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Abstract: Multiple field programmable gate array (Multi-FPGA) systems are capable of forming larger
and more powerful computing units through high-speed interconnections between chips and are
beginning to be widely used by various computing service providers. However, the new computing
architecture brings new challenges to the system’s task resource management. Existing resource
management methods do not fully exploit resources in Multi-FPGA systems, and it is difficult to
support fast resource request and release. In this regard, we propose a geometric layout-based
resource management (GLRM) method for Multi-FPGA systems. First, a geometric layout-based task
combination algorithm (TCA) was proposed to ensure that the final system can use the available FPGA
resources more efficiently. Then, we optimised two resource management algorithms using TCA.
Compared with state-of-the-art resource management methods, TCA increases resource flexibility
by an average of 6% and resource utilisation by an average of 7%, and the two optimised resource
management methods are effective in improving resource management performance.

Keywords: geometric layout; resource management; resource allocation; task combination; Multi-FPGA

1. Introduction

Field programmable gate arrays (FPGAs) are gradually replacing X86 or GPU in high
performance computing platforms in resource-constrained environments due to their low
power consumption, high parallelism, and fast computing speed [1,2]. As applications
become larger and more complex, system-on-chip (SoC) architectures consisting of multiple
FPGAs (Multi-FPGA) that combine faster inter-chip interconnections to form larger, more
computationally intensive units have become popular [3,4]. In addition, the Dynamic
Partial Reconfiguration (DPR) technology of FPGA allows the runtime to dynamically
configure tasks to different reconfigurable partitions [5], further increasing the flexibility of
Multi-FPGA systems and virtually increasing the availability of hardware resources [6,7].

Although the Multi-FPGA architecture and DPR technology provide great flexibility in
system design, resource management and the overhead incurred during the reconfiguration
process must be carefully considered, as they can easily compromise the performance gains
achieved through hardware acceleration [8,9]. The multi-FPGA architecture is like a single
FPGA chip, which is a “black box” and invisible to the user, but when implementing
applications on it, some issues should be considered: task deployment location, resource
constraints and resource reuse, etc. In addition to employing DPR technology, there is a
need for further requirements regarding task segmentation and reorganization.

The original FPGA resource management algorithms utilize board-level granularity
for management. A typical form of organisation is known as MPC-X [10], which has
the advantage of the simplicity of operation and the disadvantage of very low resource
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flexibility. To improve the flexibility of resource usage, slot-based and BRAM-based re-
source management approaches have been proposed [11–13], which reduce the resource
granularity compared to FPGA chip-based resource management, with the disadvantage
of not being able to use the freed resources. With the development of dynamic par-
tially reconfigurable technology, researchers have proposed centralised bus-based [14]
and quadtree-based [15] resource management algorithms with a resource granularity
of resource rectangles without fixed boundaries, which can effectively control resource
fragmentation, but the flexibility and efficiency of resource utilisation are still low. In
addition, with the emergence of Multi-FPGA systems as a new computing architecture, the
existing single-chip resource management methods can no longer be adapted to multi-chip
FPGA resource management [16–18].

Overall, existing resource management methods suffer from high resource wastage
and are not applicable to Multi-FPGA systems. In response, we propose a geometric layout-
based resource management method on Multi-FPGA systems, which includes a geometric
layout-based task combination algorithm (TCA) and two resource management algorithms
optimized by TCA. The proposed method is experimentally verified and demonstrates the
effectiveness of resource management. In this context, the contributions can be summarised
as follows:

1. A geometric layout-based task combination algorithm to make sure that the final
system can make use of the available FPGA resources more efficiently. The available
resources and tasks on the FPGA chip are abstracted into resource rectangle models
and task rectangle models of specific length and width, and the optimal combina-
tion strategy of task rectangle models is generated with the aim of maximising the
utilisation of the resource rectangle models.

2. Two resource management algorithms optimized by TCA to improve resource man-
agement performance. The improved quadtree resource management algorithm uses
variables instead of resource layouts to simulate the allocation process to achieve
fast resource request and recovery. The improved central bus resource management
algorithm uses the resource fragments generated by task placement to place other
tasks to improve resource utilisation.

3. The experimental results show that the task combination algorithm is able to effectively
combine and place the tasks, with an average increase of 6% in resource flexibility and
an average increase of 7% in resource utilisation; moreover, the two optimised resource
management methods can effectively improve the resource management performance.

The paper is structured as follows. Section 2 discusses related work on FPGA resource
management. In Section 3, we introduce the geometric layout-based task combination
algorithm. In Section 4, we provide a detailed description of the two resource management
algorithm optimized by TCA. In Section 5, we evaluate the performance of our method.
Section 6 concludes the paper.

2. Related Work

The evolution of FPGA resource management can be abstracted as a process of chang-
ing resource granularity from large to small. In the early period, FPGA resource manage-
ment was managed by using board-level granularity, where multiple FPGAs were grouped
into a group and the minimum configuration unit (MCU) was a single-chip FPGA [19].
The advantage of the FPGA group is that it is easy to operate and meets the resilience
requirements for high-performance computing platforms, but the flexibility of using the
on-chip resource is very low [10,20].

With the huge resources of FPGAs and the maturity of DPR technology, the granularity
of FPGA resource management gradually tends to parts of the on-chip resources. At this
time, the MCU is called “slot”, which is a fixed-boundary resource rectangle [11,12]. On this
basis, ref. [13] proposed a resource management strategy, the MCU of which is a resource
rectangle with no fixed boundary. Due to the lack of fixed shape constraint, the flexibility
of resources is promoted, but the management of whole resources is lacking. In addition,
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the literature [15] proposed a quadtree algorithm (adaptive reconstruction region), the
MCU of which is a resource rectangle with no fixed boundary, and the management mode
is shown in Figure 1. This method can effectively control resource fragmentation and
ensure connectivity between tasks, but the bus would consume some resources. Another
resource management algorithm with no fixed boundary is based on a centralised bus
(combined reconstruction region) [14], as shown in Figure 2. This method reduces the
resource consumption of the bus, but the one-sided dimension is fixed.

Figure 1. Quadtree algorithm.

Figure 2. Centralized bus algorithm.

In [12], a task encapsulation strategy based on switch is proposed to place some sub-
tasks of one large task on multiple FPGAs, thereby enabling one large task to be placed on
multiple FPGAs. However, the configuration file and routing of the networked tasks are
complicated, which makes resource management difficult. Ref. [21] proposed a novel area
sharing method that leverages the exploratory capabilities of OpenCL, employing intel-
ligent clustering and custom, task-specific partitioning and mapping to more effectively
manage the resource requirements of tasks. By selecting the most appropriate distribution
that best enhances the temporal computation density based on runtime workload demands,
the system’s throughput is improved. Mehrabi [22] highlighted the importance of consider-
ing spatio-temporal strategies in FPGA resource management to achieve long-term target
allocations and optimize FPGA usage efficiency by tracking and correcting deviations.

In this work, we propose a task combination algorithm based on a geometric layout
and combine it with two state-of-the-art resource management algorithms. By integrating
applications for resources, the resource granularity is further reduced, the resource waste is
reduced, and the resource utilization and resource flexibility are improved. In addition, the
placement is accelerated by separating the allocation and relocation of resources.
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3. Geometric Layout-Based Task Combination Algorithm

In this work, we propose a geometric layout-based task combination algorithm that
reduces the number of resources occupied by the combination by allowing the tasks to
use resource fragments from other tasks in the combination, thus improving the resource
efficiency of the FPGA.

3.1. Task Combination Algorithm

FPGA resource management is constantly evolving towards more flexibility and
less fragmentation. To simplify the resource management process, the task combination
problem is abstracted as a rectangle combination problem by abstracting the tasks into
a set of rectangles on the FPGA based on their resource requirements. The combined
rectangle must contain all the tasks, as well as the buses needed to connect the tasks, to
ensure that all the small rectangles can be connected to the system’s buses. Suppose there
are several small rectangles Smission = {Rec1, Rec2, Rec3, . . .}; then, we need to find a set
of layouts Smission{C1, C2, C3, . . .}, each of which produces a large rectangle containing
all the rectangles in which the layout is contained. If any two rectangles are combined,
the length of the combining edges is not equal and there will be resource fragments. We
set the rectangle set SBIT = {Rec1, Rec2, . . .} and use (Wi, Hi) to represent the horizontal
and vertical sides of the rectangle. Suppose Wi > Hi and Wastei,j represents the size of
the resource fragment generated when Reci and Recj are combined; then, Wastei,j can be
calculated by Formula (1):

Wastei,j =

{
max(Hi, Hj) ∗ (Wi + Wj)− Wi ∗ Hi − Wj ∗ Hj, HorizontalCombination
max(Wi, Wj) ∗ (Hi + Hj)− Wi ∗ Hi − Wj ∗ Hj, VerticalCombination

(1)

According to the existing resource management algorithm, if there are three subtasks
a, b, and c, the amount of resources required for subtasks is Ra, Rb, and Rc, respectively.
Then, the resources Da, Db, and Dc allocated for each task satisfy Da > Ra, Db > Rb, and
Dc > Rc, and using the task combination algorithm proposed in this work, the system
allocates the resource amount Da+b+c to the combined three subtasks, which satisfies
Da+b+c ≥ Ra + Rb + Rc . The parameter P is used to represent the product of the subtask
and the product of the start–end time interval, that is, the weighted resource occupancy of
the subtask. As shown in Figure 3a, the start and end times of each subtask in the system
are (Sa, Ea), (Sb, Eb), and (Sc, Ec), respectively. The resources occupied in each task are Pa,
Pb, and Pc , and the total resources occupied by the three subtasks is shown in Formula (2):

Pa + Pb + Pc = Da ∗ (Ea − Sa) + Db ∗ (Eb − Sb) + Dc ∗ (Ec − Sc) (2)

As shown in Figure 3b, after the combining tasks, the start and end times of the three
tasks in the system are all (Sa, Eb), and the total weighted resource occupancy of the task is
Pa+b+c. The calculation method is as follows:

Pa+b+c = Da+b+c ∗ (max(Ea, Eb, Ec)− min(Sa, Sb, Sc)) (3)

Figure 3. Optimization of resource management algorithm performance by task combination. (a) Re-
sources occupied of each task before optimization, (b) Resource occupation time after task combination.
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If the weighted resource occupancy of the resource allocation and the combined
allocation meets Pa+b+c < Pa + Pb + Pc, the number of tasks accommodated by the system
at the same time can be increased by the task combination, and the total resource cost of
the task is reduced.

3.2. Implementation of Algorithm
3.2.1. Build the Sequence of Algorithm

The arrangement EdgeBIT = {E1, E2, E3, . . .} of all sides is constructed when the
combination of the adjacent sides is performed. If the adjacent edges correspond to different
rectangles and are both horizontal or vertical, a new combined rectangle is generated. If the
number of elements in SBIT is n and the number of newly generated rectangles is NNEW ,
then NNEW satisfies NNEW ≤ 2n − 1. A combination of the two edges that satisfy Ei < Ej
produces a new rectangle whose side length can be expressed as Formulation (4).

Recnew =

{
(Wi, Hi + Hj), Ei = Wi and Ej = Wj

(Wi + Wj, Hj), Ei = Hi and Ej = Hj
(4)

The maintenance of the edge sequence uses a greedy strategy, and under the premise
of including all the rectangles in SBIT , a new rectangle with the smallest Wastei,j can
be generated.

3.2.2. Two-Dimensional Equilibrium Evaluation

After the rectangular combination operation, several new rectangles are generated,
and it is necessary to select the acceptable combinations from these combinations and
record the progress of the combination. The characteristics of the min heap satisfy the
sorting method required for the rectangular combination selection. In order to compare the
advantages and disadvantages of the rectangular combination, a min heap is established
by sorting the unacceptable degrees.

We define the ratio of width to height (RWH) as the ratio of the lateral side length of
the rectangle to the length of the longitudinal side. The formula is expressed as follows:

RWHi = Wi/Hi (5)

The standard ratio of width to height (SRWH) is the ratio of the horizontal and vertical
edges of the resource layout generated by the resource management algorithm. Since the
dynamic reconfigurable regions of different FPGA chips have different shapes, the RWH of
the resource is used as the SRWH.

Moreover, combinations of smaller resource fragments and similar shapes and resource
shapes should be accepted. We define the acceptance degree (AD) as a reasonable degree
of the combination that can be expressed as Formulation (6):

ADi = αWastei + β|RWHi − SRWHi| (6)

where α denotes the weight of the resource fragment when calculating the acceptability, β
denotes the weight of the difference value between RWH and SRWH, and the range of α
and β is all from 0 to 1.

3.2.3. Maintain the Rectangular Heap Sequence Completion Combination

The details of maintaining the heap structure include the maintenance of the over-
all progress of the layout, in-heap and out-heap strategies and end conditions, and the
maintenance of the edge sequences. The interaction between the heap and the edge se-
quence, that is, the rectangular combination of the heap into the edge sequence and the
new combination of rectangles into the rectangular min heap, covers the entire process of
the rectangular combination.
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(1) Heap-to-edge sequence operation: The roof element is the current optimal com-
bination scheme and is recorded in the global combined process. The roof element is
popped and the heap structure is reconstructed, the four sides of the two sub-rectangles are
removed from the edge sequence, and the two sides of the new rectangle are added to the
edge sequence.

(2) Edge sequence to heap operation: After the two new edges enter the sequence,
respectively, based on the position, a new four-rectangular combination is generated
by the new edges and the first edge can be combined, forwards and backwards. Then,
the generated new rectangle enters the min heap in turn, and the min heap structure
is reconstructed.

Since the rectangles to be combined are not added one by one to the final combination
of rectangles, it is likely that the combination will be as shown in Figure 4. Rectangle
A is first combined with rectangle B as rectangle E, and rectangle C is combined with
rectangle D as rectangle F, and then rectangles E and F are combined. The final layout
scheme is composed, so the current layout progress of the min heap record is a variable
queue, and each element in the queue represents a segment of the combination process. In
addition, once rectangle A has been combined with rectangle B as rectangle E, rectangle
A is not accepted for other schemes to generate new rectangles. Only rectangle E and
other rectangles are accepted to generate a new rectangle, because rectangle E is the current
optimal solution. Furthermore, the combination of rectangle A and other rectangles belongs
to the current sub-optimal solution. According to the greedy strategy, only the optimal
solution is accepted. The complete procedure of the algorithm is described in Algorithm 1:

Algorithm 1 Combination process based on edge sequences and small top heaps

Input: Task Rectangle Collection missions
Output: Combined task shape

1: for m in missions do
2: Add the edges of m to the collection of edges edges
3: end for
4: Ascending order edges
5: for e in edges do
6: if e with a critical edge if it can be formed into a rectangle then
7: Rectangle joins two-dimensional equilibrium small top heap minHeap
8: end if
9: end for

10: while The top element of the heap does not contain all tasks do
11: for s in states do
12: while State of the top element of the heap and s != 0 and state of the top element

of the heap and s != s do
13: Element out of heap and rebuild heap structure
14: break
15: end while
16: end for
17: Accept the top element of the heap, exit the heap, and maintain the heap structure
18: Update the side sequences
19: end while
20: Insertion of buses for task combinations
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Figure 4. The process of rectangular combination.

3.2.4. Bus Insert

The insert bus operation is responsible for connecting each task to the global bus.
When the rectangle combination is complete, the bus is inserted between the rectangles
and all tasks are connected to the system bus.

Assume that no bus rectangle is located in the lower left corner of the blank resource
rectangle in the reconfigurable area; then, the bus resource is added from the lower left
corner to the upper right corner. As shown in the Figure 5, representing the two regions in
coordinates, the space occupied by the busless rectangle is (0, 0) → (Wi, Hi)

Figure 5. Schematic diagram of resource utilization by the bus.

For a rectangle R containing n sub-rectangles, the number of sub-rectangles in the
column containing the largest number of sub-barrels in R is Columnmax, and the maximum
of the rows is Rowmax. Then, the total height is increased by Columnmax, and the width
is increased by Rowmax, so that the increased bus resources can be connected to all child
rectangles with certainty. For a rectangle R containing n sub-rectangles, if the total height
increase is less than ⌈Columnmax/2⌉ or the total width increases by less than ⌈Rowmax/2⌉,
then it is not guaranteed that all rectangles are connected to the bus; meanwhile, when
the total height is increased by ⌈Columnmax/2⌉ and the total width is increased by Rowmax,
or when the total width is increased by ⌈Rowmax/2⌉ and the total height is increased by
Columnmax, it can be ensured that the increased space can place a bus that can be connected
to all rectangles.

As shown in Figure 6, we can choose to apply the bus resources along the positive
direction of the x-axis or the positive direction of the y-axis. Select the corresponding
resource application method according to the number of blank resources in both directions.

Figure 6. Horizontal application and vertical application.
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The total amount of resources applied is expressed by the following Formula (7).

(Wreq, Hreq) =

{
(W + Rowmax, H + ⌈Columnmax/2⌉), W/H < Wreq/Hreq

(W + ⌈Rowmax/2⌉, H + Columnmax), else
(7)

As shown in Algorithm 2, the process of inserting the bus is described as follows:

Algorithm 2 The process of inserting the bus

Input: Collection of tasks, shape of resources
Output: Combination of tasks after insertion of bus

1: Combination according to uninserted and inserted buses
2: Calculate the shape difference between the two combinations to obtain the maximum

number of row and column rectangles
3: if Follow the width and height of the no-bus to find the right resource then return false
4: end if
5: if More vertical white space in the selected resource area then
6: Requests for resources under the vertical application modality
7: else
8: Request for resources under the horizontal application modality
9: end if

10: if Failed application then return false
11: end if

3.3. Complexity Analysis

The algorithm strictly adheres to the optimal substructure and reduces the number
of invalid combinations. Each combination will reduce the possible combination, with
N indicating the number of tasks to be combined, the time complexity of the combined
algorithm is O(logN), the time complexity of maintaining the heap structure is O(logN),
and the final algorithm time complexity is O(logN2). The algorithm needs to create heap
space for all possible combinations that occur during the combination process, with a space
complexity of O(N2).

4. The Quadtree and Central Bus Resource Management Algorithm Optimized by TCA
4.1. Improved Quadtree Resource Management Algorithm

The traditional tree resource management structure has low efficiency due to the
overhead of maintaining the tree structure and the resource waste caused by different
aspect ratios of the task rectangle. To reduce the effect of rectangular aspect ratio, tasks are
combined using task combination algorithms. This paper proposes an improved method of
quadtree resource management that uses the count method instead of the tree structure
to reduce the overhead of maintaining the tree structure. Using array-based containers
instead of pointers can improve memory management efficiency and reduce program space
and time complexity.

(1) CLB resource constraints: the CLB resources applied by different subtasks cannot
overlap at the same time to prevent mutual interference. To satisfy the CLB resource
constraint, the horizontal spacing of the starting coordinates of the two rectangles is greater
than the width or longitudinal spacing of one of the rectangles, which is greater than the
height of one of the rectangles. The formula is expressed as follows:{

|x1 − x2| < w1 ∥ |x1 − x2| < w2

|y1 − y2| < h1 ∥ |y1 − y2| < h2
(8)

where |x1 − x2| represents the horizontal spacing between the starting coordinates of the
two rectangles, wi represents the width of rectangle i, and hi represents the height of
rectangle i.



Electronics 2024, 13, 1821 9 of 15

(2) Bandwidth constraints: bandwidth constraints are divided into bus bandwidth
constraints and on-chip resource bandwidth constraints. The division of the bus determines
the communication time, further affecting the total length of execution time of the subtask.
The formula is expressed as follows:

B1 − B2 > Trans1 (9)

(3) Storage constraints: the storage constraints need to consider the spacing of storage
resources. For a subtask that requires on-chip storage resources, the spacing determines
the minimum resource level that it can request, that is, the resource level contains at least
one storage resource.

By taking the logarithm of the total resources with a base of 4, resource requests are
graded, which is more in line with the quadtree resource management approach and also
convenient for computation.The “level-resource amount” table is created with the level
as the subscript, and the number of resources contained in the node of the current level
is stored. As shown in Figure 7, the entire reconfigurable partition is treated as a level 0
resource, and the resource level is incremented by one each time. When the quadtree is in
its initial state, the number of level 0 resources is 1, and the number of other equivalent
resources is 0. Instead of maintaining the quadtree structure, use the resource node amount
maintenance method. A container whose size is the total number of levels is a “level-node
amount” table; the table entry stores the amount of resources corresponding to the current
resource level and the number of remaining nodes. When a subtask requests a resource,
it can obtain a level suitable for its own needs and request resources by checking the
level-node amount table.

Figure 7. Resource level schematic.

The specific location of the resource is determined based on the task sequence. When
the resource application process is saved by the vector, if there are four resource rectangles
in a particular level, the resource rectangles are merged. When a quadtree is moved, a
specific resource area must be allocated to the task in the order in which the resources
are released.

A quadtree is generated according to the resource level and the occupied time period
corresponding to the subtask rectangle. Sort each subtask rectangle by release time, which
refers to the time when the task requests resources. For subtasks with the same release time,
resources are allocated to subtasks with earlier application resources, and the quadtree is
generated according to depth at first search. The complete procedure of the algorithm is
described in Algorithm 3.
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Algorithm 3 Delayed generation of quadtrees

Input: Interval during which the task is inside the device
Output: Generate a quadtree

1: Create a rectangular sequence of tasks for which resources are to be requested
2: Sort the task rectangles linearly in the order of when the tasks release their resources
3: Sorted in order of when resources were requested
4: Stable sorting by release time
5: Sort the task rectangle by the time heap of the task requesting resources
6: while All rectangles in the rectangle sequence are not all traversed do
7: while Resource release time > time to request the top element of the heap do
8: Release resources based on the level of resources requested by the mandate
9: Remove nodes from the task heap for which resources have been requested

10: Select subtrees in order of priority from smallest to largest numbering
11: Add tasks to the heap of tasks for which resources have been requested, main-

taining the heap structure
12: end while
13: end while

4.2. Improved Centralized Bus Resource Management Algorithm

In this paper, we further propose an optimization method for the centralized bus
resource management algorithm based on the task layout algorithm, which uses resource
fragments generated by task placement to place other tasks to improve resource utilization.
As shown in the Figure 8, the resources are shared after the tasks are combined.

Figure 8. Task combination under centralized bus.

Unlike the improved quadtree algorithm, which uses the RWH of the reconfigurable
area as the SRWH, the centralized bus resource management algorithm has no fixed SRWH,
and the SRWH changes as the shape of the resource changes. Therefore, the improved
algorithm accepts a combination of side lengths as close as possible to the resource to
determine the side length, regardless of SRWH. The degree of non-acceptance can be
expressed as follows:

ADi = αWastei +
β

RWH
(10)

where ADi is the unacceptance degree of rectangle i, α denotes the weight of the resource
fragment when calculating the acceptability, and β denotes the weight of the difference
value between RWH and SRWH.

There are different settings for the aspect ratio of the combination to adjust the ten-
dency of the shape of the combined task to evolve. The limiting edge length makes the
combined shape change towards the result of approaching a certain length as soon as possi-
ble to reduce the generation of resource fragments. If a combination makes the resource
less efficient, the design is not accepted.

Since the resource size is not strictly granular, the resource management process cannot
be simplified by simplifying the resource description. Therefore, the improved centralised
bus resource management algorithm does not adopt the design of separating the allocated
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resources and determining the resource location. As a result, the time complexity of the
centralised bus resource management algorithm for the resource application and release
process is higher than that of the quadtree resource management algorithm.

5. Experimental Results and Analysis

In this section, we use the Task Graphs for Free (TGFF) to generate task DAG graphs.
Then, based on the resource requirements of commonly used algorithms, the effectiveness
of the improved resource management algorithm in improving performance was verified.

5.1. Testing Environment

We use C++ to build an experimental platform to provide the system framework
and function preset interface for mentioned algorithms of task sorting, multiple sequence
maintenance, resource management, task combination, and simulated annealing, based on
which the algorithm proposed in this work and the comparison algorithm are implemented.
The test task set and device network structure adopt three task topology diagrams and
two physical FPGA chips to simulate the problem scenario of multi-task scheduling on
Multi-FPGA, and the algorithm program is designed in C++ language.

We set the common algorithms for target recognition and image processing as task
topology generated by TGFF [23]. The resource requirements of the tasks are shown in
Table 1 [24]. In Table 1, common algorithms for target recognition include Debayer, Rectifier,
Stereo match, Disparity, Flex-SURF, and Motor Control. Common algorithms for image
processing include FPN correction, Dark field corr., FFT, Bad pixel/spike CCSDS 122,
Binning, Hough Transform, and Median Filter. Slice represents the unit of measure for logic
cells in FPGAs. The full name of BRAM is block RAM. BRAM is the predefined hardware
resource in the FPGA that is dedicated to storage.

Table 1. List of common algorithm resource requirements.

Algorithm Slices BRAM

Target Recognition

Debayer (2x) 200 2
Rectifier (2x) 500 30
Stereo match 2500 30

Disparity 1000 15
Flex-SURF 1000 0

Motor Control (3x) 200 0

Image Processing

FPN correction 100 0
Dark field corr. 200 1

FFT 800 7
Bad pixel/spike 100 2

CCSDS 122 2500 12
Binning 300 4

Hough Transform 1800 14
Median Filter 800 0

The width and height of the task are generated by random numbers based on the
amount of logical resources in order to complete the simulation of the real shape of tasks.
Considering that, the resource management algorithm studied in this work may be partially
limited by the underlying layout and routing rules. Therefore, we validated the experiment
in the reconfigurable virtual layer without considering the rule limitations of specific
FPGA chips.

5.2. Evaluation Metrics

In order to evaluate the performance of resource management algorithms, three
evaluation metrics are introduced below:
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(1) Scheduling Flexibility (SF): Indicates the amount of tasks placed at the same time
as a percentage of the total amount of tasks; the expression is as follows.

SF =
1
s

s

∑
i=1

Mi
M

(11)

where s represents the amount of sequences, N represents the maximum amount of tasks
on the chip, and M represents the total amount of tasks.

(2) Resource Efficiency (RE): Indicates the rationality of the task M deployed in the
resource area R. It is used to evaluate the resource utilization of different FPGA on-chip
resource management algorithms. The expression is as follows.

RE =
p

∑
i=1

(
Ri

∑
p
j=1 Rj

∗ Mi
Ri

)
=

∑
p
i=1 Mi

∑
p
j=1 Rj

(12)

where p is the amount of tasks, M is the amount of resources requested by the task, and R
is the amount of resources acquired by the task.

(3) Biggest Resource Area (BRA): It represents the largest available free resource
rectangle on the FPGA chip, i.e., the maximum resource request that the FPGA chip can
respond to. For quadtree resource management, the BRA is shown in area A in Figure 9a.
For centralized bus resource management, the BRA is shown in area C in Figure 9b.

Figure 9. The BRA under the two resource management algorithms. (a) BRA for quadtree resource
management, (b) BRA for centralized bus resource management.

5.3. Results and Discussion

We simulate the allocation of resources according to the task sequence, which is the
sequence generated by the full alignment of the 11 tasks, and then generate resource
layouts according to the resource management algorithms before and after improvement,
respectively. Before simulating the allocation of resources, the device is considered empty,
and while simulating the allocation of resources, it becomes non-empty. As mentioned
above, the two improved algorithms have different advantages in managing resources
in empty and non-empty devices. Therefore, in addition to comparing the performance
indices of the two sets of original and improved algorithms, the design experiment also
compares the performance of the four algorithms in the two resource scenarios. In the
empty device, the comparison of the performance indices of the four resource management
algorithms is shown in Table 2.

First, we compare the original algorithm with the improved algorithm. In response to
the improvement of the quadtree resource management algorithm, the resource utilisation
rate has increased by 3.6%, the resource utilisation rate of the centralised bus resource
management algorithms has improved by 10.2%, and the performance improvement of
the centralised bus algorithm is more obvious. The improved quadtree algorithm has a
6.2% increase in scheduling flexibility, and the improved centralised bus algorithm has an
increase of 100%. Due to the increased resource utilisation, the improved algorithm can
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leave more space for more tasks. When resources are sufficient, the BRA is the largest task
that the system can accommodate, and the data are the averages generated by different
sequences. As can be seen from the table, the improved algorithm significantly increases
the size of the free area.

Table 2. Experimental results of four resource management algorithms on a blank device.

Resource Management Algorithm Resource
Utilization Rate

Scheduling
Flexibility

Largest Available
Free Resource

Quadtree Resource Management algorithm [15] 26.8% 60.4% 1256

Improved Quadtree Resource Management Algorithm 30.4% 66.6% 3447

Centralized Bus Resource Management Algorithm [14] 46.4% 97.1% 5281

Improved Centralized Bus Resource Management Algorithm 56.6% 100% 5821

Second, we compare the two sets of algorithms. Although the improved quadtree
algorithm has improved the indicator data, there is still a significant gap with the original
centralised bus algorithm. According to the analysis, the centralised bus algorithm has
obvious advantages in managing empty resources to complete the current space. However,
if fragmentation occurs in the system, its performance will decrease.

For devices that have been working for some time, some discontinuous resources are
already present in the device. In this case, the ability of the four algorithms to tolerate
release is compared. The performance comparison of the four algorithms is shown in
Table 3 and Figure 10.

Table 3. Experimental results of four resource management algorithms on non-blank devices.

Resource Management Algorithm Average Resource Utilization
Rate

Average Scheduling
Flexibility

Quadtree Resource Management Algorithm [15] 26.9% 46.0%

Improved Quadtree Resource Management Algorithm 37.2% 75.6%

Centralized Bus Resource Management Algorithm [14] 45.3% 65.0%

Improved Centralized Bus Resource Management Algorithm 55.0% 96.3%

The changes in the scheduling flexibility of the application release sequence are shown
in Figure 10. According to the results of the second set of experiments, it can be seen that the
random application and release of resources changes the numerical relationship between
the centralised bus algorithm and the quadtree algorithm. Figure 10 shows the reusability
of the generation layout by the quadtree resource management algorithm. Since the task
combination algorithm can change the rectangular shape of the application resource to
adapt to the resource layout at different times, there is greater flexibility in managing non-
empty devices than the original resource management algorithm, as the resource flexibility
of the two improved algorithms is always higher than the two original algorithms. The
quadtree algorithm is a resource management algorithm with fixed resource shape and
size. Multiple tasks in the task sequence share the same task space, and the freed resources
are more easily used by subsequent tasks, as shown in Figure 10 by the decreasing gap
between the two quadtree algorithms and the original centralised bus algorithm.
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Figure 10. The change in scheduling flexibility for a set of release sequences.

6. Conclusions

In response to the issue of low resource utilization in multi-FPGA systems, we propose
a geometric layout-based resource management method to improve the resource manage-
ment efficiency of the system. By comparing the differences in performance indicators
such as resource utilization, resource flexibility, and maximum available blank area among
improved algorithms, quadtree-based resource management algorithms, and centralized
bus-based resource management algorithms, the results showed that dynamic task com-
bination can effectively combine and place tasks, with an average increase in resource
flexibility of 6% and an average increase in resource utilization of 7%. In future work, we
will focus on task placement methods under resource-constrained conditions to introduce
appropriate constraints to ensure the effectiveness of resource management methods.
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