in the proportion of negative samples, three indicators
showed slight increases and decreases. Since a too large proportion of negative samples
will increase the burden of model training, as well as the risk of overfitting and excessive
emphasis on negative sample learning. So, in this paper, we adopt a balanced selection of
positive and negative samples in a 1:1 ratio.

As shown in Figure 10, CogCol employed an early stopping strategy, thus stopping
training when the epoch reached 135. For selecting the best model, to ensure fairness in
the experiments, we followed AST-trans and chose the checkpoint with the best BLEU
performance as the final model (in epoch 101), then evaluated it on the test set to obtain the
results shown in Table 4 of RQ1.

Figure 10. The evaluation of three metrics under different training epochs.

In this paper, we conducted parameter analysis to select reasonable parameter config-
urations to ensure that the model gradually converges to a better performance. Moreover,
by employing appropriate parameter configurations, the model can achieve better results
while ensuring both its generalization capability and training efficiency.

5. Conclusions

Natural language code summarization plays a crucial role in aiding software devel-
opers to swiftly and accurately comprehend existing code, thereby enhancing software
development efficiency. In this paper, we introduce CogCol, a code summarization model
based on contrastive learning utilizing code graphs, addressing the limitations of current
code summarization models in leveraging structural information and understanding codes
with similar structures. CogCol proposes a PDG enhancement method to derive an E-PDG
incorporating multiple graph features. Subsequently, CogCol develops four operations
on the E-PDG to construct positive samples for contrastive learning. By leveraging this
proposed contrastive learning approach, CogCol improves the comprehension of code
structural information for code summarization. Additionally, by employing a contrastive
learning model based on the Transformer, CogCol effectively captures code graph in-
formation and achieves significant advancements in code summarization. Experimental
results on large-scale open-source datasets demonstrate that CogCol outperforms existing
state-of-the-art code summarization models in terms of BLEU, Rouge-L, and Meteor.



Electronics 2024, 13, 1816 18 of 20

Author Contributions: Methodology, Y.S.; software, Y.S. and M.Y.; validation, Y.S., Y.Y. and L.C.; data
curation, Y.S.; writing—original draft preparation, Y.S.; writing—review and editing, Y.Y., M.Y. and
L.C.; supervision, Y.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CogCol Code graph-based Contrastive learning model
AST Abstract Syntax Tree
CFG Control Flow Graph
PDG Program Dependency Graph
MST Minimum Spanning Tree

References
1. Shi, C.; Cai, B.; Zhao, Y.; Gao, L.; Sood, K.; Xiang, Y. CoSS: Leveraging statement semantics for code summarization. IEEE Trans.

Softw. Eng. 2023, 49, 3472–3486. [CrossRef]
2. Hu, X.; Li, G.; Xia, X.; Lo, D.; Lu, S.; Jin, Z. Summarizing source code with transferred api knowledge. In Proceedings of the

Twenty-Seventh International Joint Conference on Artificial Intelli-Gence (IJCAI 2018), Stockholm, Sweden, 13–19 July 2018;
pp. 2269–2275.

3. Hu, X.; Li, G.; Xia, X.; Lo, D.; Jin, Z. Deep code comment generation. In Proceedings of the 26th Conference on Program
Comprehension, Gothenburg, Sweden, 28–29 May 2018; pp. 200–210.

4. Ferretti, C.; Saletta, M. Naturalness in Source Code Summarization. How Significant is it? In Proceedings of the IEEE/ACM 31st
International Conference on Program Comprehension, Melbourne, VIC, Australia, 15–16 May 2023; pp. 125–134.

5. Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong, M.; Shou, L.; Qin, B.; Liu, T.; Jiang, D.; et al. CodeBERT: A Pre-Trained
Model for Programming and Natural Languages. In Proceedings of the Findings of the Association for Computational Linguistics,
Online, 16–20 November 2020; pp. 1536–1547.

6. Ying, A.T.T.; Robillard, M.P. Code fragment summarization. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, Saint Petersburg, Russia, 18–26 August 2013; pp. 655–658.

7. Ying, A.T.T.; Robillard, M.P. Selection and presentation practices for code example summarization. In Proceedings of the 22nd
ACM Sigsoft International Symposium on Foundations of Software Engineering, Hong Kong, China, 16–22 November 2014;
pp. 460–471.

8. Rodeghero, P.; McMillan, C.; McBurney, P.W.; Bosch, N.; D’Mello, S. Improving automated source code summarization via an
eye-tracking study of programmers. In Proceedings of the 36th International Conference on Software Engineering, Hyderabad,
India, 31 May–7 June 2014; pp. 390–401.

9. McBurney, P.W.; McMillan, C. Automatic source code summarization of context for java methods. IEEE Trans. Softw. Eng. 2015,
42, 103–119. [CrossRef]

10. Haiduc, S.; Aponte, J.; Moreno, L.; Marcus, A. On the use of automated text summarization techniques for summarizing source
code. In Proceedings of the 17th Working Conference on Reverse Engineering, Beverly, MA, USA, 13–16 October 2010; pp. 35–44.

11. Eddy, B.P.; Robinson, J.A.; Kraft, N.A.; Carver, J.C. Evaluating source code summarization techniques: Replication and expansion.
In Proceedings of the 21st International Conference on Program Comprehension, San Francisco, CA, USA, 20–21 May 2013;
pp. 13–22.

12. Gu, X.; Zhang, H.; Kim, S. Deep code search. In Proceedings of the 40th International Conference on Software Engineering,
Gothenburg, Sweden, 27 May–3 June 2018; pp. 933–944.

13. Tang, Z.; Shen, X.; Li, C.; Ge, J.; Huang, L.; Zhu, Z.; Luo, B. AST-trans: Code summarization with efficient tree-structured attention.
In Proceedings of the 44th International Conference on Software Engineering, Pittsburgh, PA, USA, 25–27 May 2022; pp. 150–162.

14. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30.

15. Shi, Y.; Yin, Y.; Wang, Z.; Lo, D.; Zhang, T.; Xia, X.; Zhao, Y.; Xu, B. How to better utilize code graphs in semantic code search? In
Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Singapore, 14–18 November 2022; pp. 722–733.

http://doi.org/10.1109/TSE.2023.3256362
http://dx.doi.org/10.1109/TSE.2015.2465386


Electronics 2024, 13, 1816 19 of 20

16. Iyer, S.; Konstas, I.; Cheung, A.; Zettlemoyer, L. Summarizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; pp. 2073–2083.

17. Wan, Y.; Zhao, Z.; Yang, M.; Xu, G.; Ying, H.; Wu, J.; Yu, P.S. Improving automatic source code summarization via deep
reinforcement learning. In Proceedings of the 33rd International Conference on Automated Software Engineering, Montpellier,
France, 3–7 September 2018; pp. 397–407.

18. Tang, Z.; Li, C.; Ge, J.; Shen, X.; Zhu, Z.; Luo, B. AST-transformer: Encoding abstract syntax trees efficiently for code summarization.
In Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering, Melbourne, VIC, Australia,
15–19 November 2021; pp. 1193–1195.

19. Cai, R.; Liang, Z.; Xu, B.; Li, Z.; Hao, Y.; Chen, Y. TAG: Type auxiliary guiding for code comment generation. In Proceedings of the
Findings of the Association for Computational Linguistics, Online, 16–20 November 2020; pp. 291–301.

20. Choi, Y.; Bak, J.; Na, C.; Lee, J.H. Learning sequential and structural information for source code summarization. In Proceedings
of the Findings of the Association for Computational Linguistics, Online, 1–6 August 2021; pp. 2842–2851.

21. Wu, H.; Zhao, H.; Zhang, M. Code summarization with structure-induced transformer. In Proceedings of the Findings of the
Association for Computational Linguistics, Online, 1–6 August 2021; pp. 1078–1090.

22. Peng, H.; Mou, L.; Li, G.; Liu, Y.; Zhang, L.; Jin, Z. Building program vector representations for deep learning. In Proceedings
of the International Conference on Knowledge Science, Engineering and Management, Chongqing, China, 28–30 October 2015;
pp. 547–553.

23. Piech, C.; Huang, J.; Nguyen, A.; Phulsuksombati, M.; Sahami, M.; Guibas, L. Learning program embeddings to propagate
feedback on student code. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015;
pp. 1093–1102.

24. Dam, H.K.; Tran, T.; Pham, T. A deep language model for software code. arXiv 2016, arXiv:1608.02715.
25. Xin, X.; Lo, D. An effective change recommendation approach for supplementary bug fixes. Autom. Softw. Eng. 2017, 24, 455–498.
26. Lam, A.N.; Nguyen, A.T.; Nguyen, H.A. Combining deep learning with information retrieval to localize buggy files for bug

reports. In Proceedings of the International Conference on Automated Software Engineering, Lincoln, NE, USA, 9–13 November
2015; pp. 476–481.

27. White, M.; Tufano, M.; Vendome, C. Deep learning code fragments for code clone detection. In Proceedings of the International
Conference on Automated Software Engineering, Singapore, 3–7 September 2016; pp. 87–98.

28. Alon, U.; Zilberstein, M.; Levy, O. code2vec: Learning distributed representations of code. In Proceedings of the ACM on
Programming Languages, Phoenix, AZ, USA, 22–26 June 2019; Volume 3, pp. 1–29.

29. Mou, L.; Li, G.; Zhang, L.; Wang, T.; Jin, Z. Convolutional neural networks over tree structures for programming language
processing. In Proceedings of the Association for the Advancement of Artificial Intelligence, Phoenix, AZ, USA, 12–17 February
2016; pp. 1287–1293.

30. Wan, Y.; Shu, J.; Sui, Y.; Xu, G.; Zhao, Z.; Wu, J.; Yu, P. Multi-modal attention network learning for semantic source code retrieval.
In Proceedings of the International Conference on Automated Software Engineering, San Diego, CA, USA, 11–15 November 2019;
pp. 13–25.

31. Allamanis, M.; Tarlow, D.; Gordon, A.; Wei, Y. Bimodal modeling of source code and natural language. In Proceedings of the
International Conference on Machine Learning, Lille, France, 6–11 July 2015.

32. Liu, J.; Zeng, J.; Wang, X.; Liang, Z. Learning graph-based code representations for source-level functional similarity detection.
In Proceedings of the 45th International Conference on Software Engineering, Melbourne, VIC, Australia, 14–20 May 2023;
pp. 345–357.

33. Yadavally, A.; Nguyen, T.N.; Wang, W.; Wang, S. (Partial) Program Dependence Learning. In Proceedings of the 45th International
Conference on Software Engineering, Melbourne, VIC, Australia, 14–20 May 2023; pp. 2501–2513.

34. Guo, D.; Ren, S.; Lu, S.; Feng, Z.; Tang, D.; Liu, S.; Zhou, L.; Duan, N.; Svyatkovskiy, A.; Fu, S.; et al. GraphCodeBERT: Pre-training
Code Representations with Data Flow. In Proceedings of the 9th International Conference on Learning Representations, Virtual,
3–7 May 2021.

35. Ferrante, J.; Ottenstein, K.J.; Warren, J.D. The program dependence graph and its use in optimization. ACM Trans. Program. Lang.
Syst. 1987, 9, 319–349. [CrossRef]

36. Gad, W.; Alokla, A.; Nazih, W.; Aref, M.; Salem, A.B. DLBT: Deep Learning-Based Transformer to Generate Pseudo-Code from
Source Code. Comput. Mater. Contin. 2022, 70, 3117–3132. [CrossRef]

37. Jaiswal, A.; Babu, A.R.; Zadeh, M.Z.; Banerjee, D.; Makedon, F. A survey on contrastive self-supervised learning. Technologies
2020, 9, 2. [CrossRef]

38. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. Bleu: A method for automatic evaluation of machine translation. In Proceedings of
the 40th annual meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 6–12 July 2002; pp. 311–318.

39. Lin, C.Y. Rouge: A package for automatic evaluation of summaries. In Proceedings of the Text Summarization Branches out,
Barcelona, Spain, 25–26 July 2004; pp. 74–81.

40. Banerjee, S.; Lavie, A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization,
Ann Arbor, MI, USA, 29 June 2005; pp. 65–72.

http://dx.doi.org/10.1145/24039.24041
http://dx.doi.org/10.32604/cmc.2022.019884
http://dx.doi.org/10.3390/technologies9010002


Electronics 2024, 13, 1816 20 of 20

41. Eriguchi, A.; Hashimoto, K.; Tsuruoka, Y. Tree-to-sequence attentional neural machine translation. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; pp. 823–833.

42. Nie, P.; Zhang, J.; Li, J.J.; Mooney, R.J.; Gligoric, M. Impact of evaluation methodologies on code summarization. In Proceedings
of the 40th International Conference on Software Engineering, Olympic Valley, CA, USA, 23–26 October 2022; pp. 4936–4960.

43. Shi, E.; Wang, Y.; Du, L.; Chen, J.; Han, S.; Zhang, H.; Zhang, D.; Sun, H. On the evaluation of neural code summarization.
In Proceedings of the 44th International Conference on Software Engineering, Pittsburgh, PA, USA, 25–27 May 2022; pp. 1597–1608.

44. Haque, S.; Eberhart, Z.; Bansal, A.; McMillan, C. Semantic similarity metrics for evaluating source code summarization.
In Proceedings of the 30th IEEE/ACM International Conference on Program Comprehension, Pittsburgh, PA, USA, 16–17 May
2022; pp. 36–47.

45. Wang, F.; Liu, H. Understanding the Behaviour of Contrastive Loss. In Proceedings of the Computer Vision and Pattern
Recognition Conference, Nashville, TN, USA, 20–25 June 2021; pp. 2495–2504.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Related Work
	Code Summarization
	Deep Code Representation

	Proposed Algorithm
	Background and Basics Knowledge
	Code Graph and Code Sequence
	Transformer and Contrastive Learning

	Code Graph-Based Contrastive Learning Model
	Contrastive Learning Sample Construction Based on PDG
	Contrastive Learning Model for Code Structure Sequence Samples


	Experimental Results and Discussion
	Experimental Dataset
	Experimental Metric
	Experimental Setup
	Experimental Results
	Answer to RQ1
	Answer to RQ2
	Answer to RQ3


	Conclusions
	References

