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Abstract: Advanced electronics technology is moving towards smaller footprints and higher com-
putational power. In order to achieve this, advanced packaging techniques are currently being
considered, including organic, glass, and semiconductor-based substrates that allow for 2.5D or 3D
integration of chips and devices. Metal-core substrates are a new alternative with similar properties
to those of semiconductor-based substrates but with the added benefits of higher flexibility and
metal ductility. This work comprehensively compares the thermal properties of a novel metal-based
substrate, molybdenum, and silicon and fused silica glass substrates in the context of system-on-foil
(SoF) integration. A simple electronic technique is used to simulate the heat generated by a typical
CPU and to measure the heat dissipation properties of the substrates. The results indicate that
molybdenum and silicon are able to effectively dissipate a continuous power density of 2.3 W/mm2

as the surface temperature only increases by ~15 ◦C. In contrast, the surface temperature of fused
silica glass substrates increases by >140 ◦C for the same applied power. These simple techniques
and measurements were validated with infrared camera measurements as well as through finite
element analysis via COMSOL simulation. The results validate the use of molybdenum as an ad-
vanced packaging substrate and can be used to characterize new substrates and approaches for
advanced packaging.

Keywords: glass; heat capacity; molybdenum; printed circuit board; silicon; system-on-foil; thermal
conductivity

1. Introduction

Moore’s law has been the fundamental driving force in the semiconductor industry,
continuously pushing the fabrication of electrical devices to achieve smaller footprints,
increased device density, and enhanced computational power. With the constant advance
of these industry limits, new challenges arise. Heat management has become a critical
challenge when it comes to the structure, fabrication, and packaging of such devices. A
new approach for device packaging is being developed to manage heat dissipation through
the introduction of a system-on-foil (SoF) technology. SoF is an alternative to traditional
printed circuit boards (PCBs), typically used in system-on-chip applications, and is able to
provide improved heat management and dissipation. SoF provides a platform for either
packaged chips to be surface-mounted or active/passive devices to be fabricated on the foil
substrate directly, similar to on a silicon substrate. This technology provides high-speed
interconnected and high-density integrated circuits, allowing for a class of electronics that
can include a full system integrated onto a flexible substrate. Consequently, this class of
electronics can achieve reduced size, weight, cost, and power consumption when compared
to conventional PCB approaches [1].
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The progression from 2D to 2.5D to 3D packaging is crucial for the future trajectory
of the advanced packaging industry, which is expected to reach $70 billion by 2032, up
from $29 billion in 2022 [2]. One of the main motivations for thinned substrates is to reduce
electrical resistance, which then allows for more efficient heat removal from active circuitry
to a heat sink or other heating solutions [3,4]. Measuring the thermal conductivity of thin
electronic substrates has previously been studied using SiC Schottky diodes, which, in their
most basic form, are metal-semiconductor junctions, creating an electron barrier [5].

Glass, or SiO2, is another category of advanced packaging substrate material often
utilized in the optics and display industries [6]. However, this often requires a copper-based
heat sink/heat spreader to be incorporated between the devices and the interposer [6]. Gold
and copper are known to be a source of device contamination for front-end-of-line (FEOL)
device fabrication [7]. This results in significant incompatibilities if future work requires
device fabrication directly on substrates. Glass-based substrate materials for advanced
packaging have been demonstrated by Shorey et al. [7]. Ultra-high resistivity and low
electrical loss, along with an adjustable coefficient of thermal expansion, make glass one
of the many ideal substrates for interposer developments [7–11]. The work presented by
Shorey et al. utilized through-glass vias (TGVs) filled with copper for thermal management.
This alleviates the effect of the fused silica glass’s poor thermal properties in comparison to
silicon or metal-based interposers.

Metal-based or metal-core interposers have been suggested as a possible substrate for ad-
vanced packaging. Although metal-based interposers are not suitable for active devices, they
have the advantage of increased flexibility, ductility, and malleability so that 3D structures
can be implemented. As shown in a study presented by Zweben et al. [12], molybdenum
has been commonly used in alloys with copper for constraining layers of PCBs to obtain
low coefficient of thermal expansions (CTEs) and thermal management while serving as
heat sinks. In addition, the thermal conductivity of molybdenum, 138 W/m·K [13], is on
par with that of silicon, 124–130 W/m·K [14], and provides a similar thermal dissipation
characteristic. Work presented by Singh et al. and Reiser et al. also demonstrated the
application of molybdenum and copper alloys through different fabrication processes to
achieve an optimized alloy composition ratio of Cu and Mo for thermal management
applications [15,16]. However, there are not many reports where integrated heating ele-
ments, which more closely mimic the heat generated by a circuit on the substrate than other
measurement methods, are used to characterize the thermal properties of molybdenum
in an electronic packaging configuration. In addition to thermal properties, the rigidity of
the molybdenum substrate, while being flexible enough to withstand high stress impacts,
illustrates further material benefits over that of conventional silicon and glass substrates.

As such, there is a need to study the thermal properties of molybdenum as an advanced
packaging material with in situ resistors. This paper describes the design of in situ heater
and sense resistors fabricated on three different substrates: (1) molybdenum, (2) silicon, and
(3) fused silica glass in order to compare its performance to established interposer substrate
materials. The presented work illustrates the feasibility of molybdenum substrate-based
technology for advanced packaging applications through test structure fabrication and anal-
ysis of electrical testing results, subsequently confirmed by infrared camera measurements
and heat transfer modeling in COMSOL MultiphysicsTM. Simple structures are modeled
and fabricated on each substrate, where resistors will mimic chip-lets on substrates. The
presented results demonstrate the feasibility for molybdenum substrate-based technology
to be adopted for advanced packaging as well as presenting test techniques that can be
adopted by others for characterizing advanced packaging substrates.

2. Materials and Methods
2.1. Device Design

Illustrated below in Figure 1 is a two-dimensional figurative device layout design for
the presented work, along with thermal length in both the x and y directions. Individual
serpentine lines are patterned resistors, where gray thermal sensors (Rsense) with a total
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number of 2933 squares are on either side of a red heating resistor (Rheat) with a total
number of 800 squares in the center. The Rheat resistor in the center of the design simulates
heating circuitry or a CPU operating at high clock rates, which typically generates heat
flux densities of 1.12–2.5 W/mm2 [17]. The temperature sensors were placed at a different
distance to experimentally understand the lateral heat dissipation. The sheet resistance
for 180 nm of aluminum was calculated to be 0.15 Ω with expected Rheat and Rsense
resistances of 120 and 440 Ω, respectively.
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Figure 1. Layout and dimensions of the heating (Rheat) and sense (Rsense1 and Rsense2) resistors
used to characterize the thermal properties of silicon, molybdenum, and glass substrates.

2.2. Device Fabrication

The presented devices were fabricated on three different substrates in order to compare
the thermal performance of molybdenum to a typical material, such as silicon, as well as to an
alternative material, such as fused silica glass. All three substrates have a nominal diameter
of 4 inches and a thickness of 250 µm. Molybdenum, silicon <100>, and fused silica glass
wafers were procured from Lux Semiconductors (Albany, NY, USA), Virginia Semiconductors
(Fredericksburg, VA, USA), and Precision Micro-Optics (Burlington, MA, USA), respectively.

Shown in Figure 2 is a simplified process diagram for the fabrication of the test struc-
tures. The fabrication process starts with a standard RCA clean for the silicon substrates
and an acetone/isopropyl alcohol (IPA) ultrasonic clean for both molybdenum and glass
substrates. A 5 µm film of tetraethoxysilane (TEOS) was deposited onto molybdenum
and silicon substrates using an Applied Materials P5000 PECVD. Subsequently, a negative
photoresist, Futurrex NR9g-1500-PY, was applied onto a hexamethyldisilazane (HMDS)
primed wafer surface with a manual photoresist spin coater at 5000 rpm for a thickness
that was approximately 1 µm. A contact lithography, SUSS MA-150, with an i-line filter,
was used to transfer the pattern of the temperature heating and sensing resistor patterns
with a clear field mask. Next, 180 nm of aluminum (Al/Si, 98/2 wt%) was DC sputtered
in a CVC601 Sputter system and patterned for thermal heating and sensing resistors via
a lift-off process in an acetone bath with ultrasonication for approximately 5 min. Figure
S2 illustrates a not-to-scale cross-sectional view of the fabricated structures comparing the
three substrates.
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Figure 2. Schematic representation of the process flow indicating the main fabrication steps and
resultant structure. The same process was used to fabricate structures on silicon and molybdenum
substrates. The fused silica glass substrate did not have TEOS deposited.

2.3. Temperature Coefficient of Resistance Measurements and Calibration

The temperature coefficient of resistance (TCR) of the fabricated resistors was mea-
sured to calibrate the fabricated changes in resistance of the thin film resistor to temperature
changes. Individual chips were diced using an ADT Dicing Saw 7120, epoxied to an FR4
PCB board, and ultrasonically wire bonded with a 75-µm diameter Al/Si wire to copper
pads on the PCB board. Copper pins were then soldered to the copper pads, and extension
wires were connected. The resistance of the aluminum resistors was monitored using a
4-wire resistance method with an Agilent 34401A digital multimeter as the temperature
was changed in a temperature-controlled convection oven. The temperature was allowed to
stabilize for 10 min before the resistance measurements were taken. A total of 5 structures
were measured to ascertain the measurement error.

2.4. Thermal Characterization of the Substrates

Substrate characterization through electrical testing was carried out on whole wafers
(4-inch) using a Cascade Microtech RF-1 manual probe station, HP 6207B DC power supply,
Agilent 34401A digital multimeter and Digilent Analog Discovery board 2. An amplifying
circuit, illustrated in Figure 3a, was built with an IRLZ24 power MOSFET driven by a
waveform generator (Digilent AD2). A control resistor Rc of known resistance was placed in
series with Rheat in order to measure the current flowing through Rheat. The oscilloscope
channels of the Digilent Analog Discovery board 2 were used to measure the voltage drop
VC across RC (VC = VC

+ − VC
−) to accurately obtain the current (IC) going through Rheat.

Current (IC) was obtained by taking the ratio of VC over RC. Real-time resistance of Rheat
was then obtained by the ratio of IC over Vh (the voltage drop between node Vh

+ and Vh
−).

The power applied to the heating resistor (Rheat) was calculated using P = IC × Vh. With
the real-time resistance of Rheat, the temperature of the Rheat resistor could be calculated
from the measured TCR.

A separate circuit was used to simultaneously monitor the resistance and temperature
of the sense resistors Rsense, which were located some distance away from the heat resistors,
as presented in Figure 1. As shown in Figure 3b, similarly to the Rheat circuit, a control
resistor Rc was placed in series with Rsense in order to measure the current flowing through
Rsense. The oscilloscope channels of a separate Digilent Analog Discovery board 2 were
used to measure the voltage drop VC across RC (VC = VC

+ − VC
−) to accurately obtain the

current (IC) going through Rsense. The current (IC) was obtained by taking the ratio of VC
over RC. Real-time resistance of Rsense was obtained by the ratio of IC over vs. (the voltage
drop between node VS

+ and VS
−). With the real-time resistance of Rsense, the temperature

of the Rsense resistor could be calculated from the measured TCR.
A schematic representation of the test setup is shown in Figure 4. The schematic shows

a representation of the wafer being tested on a probe station with micro manipulators
connected to the heat and sense resistors of a particular structure, as seen in the inset.
The wafers were held to the 6-inch metal chuck of the probe station with a vacuum. The
driving and sense circuitry allowed for real-time monitoring of the power that was being
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applied as well as the resistance changes of the resistors being tested through four different
oscilloscope channels. A function generator and a voltage supply were adjusted to supply
the required power through the heat resistor as well as the desired waveform.
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Figure 4. Schematic representation of the test setup showing the probes that connected to the heat
and sense resistors and were connected to the driving and measuring circuits shown in the magnified
image. Additional microscope images of the test structures on molybdenum, silicon, and fused silica
glass substrates are shown in Figure S1a–c, respectively. The wafers were held with a vacuum to a
6-inch wafer chunk that acted as a heat sink.

A FLIR AX5 high-resolution thermal camera was used to measure the temperature
of the devices and explore lateral thermal dissipation under steady state conditions. The



Electronics 2024, 13, 1818 6 of 18

IR camera was calibrated by measuring the emissivity of each of the surface material ac-
cording to the recommended procedure by the manufacturer. Emissivity values of 0.75 and
0.65 were found for TEOS and aluminum, respectively.

2.5. Finite Element Analysis

The finite element analysis software COMSOL MultiphysicsTM, version 5.6, was used
to simulate a simplified heated structure and explore the theoretical thermal characteristics
of the fabricated structures. A 3D model exploring heat transfer in solids was used. The
governing equation of this model is:

Q + Qted = ρCpu·∇T +∇·q (1)

where Q represents the heat source (W/m3), Qted is the thermoelastic damping (W/m3),
ρ is the density (kg/m3), Cp is the specific heat capacity at constant pressure (J/(kg·K)),
u is the fluid velocity vector (m/s), ∇T is the temperature gradient (K), ∇ is the gradient
operator, and q is the conductive heat flux (W/m2).

The geometry created to represent the heated structure was composed of three stacked
components: the substrate, TEOS layer, and an aluminum-heating element on top. The
relevant material parameters for this study are listed in Table 1. The substrate was a block
feature with dimensions of 10 mm × 10 mm × 250 µm (L × W × H). The oxide layer
was a block feature with dimensions of 10 mm × 10 mm × 5 µm. In order to simplify the
simulations, the heating element was represented as a rectangular feature with dimensions
of 4 mm × 0.5 mm × 180 nm located directly in the top center of the substrate-oxide stack.
These dimensions were intended to replicate the feature dimensions fabricated on the
wafers tested.

Table 1. Material properties in solid phase.

Material Density
(kg m−3)

Specific Heat Capacity
(J kg−1 K−1)

Thermal Conductivity
(W m−1 K−1)

Molybdenum [18] 1.020 × 104 250 138
Silicon [14] 2.329 × 103 700 130
Fused silica glass [19] 2.203 × 103 703 1.38

The boundary conditions of the thermal model geometry can be described as follows.
The entirety of the geometry, apart from the bottom-most boundary, was thermally isolated
with an initial temperature of 298 K to neglect the minimal radiation losses. The bottom-
most boundary of the geometry was set to be a constant temperature of 298 K, to emulate
a chip mounted to a heat sink. Within the scope of the simulations performed, all solid
materials experienced conductive heat transfer, while the air gap implemented in other
simulations experienced minor radiation and convective heat transfer from the solid sub-
strate above. It can be noted that the air gap modeled was merely microns thick to emulate
the existence of debris and surface roughness-induced gaps and thus did not experience
significant natural or forced convection. Further details on the simulation conditions are
presented in the Supplementary Information.

3. Results and Discussion
3.1. Temperature Coefficient of Resistance Measurements

Figure 5a shows the resistance of Rheat and Rsense resistors of packaged devices in a
convection oven as the temperature of the oven is increased. The temperature coefficient of
resistance (TCR) α can be then extracted from the normalized slope as shown in Figure 5b
according to Equations (2) and (3):

RT = Ro(1 + α∆T) (2)
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α =
(R T − Ro

)
/Ro

(TT − To)
(3)

where α is TCR, RT represents the resistance at the temperature of interest, Ro is the resistance
at a reference temperature, and TT − To is the change in temperature. As shown in Figure 5,
the slope is 0.25%/◦C for Rheat and 0.27%/◦C for Rsense for a representative measurement.
The estimated error of this value was based on the measurement of five different test struc-
tures and is indicated on the plot. These values are comparable to published work thin
film (<200 nm) aluminum TCR ranging from 0.24 to 0.39%/◦C [20–24] whereas a 0.4%/◦C
of TCR is typical for bulk aluminum films [25]. Thin film metals generally have a lower
TCR in comparison to their bulk counterparts. This is due to material imperfections in the
method of thin film deposition, such as vacancies, dislocations, foreign atoms, and refractory
oxides [20]. As such, a TCR value of 0.26%/◦C was used to convert the change in resistance
to a temperature change from room temperature for the remainder of the experiment.
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Figure 5. (a) Representative measured resistance of Rheat and Rsense as a function to temperature.
(b) Normalized resistance as a function of temperature. The TCR value extracted from the slope is
0.25%/◦C for Rheat and 0.26%/◦C for Rsense.

3.2. Static Temperature Measurements

Electrical testing was performed on the fabricated devices as described in the Methods
sections. Figure 6 shows the temperature increase of the heating resistor Rheat when
2 Watts of power is applied on the silicon and molybdenum substrate. The temperature
increased rapidly from room temperature 25 ◦C to 40.6 ◦C and 39.9 ◦C (15 ◦C increase) for
silicon and molybdenum, respectively, and remained at that temperature after ~200 ms.
Only Rsense1 was monitored as the temperature of Rsense2 was too low to be measured in
most cases. Rsense will describe Rsense1 from now on in this paper. The final temperature
on the molybdenum substrate was slightly lower than on the silicon substrate. As such, the
temperature of Rsense was slightly lower and only increased to 34.1 ◦C and 33.9 ◦C (~10 ◦C
increase), respectively, as shown in Figure 7. Figure 6b shows that the temperature of the
heating resistor on the fused silica glass substrates starts to reach steady-state around 500 ms
and increases to a much higher temperature of 142.5 ◦C. On the other hand, the temperature
of the sense resistors on the glass substrates only increases to 34.6 ◦C within that time
period, which is slightly higher than that of the silicon and molybdenum substrates.



Electronics 2024, 13, 1818 8 of 18

Electronics 2024, 13, x FOR PEER REVIEW 8 of 19 
 

 

Figure 5. (a) Representative measured resistance of Rheat and Rsense as a function to temperature. 
(b) Normalized resistance as a function of temperature. The TCR value extracted from the slope is 
0.25%/°C for Rheat and 0.26%/°C for Rsense. 

3.2. Static Temperature Measurements 
Electrical testing was performed on the fabricated devices as described in the Meth-

ods sections. Figure 6 shows the temperature increase of the heating resistor Rheat when 
2 Watts of power is applied on the silicon and molybdenum substrate. The temperature 
increased rapidly from room temperature 25 °C to 40.6 °C and 39.9 °C (15 °C increase) for 
silicon and molybdenum, respectively, and remained at that temperature after ~200 ms. 
Only Rsense1 was monitored as the temperature of Rsense2 was too low to be measured 
in most cases. Rsense will describe Rsense1 from now on in this paper. The final temper-
ature on the molybdenum substrate was slightly lower than on the silicon substrate. As 
such, the temperature of Rsense was slightly lower and only increased to 34.1 °C and 33.9 
°C (~10 °C increase), respectively, as shown in Figure 7. Figure 6b shows that the temper-
ature of the heating resistor on the fused silica glass substrates starts to reach steady-state 
around 500 ms and increases to a much higher temperature of 142.5 °C. On the other hand, 
the temperature of the sense resistors on the glass substrates only increases to 34.6 °C 
within that time period, which is slightly higher than that of the silicon and molybdenum 
substrates. 

  
(a) (b) 

Figure 6. (a) Calculated temperature of the Rheat as function of time when 2 Watts of power are 
applied to Rheat for 0.5 s on the molybdenum and silicon substrates. (b) Calculated temperature of 
Rheat as function of time when 2 Watts of power are applied to Rheat for 0.5 s on the fused silica 
glass substrate. 
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Rheat as function of time when 2 Watts of power are applied to Rheat for 0.5 s on the fused silica
glass substrate.
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Figure 7. Calculated temperature of Rsense as function of time when 2 Watts of power are applied to
Rheat for 0.5 s for all three substrates. Rsense is 0.6 mm away from the heat source as indicated in the
inset. Only Rsense 1 (orange circled) was monitored as the temperature of Rsense2 was too low to be
measured in most cases.

In addition, a FLIR AX5 high-resolution thermal camera was used to measure the
temperature of the devices and explore lateral thermal dissipation. An emissivity value
of 0.65, determined through calibration for the aluminum regions, was used in all the
measurements since the temperature of the areas with aluminum was of most interest.
Shown in Figure 8 are the static temperature measurements for (a) molybdenum, (b) silicon,
and (c) fused silica glass substrates with power applied and under steady-state conditions.
Table 2 summarizes the peak temperature of the heating resistor at each given power
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output, 1 W, 2 W, and 2.7 W. The temperatures observed for an applied power of 2 Watts
closely match those observed through electrical measurements of the resistance of the
heater and sense resistors. It is also worth noting that molybdenum and silicon have almost
the same temperature readout at identical power input to Rheat, with molybdenum being
slightly lower than silicon. In addition, the lateral heat dissipation was observed to be
higher for the silicon and molybdenum substrates, such that they increased in temperature
at a similar rate as the heating resistors but decreased at a much faster rate on the fused
silica glass substrates. This can be observed in better detail in Figure 9 where it is shown
that the temperature on the fused silica glass substrate decays much faster laterally, reaching
room temperature within 1 mm of the heat source, whereas the temperature of the silicon and
molybdenum substrates remain elevated even at 3 mm away. It should also be noted that
the discontinuities observed as the temperature was measured over the aluminum resistors,
correspond to the different emissivity values of the surface materials (i.e., TEOS vs. aluminum).
Complete thermal imaging for molybdenum, silicon, and fused silica glass substrates for Rheat
at 0 W, 1 W, 2 W, and 2.7 W are shown in Supplementary Material Figure S3.
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Figure 8. Static temperature measurement with a FLIR AX5 thermal camera for (a) molybdenum,
(b) silicon, and (c) fused silica glass substrates with 2 W power applied to the heating resistor.

Table 2. Maximum temperature measurement at 1 W, 2 W, and 2.7 W power applied to Rheat.

Substrate
Power (W)

1 W 2 W 2.7 W

Molybdenum 36.7 ◦C 38.6 ◦C 40.3 ◦C
Silicon 37.1 ◦C 39.1 ◦C 40.9 ◦C

Fused silica glass 82.8 ◦C 136.0 ◦C 166.0 ◦C

3.3. Varied Pulse and Power Temperature Measurements

The thermal response to heat pulses of different frequencies and power was studied
for the three different substrates. The applied power was introduced as a
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order to prevent any switching signal discontinuities on the monitoring signals, which
follows a similar approach as Damcevska et al. [5]. For each substrate, signals were applied
with peak powers of 1 W, 2 W, and 2.7 W—corresponding to 1.13 W/mm2, 2.26 W/mm2,
and 3.05 W/mm2 respectively, for pulses of 5, 10, 20, 50, and 100 ms.

As described in the methods section, the resistance of both the heat and sense resistors
were calculated by measuring their voltage drop and the current flowing through a control
resistor, which was in series with the resistors measured and was kept at room temperature.
Figure 10 presents the data collected for a 1-W-5-ms pulse in a silicon substrate heating
resistor, which is a representative set of the data collected at each of the test conditions. To
provide an accurate measurement of the change in resistance, the heat and sense resistors
were initially biased at around 1.2 V, which corresponds to about 0.05 W and should result
in negligible heating. As shown in Figure 10a, a
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both the heat and sense resistors was monitored by measuring the voltage drop across
each of them as well as the current flowing through a control resistor in series. As shown
in Figure 10b, the measured resistance increases as the heating or sense resistor is heated
and the temperature can be calculated by applying the previously measured TCR. The
temperature response of the resistor corresponds to the temperature of the surface of the
substrate and depends on the substrate’s thermal characteristics. The peak temperature
can also be extracted for each pulse condition.
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Figure 11a–f shows the calculated temperature responses of the heat resistors fabri-
cated on silicon and molybdenum substrates for pulses of different frequencies and powers.
The thermal response increases with respect to increasing power as expected, but also
with increasing pulse time, which would indicate that a steady-state condition has not
been reached. The thermal response of the silicon and molybdenum substrates is very
similar for all power conditions as expected since the thermal conductivity of silicon and
molybdenum are similar to one another at 130 W/m·K and 138 W/m·K, respectively. On
the other hand, no major differences were observed in the time response even though the
heat capacitance of silicon and molybdenum are significantly different at 700 J/kg·K and
250 J/kg·K, respectively. These results indicate that the thermal conductivity dominates
under these particular dimensions of the substrates and the difference in specific heat
capacitance is not observed.
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pulse at five different pulse times is applied, (b,c) show the response for 2 W and 2.7 W peak pulses,
respectively. (d–f) show the temperature of the heat resistors fabricated on molybdenum substrates
for the indicated pulse conditions.

Figure 12a–c shows the measured temperature responses of the heat resistors fabricated
on fused silica glass substrates for pulses of different frequencies and powers. Unlike Si and
Mo, glass substrates experience a noticeable increase in the time it takes for the temperature
to return to its initial value. In addition, the peak temperature is significantly higher for
glass substrates, indicating that the glass substrate does not dissipate the heat away as
effectively as the silicon and molybdenum substrates as expected, due to the thermal
conductivity of glass being 1.38 W/m·K, magnitudes lower than silicon and molybdenum.
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Figure 13. Measured peak temperature of the heat resistors for different pulse duration and power 
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3.4. Finite Element Analysis Modeling 
As described in the test methods, the temperatures of the sense resistors described in 

Figure 1 were simultaneously monitored as the power and pulse time were varied. This 
was performed in order to analyze the heat dissipation properties of the substrates in the 

Figure 12. Plot (a) shows temperature of the heat resistors fabricated on a fused silica glass substrate for
1 W peak pulse at five different pulse times, graphs (b,c) show 2 W and 2.7 W peak pulses, respectively.

Peak temperature values were extracted from each of the pulses for silicon, molybde-
num, and glass as shown in Figure 13. In Figure 13a, the peak temperatures of silicon and
molybdenum have a similar trend and fall close to one another, with molybdenum being
slightly lower. In Figure 13b the maximum temperature of glass was significantly higher
than that of silicon and molybdenum. The peak temperatures continue to increase over the
pulse times studied, indicating that a steady-state temperature has not been achieved. This
is consistent with the data presented in Figures 6 and 7 where it is shown that silicon and
molybdenum reached steady-state for t > 200 ms and the fused silica glass for t > 500 ms.
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Figure 13. Measured peak temperature of the heat resistors for different pulse duration and power
levels for (a) silicon and molybdenum substrates; (b) fused silica glass substrate.

3.4. Finite Element Analysis Modeling

As described in the test methods, the temperatures of the sense resistors described in
Figure 1 were simultaneously monitored as the power and pulse time were varied. This
was performed in order to analyze the heat dissipation properties of the substrates in the
lateral direction. Only Rsense1 was monitored as the temperature of Rsense2 was too low
to be measured in most cases. Rsense will describe Rsense1 from now on in this paper.
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Figure 14 shows the peak temperature of the sense resistors when a
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3.3. Varied Pulse and Power Temperature Measurements 
The thermal response to heat pulses of different frequencies and power was studied 

for the three different substrates. The applied power was introduced as a ½ sine wave in 
order to prevent any switching signal discontinuities on the monitoring signals, which 
follows a similar approach as Damcevska et al. [5]. For each substrate, signals were 
applied with peak powers of 1 W, 2 W, and 2.7 W—corresponding to 1.13 W/mm2, 2.26 
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sine wave signal with
a power peak of 2.7 W and different pulse times were applied to the heat resistors. As seen
in Figure 14, the temperature of the heat resistors for silicon and molybdenum was similar
and about 4 ◦C lower than that of the heat resistor for the shown bias conditions. On the
other hand, the sense resistors built on the fused silica glass substrates were lower than
those built on silicon and molybdenum and about 50 to 100 ◦C lower than its heat resistors.
These results indicate that the high thermal conductivity of silicon and molybdenum allows
the heat to easily spread laterally. In contrast, for a fused silica glass substrate, the heat is
concentrated around where it is generated. These results agree with the observations made
with the infrared camera and presented in Figure 9, where the temperature of the glass
substrates decreased to room temperature in a shorter lateral distance than that of silicon
or molybdenum.
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Figure 14. Measured peak temperature of the sense resistors for different pulse duration and power
levels, indicating that heat dissipates laterally at a lower rate on the fused silica glass substrates.

Finite element analysis was performed to evaluate the validity of the test results and
to investigate other test conditions. A model in COMSOL MultiphysicsTM software was
used, indicated in the methods sections and described in more detail in the Supplementary
Information. The arrangement illustrated in Figure 15a was initially constructed to inves-
tigate the heat generated with a serpentine heating element. The material stack matches
are presented in Figure 2. The bottom of the substrate was set to a room temperature of
25 ◦C to match the test conditions. Figure 15a shows a uniform 10 V drop along the length
of the serpentine resistor which results in a uniform thermal power generation along its
length. As such, a simplified model of the heating resistor was used as shown in Figure 15b.
Figure 15b shows a typical output obtained through these simulations where the maximum
surface temperature is at the center of the heating resistor.

In order to match the experimental test conditions, the application of different frequen-
cies and peak powers was studied for the three different substrates. The applied power
was introduced as a squared
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sine wave to account for the fact that power instead of
voltage was applied. Figure 16 shows the peak temperatures of the different substrates for
the applied peak powers and pulse durations. Additional pulse times of shorter duration
of 1 ms and 0.1 ms were also simulated. The results indicate that temperature values were
in the same range as those obtained experimentally both through electrical measurements
and using the infrared camera. This validates our methodology since the simulation model
was based on the physical phenomena and included the thermal properties of the materials.
In contrast to the experimental data, the peak temperature of the silicon and molybdenum
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substrates seemed to plateau after 5 ms, indicating that the system reached steady-state at
that time. The experimental results indicated that steady-state was not reached until later
at t > 200 ms. The temperature of the fused silica substrate did not reach steady state in
the time interval studied, indicating that the lower thermal conductivity contributes to the
continuous accumulation of heat and a longer time to reach steady-state.
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To investigate the discrepancy between the experimental and simulated results, the
bottom surface of the silicon and molybdenum was modified and a low thermal conduc-
tivity layer, consisting of a 5 µm air gap, was added. The existence of any gaps of air at
the substrate–heat sink interface was expected to drastically effect the heat management of
the system, such that the only heat transfer that occurs through air is through radiation, as
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opposed to the ideal solid thermal conduction. These gaps are typically caused by surface
roughness and non-uniformity at the substrate–heat sink interface. Experimentally, the
substrates were held down to the 6 inch chuck probe station, which acted as a large heat
sink, with a vacuum of ~14.7 psi, and air gaps were expected.

The additional simulation results, containing a layer of air, shown in Figure 17, in-
dicated that with a non-ideal thermal contact to the back of the silicon and molybdenum
substrates, heat was dissipated much less efficiently, and a steady state was not reached
until a much later time. The effect of this poor thermal connection in the simulation results
more closely resembles the experimental results. A direct comparison of the simulated
and experimental data is presented in Figure S5 of the Supplementary Information. Even
with the addition of a low thermal conductive layer, a perfect match between the experi-
mental and simulated data was not observed. This illustrates the difficulties of matching
real-life conditions to a simulation model and validates the need for real-life techniques
and measurements in thermal analysis.
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Figure 17. Simulated measured peak temperature of the heat resistors for different pulse durations
and power levels for silicon and molybdenum substrates with an additional 5 µm air gap between
the substrate and the room temperature heat sink with the purpose of emulating a bad thermal
connection due to debris and non-uniform substrate geometry.

These observations illustrate that while it is still critical to utilize substrates and heat sinks
comprised of materials with high thermal conductivity, it is just as important to maintain a good
thermal connection at the substrate–heat sink interface. To accomplish this, various methods
and materials can be used. These can range from basic thermal management supplies, such as
thermal paste/grease, thermal pads, and solder bonds [26,27], to advanced micro-scale ther-
mal management developments, such as carbon/metal microtubes, microchannel cooling,
and wicking structures depending on specific device and heat management needs [28,29].
Some of these micro-structures can even be fabricated in conjunction with each other to
form pseudo-heat pipes at a micro-scale, allowing for increased heat dissipation rates while
maintaining device scaling and performance [30].

The data presented in this work demonstrate the feasibility of the proposed system-
on-foil technology as an advanced packaging solution for improved heat management and
device operation. Metal-based substrates, such as molybdenum, with much higher thermal
conductivities, provide lower maximum operating temperatures and can be made thinner
than traditional substrates for a lower thermal resistance [5]. Glass substrates, with a much
lower thermal conductivity, are much slower to reach maximum steady-state temperatures
and can be used to thermally isolate specific areas of a chip. Work presented by Lei et al. on
parylene-filled trenches utilized a similar approach of incorporating a low thermal conductiv-
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ity material (parylene) to isolate heat from areas of the fabricated silicon chip [31]. However,
the approach of the work suffers from material delamination and a limited temperature range
of operation, which has to be constrained below the melting temperature of parylene. Lastly,
the presented simulation and experimental data can support silicon oxide-based materials to
be used as an insulating trench around the perimeter of a chip or device, allowing multiple
chips to be placed in much closer proximity while preventing heat transfer from one chip to
another for future advanced 3D packaging architecture approaches.

4. Conclusions

This work shows a comprehensive comparison of the thermal properties between
molybdenum, silicon, and fused silica glass substrates through the fabrication of heating and
sensing thin-film resistors on 250 µm thick wafer substrates. The temperature coefficient of
resistance of the fabricated resistors was measured and used to calculate the temperature
of the surface of the substrates when different power conditions were applied. The results
indicate that molybdenum and silicon vertically dissipate heat effectively as the surface
temperature only increases by ~10–20 ◦C when continuous 1.2–3.1 W/mm2 of heat is applied.
In contrast, the surface temperature of fused silica glass substrates increases by >140 ◦C for
the same applied power. On the other hand, fused silica glass substrate is more effective at
laterally insulating heat as the surface temperature decreases to room temperature within a
lateral distance of 1.5mm. In contrast, the temperature of silicon and molybdenum substrates
only decreases slightly at an equal distance. These measurements and observations were
validated with infrared camera measurements as well as through finite element analysis via
COMSOL simulation. The importance of a good thermal connection is also presented and
discussed. Finally, a hybrid approach that combines the high and low thermal conduction of
these materials is discussed. Overall, the presented work and analysis provides guidance on
the electrical characterization of the thermal properties of materials for advanced electronics
packaging as well as future directions.
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tures on (a) molybdenum, (b) silicon, and (c) fused silica glass substrates; Figure S2: Microscope
image of test structures on (a) molybdenum, (b) silicon, and (c) fused silica glass substrates; Figure
S3: Static temperature measurement with a FLIR AX5 thermal camera for (a–d) molybdenum, (e–h)
silicon, and (i–l) fused silica glass substrates with 0 W, 1 W, 2 W, and 2.7 W power from heating
resistor (Rheat); Figure S4: 3D isometric and 2D cross-sectional views of test structures modeled in
component thickness correspond to dimensions referenced in Figure 3. Figure S5. Superimposed
simulation (dotted line) and experimental (solid line) measured peak temperature.
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