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Abstract: The definition of vehicle viewpoint annotations is ambiguous due to human subjective
judgment, which makes the cross-domain vehicle re-identification methods unable to learn the
viewpoint invariance features during source domain pre-training. This will further lead to cross-
view misalignment in downstream target domain tasks. To solve the above challenges, this paper
presents a dual-level viewpoint-learning framework that contains an angle invariance pre-training
method and a meta-orientation adaptation learning strategy. The dual-level viewpoint-annotation
proposal is first designed to concretely redefine the vehicle viewpoint from two aspects (i.e., angle-
level and orientation-level). An angle invariance pre-training method is then proposed to preserve
identity similarity and difference across the cross-view; this consists of a part-level pyramidal
network and an angle bias metric loss. Under the supervision of angle bias metric loss, the part-
level pyramidal network, as the backbone, learns the subtle differences of vehicles from different
angle-level viewpoints. Finally, a meta-orientation adaptation learning strategy is designed to extend
the generalization ability of the re-identification model to the unseen orientation-level viewpoints.
Simultaneously, the proposed meta-learning strategy enforces meta-orientation training and meta-
orientation testing according to the orientation-level viewpoints in the target domain. Extensive
experiments on public vehicle re-identification datasets demonstrate that the proposed method
combines the redefined dual-level viewpoint-information and significantly outperforms other state-
of-the-art methods in alleviating viewpoint variations.

Keywords: vehicle re-identification; dual-level viewpoint-annotation proposal; angle invariance
pre-training; meta-orientation adaptation learning

1. Introduction

Vehicle re-identification (Re-ID) aims to retrieve specific target vehicles across a multi-
camera surveillance system [1–3]. Although some supervised learning works have achieved
remarkable performance, the Re-ID system still suffers from the challenge of massive
manual annotations. Therefore, cross-domain Re-ID has been developed to alleviate the
bottleneck of labor costs, aiming to obtain initial parameters through source domain pre-
training and then generalize to the unseen target domain in an unsupervised manner.
Compared with person-based Re-ID [4–6], vehicle-based Re-ID will face unique challenges
in term of viewpoint annotations.

The primary challenge is that the coarse viewpoint annotation cannot accurately
parse the vehicle viewpoint, as shown in Figure 1a. Vehicle Re-ID can be regarded as
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learning discriminative features in a cross-view matching process [7,8]. To achieve view
alignment, several approaches divide the vehicle viewpoint into three categories (i.e., front,
rear, and side) and then conduct metric learning to learn robust representation. This
subjective division strategy will create ambiguity relative to the alignment of similar
vehicle viewpoints and make it impossible to parse the subtle differences between different
vehicles. The above issue motivates us to discover how to accurately calculate the vehicle
viewpoint and obtain viewpoint-invariant representation. Thus, this paper redefines a
novel dual-level viewpoint-annotation proposal for calculation of angle-level label θ and
orientation-level label O, as shown in Figure 1b,c. The dotted line in Figure 1c represents
dividing the angle-level annotations into multiple intervals. In the following, Section 3.2
will introduce the calculation method in detail.
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Figure 1. Illustration of different viewpoint annotations produced by (a) a coarse viewpoint, (b) an
angle-level viewpoint, and (c) an orientation-level viewpoint.

Another challenge is that viewpoint variations make the pre-training model not well
generalized to the unknown viewpoints in the target domain. Existing works focus on the
use of metric learning [9,10], local representation learning [11–14], camera relevance [15,16],
and the attention mechanism [17,18] to remedy the differences in cross-view variations.
However, these works do not consider the differences between the viewpoint variations in
the source domain and the target domain. As far as the labeled source domain is concerned,
our motivation is to obtain a pre-training model sensitive to angle-level deviation. For the
unlabeled target domain, the generalization ability as to unknown viewpoints is urgently
needed for this amelioration. Therefore, it is also crucial to develop a meta-learning strategy
based on cross-view data to adapt to unknown viewpoint variations.

Based on the aforementioned discussions, this paper proposes an angle invariance
pre-training and meta-orientation adaptation learning method to fit viewpoint variations
for cross-domain vehicle Re-ID. The major contributions of this paper are summarized in
three aspects as follows:

1. To overcome the ambiguity of viewpoint information in human subjectivity, a dual-
level viewpoint-annotation proposal is defined, one with a novel method for viewpoint
measurement, and one which can alleviate the subjective error of manual annotations.

2. A method of angle invariance pre-training is designed to explore identity similarity
and difference between vehicles across angle-level viewpoints. During the whole
pre-training procedure, the part-level pyramidal network (PLPNet) with angle bias
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metric loss is adopted to obtain the angle invariance feature, which provides more
subtle angle-level discrimination for the downstream target domain.

3. A meta-orientation adaptation learning strategy is proposed for extending Re-ID
model generalization in a meta-learning manner by utilizing orientation-level view-
point annotations.

2. Related Work

Existing Re-ID methods face some challenges in the domain of the unseen. This section
briefly reviews three main research directions related to our work: multi-view learning,
cross-domain learning, and meta-learning.

2.1. Multi-View Learning for Vehicle Re-ID

Previous vehicle Re-ID methods [19–21] relied on manually labeled vehicle viewpoints
to produce robust cross-view representations. Wang et al. [22] introduced a novel vehicle Re-
ID framework, including an orientation-invariant feature-embedding module and a spatial–
temporal regularization module The former module can better extract and align local region
features, and the latter can make the retrieval results more refined. Zhou et al. [23] utilized
two end-to-end deep architectures, named spatially concatenated convNet (SCCN) and
CNN-LSTM bi-directional loop (CLBL), to solve the vehicle viewpoint uncertainty problem.
Chu et al. [10] proposed a viewpoint-aware network (VANet), which learns two metrics for
comparable viewpoints and disparate viewpoints in two feature spaces, respectively. Liu
et al. [24] proposed a parsing guided cross-part reasoning network (PCRNet) which explores
vehicle parsing to learn discriminative part-level features and models the correlation among
vehicle parts to realize precise part alignments for vehicle Re-ID. Teng et al. [25] provided a
novel dataset called unmanned aerial vehicles vehicle re-identification (UAV-VeID) and
presented a viewpoint adversarial training technique and a multi-scale consensus loss to
improve the robustness and discriminative capacity of learned deep features. However, the
viewpoint annotation of the above methods is still a vague definition, and the viewpoint
error of manual annotation will reduce the generalization ability of the Re-ID model relative
to the unknown viewpoints of vehicles.

2.2. Cross-Domain Learning for Vehicle Re-ID

Cross-domain Re-ID [26,27] transfers knowledge to the unlabeled target domain for
unsupervised training through pre-training in the labeled source domain to reduce the
labor cost of the new domain. Yu et al. [28] proposed an unsupervised vehicle Re-ID
approach that uses label-free datasets through self-supervised metric learning (SSML)
based on a feature dictionary. Wang et al. [29] presented a multiple semantic knowledge
learning method to multi-categorize from different views automatically using various
cues. Also, the hard triple center loss was proposed to solve the unreliability of the
pseudo-label of cluster. Bashir et al. [30] introduced an approach that mainly includes
a progressive two-step cascading framework to transform the vehicle re-ID issue into
an unsupervised learning paradigm. Zheng et al. [31] addressed an original viewpoint-
aware clustering algorithm for vehicle Re-ID to solve the problem of the appearance
difference from various viewpoints. Peng et al. [32] developed a domain adaptation
structure composed of a vehicle transfer generative adversarial network (VTGAN) and an
attention-based feature learning network (ATTNet). Different from the above works, this
paper uses two aspects of viewpoint annotations to conduct source domain pre-training
and target domain unsupervised learning, respectively.

2.3. Meta-Learning for Vehicle Re-ID

Meta-learning aims to learn unknown tasks through the knowledge of existing tasks.
Some cross-domain methods based on meta-learning have gradually been proposed to
strengthen the robustness of the Re-ID model. Yang et al. [33] introduced a dynamic and
symmetric cross-entropy loss (DSCE) to mitigate the impact of noisy samples and a camera-



Electronics 2024, 13, 1823 4 of 20

aware meta-learning algorithm (MetaCam) to reduce the effect of camera movement.
Zhao et al. [34] utilized the memory-based multi-source meta-learning (M3L) framework
to improve the generalization ability of the unseen domains network based on training.
Yang et al. [35] attempted to use the meta-attack algorithm to deceive Re-ID models on
transparent domains through adversarial interference. Bai et al. [36] designed a domain
generalization Re-ID network, named the dual-meta generalization network (DMG-Net),
which makes full use of the multiple advantages of meta-learning. Most of the above
methods apply existing annotations for meta-learning. However, our motivation is to
combine the redefined viewpoint annotations with meta-learning to adapt to the viewpoint
variations of the unknown domain.

3. The Proposed Methods

In this section, we first describe the pipeline of the proposed method in Section 3.1.
Then, Section 3.2 designs a dual-level viewpoint-annotation proposal to define vehicle
viewpoint at the angle level and the orientation level. Based on the above novel viewpoint
definition, an angle invariance pre-training and a meta-orientation adaptation learning
strategy are presented in Sections 3.3 and 3.4, respectively.

3.1. The Overall Framework

Based on a previous analysis, coarse manual annotations are difficult to accurately
parse for a vehicle viewpoint. Additionally, a pre-training model with poor generalization
cannot adapt to unknown viewpoint variations. This section proposes a novel dual-level
viewpoint-learning framework to overcome the above challenges. Figure 2 shows the
overall process of the proposed method, which consists of three steps. The three vehicle
parts are first extracted by a pre-trained object-detection model, which then calculates the
dual-level viewpoint-annotations. Then, PLPNet is designed, which adopts pyramidal
convolution to mine subtle differences from different angle-level viewpoints. The source
domain pre-training adopts PLPNet with an angle bias metric loss to learn angle-invariant
features. Finally, a meta-orientation adaptation learning strategy is proposed that enforces a
meta-orientation training step and a meta-orientation test step according to the orientation-
level annotations to generalize the unknown viewpoints.
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3.2. Dual-Level Viewpoint-Annotation Proposal

In terms of the vehicle image captured by the two-dimensional space, annotating the
accurate vehicle viewpoint is controversial and challenging. Existing viewpoint measure-
ment methods are mainly used to manually annotate the vehicle viewpoint in the form of
a subjective consciousness, which causes viewpoint deviation and suffers from excessive
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labor costs. To overcome the coarse definition of viewpoint, this paper defines a dual-level
viewpoint-annotation proposal to accurately calculate vehicle viewpoint information at the
angle level and orientation level, respectively.

To compute the vehicle angle-level viewpoint annotations from two-dimensional space,
the crucial part-positioning of the training data is essential. Therefore, three pre-defined
vehicle parts are selected for the key detection modules (i.e., rear-view mirror, window,
and light). These parts meet the rigid requirements of the spatial geometry algorithm
and to facilitate the calculation of the deflection angle of the vehicle, which explicitly
reflects the various vehicle viewpoints. Subsequently, YOLOv4 [37] is adopted as our
part region-localization framework to accurately localize the pre-defined vehicle parts in
the source domain and target domain, respectively. Specifically, we randomly extracted
3000 images from the CompCars dataset for manual annotation of vehicle-part bounding
boxes. Subsequently, the annotated data is used as an input for pre-training using YOLOv4
to obtain the vehicle-part detection model.

YOLO (You Only Look Once) v4 is a cutting-edge object detection system renowned
for its efficiency and accuracy. YOLO v4 offers superior accuracy and speed in detecting
objects within images or video streams. YOLO v4 excels in several crucial aspects. Firstly,
it incorporates a feature pyramid network (FPN) to efficiently capture multi-scale features,
ensuring robust detection of objects of various sizes within images or video frames. This
guarantees that no object is missed, regardless of its scale or context. Moreover, YOLO v4
effectively extracts high-level features essential for precise object localization and classifica-
tion. Additionally, the architecture utilizes optimization techniques such as Mish activation
and spatial pyramid pooling (SPP) to boost model performance and efficiency. These
optimizations not only enhance accuracy but also accelerate inference speed, enabling
real-time object detection, even on devices with limited resources.

Given a vehicle image I, it is fed into YOLOv4 to obtain vehicle part detection results.
Figure 3 shows the five detection bounding boxes, which contain one window box Dw, two
rear-view mirror boxes Dn

m, and two light boxes Dn
l , where n ∈ {right, le f t} indicates the

direction of vehicle light or rear-view mirror.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 20 
 

 

In terms of the vehicle image captured by the two-dimensional space, annotating the 
accurate vehicle viewpoint is controversial and challenging. Existing viewpoint measure-
ment methods are mainly used to manually annotate the vehicle viewpoint in the form of 
a subjective consciousness, which causes viewpoint deviation and suffers from excessive 
labor costs. To overcome the coarse definition of viewpoint, this paper defines a dual-level 
viewpoint-annotation proposal to accurately calculate vehicle viewpoint information at 
the angle level and orientation level, respectively. 

To compute the vehicle angle-level viewpoint annotations from two-dimensional 
space, the crucial part-positioning of the training data is essential. Therefore, three pre-
defined vehicle parts are selected for the key detection modules (i.e., rear-view mirror, 
window, and light). These parts meet the rigid requirements of the spatial geometry algo-
rithm and to facilitate the calculation of the deflection angle of the vehicle, which explicitly 
reflects the various vehicle viewpoints. Subsequently, YOLOv4 [37] is adopted as our part 
region-localization framework to accurately localize the pre-defined vehicle parts in the 
source domain and target domain, respectively. Specifically, we randomly extracted 3000 
images from the CompCars dataset for manual annotation of vehicle-part bounding 
boxes. Subsequently, the annotated data is used as an input for pre-training using 
YOLOv4 to obtain the vehicle-part detection model. 

YOLO (You Only Look Once) v4 is a cutting-edge object detection system renowned 
for its efficiency and accuracy. YOLO v4 offers superior accuracy and speed in detecting 
objects within images or video streams. YOLO v4 excels in several crucial aspects. Firstly, 
it incorporates a feature pyramid network (FPN) to efficiently capture multi-scale features, 
ensuring robust detection of objects of various sizes within images or video frames. This 
guarantees that no object is missed, regardless of its scale or context. Moreover, YOLO v4 
effectively extracts high-level features essential for precise object localization and classifi-
cation. Additionally, the architecture utilizes optimization techniques such as Mish acti-
vation and spatial pyramid pooling (SPP) to boost model performance and efficiency. 
These optimizations not only enhance accuracy but also accelerate inference speed, ena-
bling real-time object detection, even on devices with limited resources. 

Given a vehicle image I, it is fed into YOLOv4 to obtain vehicle part detection results. 
Figure 3 shows the five detection bounding boxes, which contain one window box 𝐷 , 
two rear-view mirror boxes 𝐷  , and two light boxes 𝐷  , where 𝑛 ∈ 𝑟𝑖𝑔ℎ𝑡, 𝑙𝑒𝑓𝑡   indi-
cates the direction of vehicle light or rear-view mirror. 

left light right
 light

right 
mirror

left 
mirror

window

Dw

Dm

Dl

θ 

c

c

c

 
Figure 3. The calculation process of the angle-level viewpoint annotation. The dotted line indicates 
connecting the center points of two part bounding boxes. 

Figure 3. The calculation process of the angle-level viewpoint annotation. The dotted line indicates
connecting the center points of two part bounding boxes.

We calculate the center positions Dc
w, Dc

m, and Dc
l of the three vehicle parts, where Dc

w
is calculated from the center point of the coordinates of Dw. Dc

m and Dc
l are obtained from

the center point of the line (seen in the green dotted line of Figure 3) connecting the center
positions of the left and right boxes. Subsequently, we adopt Dc

w, Dc
m, and Dc

l to construct
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three edges and employ Dc
w as the vertex of the angle to calculate the angle-level viewpoint

θ. The angle θI
(

Dc
w, Dc

m, Dc
l
)

of image I can be written as

θI(Dc
w, Dc

m, Dc
l ) =


[

|(xc
m−xc

w)×(xc
l −xc

w)+(yc
m−yc

w)+(yc
l −yc

w)|√
(xc

m−xc
w)

2+(yc
m−yc

w)
2×

√
(xc

l −xc
w)

2
+(yc

l −yc
w)

2

]
; i f p = 5

181 ; else p ̸= 5
(1)

where p denotes the number of bounding boxes. Values x and y are abscissa and ordinate
values, respectively. Most notably, it has been discovered that when the camera captures
the vehicle images from the side, the vehicle-part detection fails to locate all of the ideal five-
part bounding boxes. To cope with the problems of few bounding boxes or no bounding
boxes, the angle will be uniformly set to 181 when p is not equal to 5. Thus, the whole
θI
(

Dc
w, Dc

m, Dc
l
)

ranges from 0 to 181.
Then, to obtain the orientation-level viewpoint, the entire angle range is evenly par-

titioned into N parts. Each vehicle image obtains the corresponding orientation-level
viewpoint annotation according to the range of its own angle RN . For the same reason,
cases with fewer than five bounding boxes will be annotated with the maximum value of N
plus 1 as the orientation-level annotations. The orientation-level viewpoint annotation OI
of image I is defined as

OI =

{
N; i f p = 5 and θI

(
Dc

w, Dc
m, Dc

l
)
∈ RN

max(N) + 1 ; else p ̸= 5
(2)

RN represents the range of angle range in the N-th orientation-level viewpoint. In
subsequent experiments, N is set to be 18.

This section creates a concrete dual-level definition of the previously ambiguous
viewpoint annotation, and the following sections will enforce the two-level viewpoint
information in source domain pre-training and target domain meta-learning.

3.3. Angle Invariance Pre-Training for Source Domain

In the cross-domain vehicle Re-ID task, the sensitivity of the source domain pre-
training model to the angle bias will directly affect the performance of the downstream task.
Therefore, a pre-training network, PLPNet, and an angle bias metric loss are developed to
discover identity, similarity, and difference under various angles in this section.

The architecture of PLPNet is shown in Figure 2. A pyramidal convolution (PyConv)
is introduced into each convolution layer of PLPNet, inspired by [38]. PyConv constructs
n-levels of different size kernels, which have different spatial resolutions and depths. It can
parse the vehicle image at multiple scales and capture more subtle features under different
receptive fields. The kernels with smaller receptive fields (3 × 3 and 5 × 5 size) can obtain
partial feature information of the vehicle, while the kernels with larger size (7 × 7 and
9 × 9 sized) can learn more reliable details about the context information of vehicle. The
output tensor t is then divided into K horizontal stripes and the vectors in each stripe are
averaged into a single partial-level vector f k

p(k = 1, 2, . . . , K). Each partial-level vector can
provide fine-grained feature information for vehicle image description, which improves
the Re-ID accuracy of the same vehicle from different angle-level viewpoints.

Different appearances under varying angle-level viewpoints lead to large differences
in extracted features. The angle variations drive the identical vehicles with various angles
to be assigned to mismatch. The angle bias metric loss is then proposed to distinguish the
subtle differences of different vehicles from nearby angles and identify the same vehicles
from different angles. The loss function Lsrc−angle is given as

Lsrc−angle(I1, I2, z, β, ∆θ) = (1 − z)·1
2

(
DE·e−∆θ

)2
+ z·1

2
max(0, margin − DE)

2 + z·DE·min(1, β − ∆θ)2 (3)
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where I1 and I2 denote a pair of input images, and z is a symbol to determine whether
the image pair shares the same ID. When the image pair belongs to the same ID, z = 1,
and otherwise z = 0. ∆θ represents the difference in image pair angles. DE denotes the
Euclidean distance of feature vectors extracted from samples I1 and I2. Values margin and
β are the thresholds of Euclidean distance and angle bias, respectively. It can be observed
that the angle bias metric loss draws together the same ID image pairs with large angle bias
and pushes away different ID image pairs with small angle bias.

During the source domain pre-training, the vehicle images to PLPNet go through
PyConv, which captures partial-level fine-grained information with higher connectivity. Si-
multaneously, the pre-training model learns angle invariance features under the supervision
of the angle bias metric loss and provides robust initial parameters for downstream tasks.

3.4. Meta-Orientation Adaptation Learning for Target Domain

Although the proposed pre-training model can distinguish subtle differences at differ-
ent angle-level viewpoints, it is insensitive to unlearned viewpoints in the target domain.
Due to this issue, the pre-training model will produce excessive orientation-level viewpoint
noises in the clustering process which reduce the downstream clustering quality. To enforce
the downstream target tasks to obtain the “learning to generalize unlearned orientation-
level viewpoints” capability, a meta-orientation adaptation learning strategy is proposed
to optimize iterations of the downstream model in the target domain. The whole meta-
learning strategy is divided into three steps: meta-orientation training, meta-orientation
testing, meta-update.

Meta-orientation training. Assume that the target domain contains N categories of
orientation-level viewpoints. We partition the target domain data into a meta-orientation
training set Otrain and a meta-orientation testing set Otest according to the orientation-level
viewpoint annotations. The split ratio of the orientation-level viewpoint of Otrain and Otest
is controlled by λ (Section 4.3 will discuss the impact of the split ratio λ on meta-learning).
To simultaneously optimize the downstream Re-ID model for both better generalization
and discrimination capabilities, we also introduce angle-level viewpoint annotations of the
target domain to supervise the meta-learning procedure. The meta-orientation train loss
Ltgt−train on the mini-batch samples Nbatch is formulated as:

Ltgt−train(Otrain, ϖtrain) =
Nbatch

∑
i=1

(
Ltgt−angle + Ltgt−cross

)
(4)

where Ltgt−angle means using the angle bias metric loss in the target domain. Ltgt−cross
indicates cross-entropy loss. ϖtrain is the temporary model parameter of the current epoch.

Meta-orientation test. The SGD optimizer updates the model parameter ϖtrain to a
temporary parameter ϖtest, and then the meta-orientation test step is combined to calculate
the meta-orientation test loss Ltgt−test, which is formulated as

Ltgt−test(Otest, ϖtest) =
Nbatch

∑
i=1

(
Ltgt−angle + Ltgt−cross

)
(5)

Meta-update. The update of the whole meta-learning procedure combines the super-
vision information of meta-orientation train loss and meta-orientation test loss. The final
loss function Lmeta of downstream target tasks is formulated as

Lmeta = Ltgt−train + Ltgt−test (6)

The proposed meta-learning strategy in this section adopts orientation-level anno-
tations to improve the generalization ability to unknown viewpoints and, additionally,
introduces angle-level annotations to learn subtle discrimination in each step.
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3.5. Discussion

Limitations of the Proposed Method. Although the proposed dual-level viewpoint-
learning framework can effectively alleviate subjective judgment errors, the accuracy of
viewpoint calculation will still depend on the performance of prior object detection models.
The limitations of the proposed method are summarized as follows:

1. The bounding box level of vehicle-part coordinates still belongs to the coarse-grained
perspective calculation method as the basis for viewpoint calculation. There is a lack
of utilization of pixel-level part detection for fine-grained viewpoint calculation.

2. The proposed dual-level viewpoint-framework focuses on calculating viewpoint in
scenarios where vehicle parts are visible, but does not fully consider the method of
calculating vehicle viewpoint in occluded scenes. Furthermore, there are also cases
where several bounding boxes are not detected.

Overfitting Analysis of the Proposed Method. In order to overcome the overfitting
problem in cross-domain Re-ID tasks, our method has designed the following two points
during the training process:

1. In terms of data augmentation used to alleviate overfitting issues, we use random
cropping, horizontal flipping, and erasing to expand the training set during the
training process. This operation can encourage the Re-ID model to continuously learn
more challenging generated data during each epoch process, thereby overcoming the
overfitting issues.

2. In terms of the proposed meta-learning strategy for alleviating the overfitting issues,
we randomly divide different orientation-level viewpoint annotations according to the
split ratio in each epoch of meta-learning. That is to say, the partitioning of the meta-
orientation training set and meta-orientation testing set during each epoch process is
dynamically changed based on directional viewpoint annotations. This design can
continuously improve the generalization ability of the Re-ID model to changes in
viewpoint, thereby alleviating overfitting issues during the training process.

4. Experiments

We elaborate on the datasets and experimental settings, respectively. Subsequently,
the proposed method is validated from Sections 4.3–4.6 through detailed analyses of the
sufficient experimental results.

4.1. Dataset and Evaluation Protocols

VeRi-776 [39] is collected from 20 real-world surveillance cameras in an urban district;
there are more than 50,000 images of 776 vehicles in total. The images have diverse labels
containing identity annotations, vehicle attributes and spatio-temporal information. The
dataset is divided into two subsets for training and testing. The training set includes
37,781 images of 576 vehicles and the test set includes 11,579 images of 200 vehicles.

VehicleID [40] is a dataset of vehicle images captured by real-world cameras during
the daytime. Each subject in VehicleID has a massive number of images collected from the
front and back, and some of the images are annotated with various aspects of model infor-
mation to facilitate the Ve-ID. Its training set includes 110,178 images of 13,134 vehicles. Its
test set is divided into three sections; they are as follows: Test800 is made up of 6532 probe
images and 800 gallery images of 800 vehicles, Test1600 is comprised of 11,385 probe images
and 1600 gallery images of 1600 vehicles, and Test2400 is composed of 17,638 probe images
and 2400 gallery images of 2400 vehicles.

VERI-Wild [41] contains 416,314 images of 40,671 subjects. The vehicle images are
captured by 174 high-definition cameras scattered randomly in the wild. Different from
the training set with 277,797 images of 30,671 identities, the testing set is divided as
follows: Test3000 with 41,816 images, Test5000 with 69,389 images, and Test10000 with
138,517 images, respectively.
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Probe refers to the collection of vehicle images which need to be queried. Gallery
is a candidate image set that contains all identity vehicles. The task of vehicle Re-ID is
the process of matching vehicle images with the same identity as the probe in the gallery
through a probe. That is to say, the difference between the two is that the probe is the target
vehicle to be retrieved, and the gallery is used to provide the probe for matching. Due
to limitations in computing power, we extracted 30,000 images from the training sets of
VeRi-776 and VERI-Wild as the target domains for training, respectively.

The detailed statistics of the above-mentioned three vehicle Re-ID datasets are shown
in Table 1.

Table 1. The Statistics of different vehicle Re-ID datasets.

Datasets Image Size Number of
Cameras

Number of Images (Number of IDs)

Total Set Training Set Test Set

VeRi-776 224 × 224 20 50,117 (776) 37,778 (576) 12,339 (200)

VehicleID 224 × 224 - 221,763 (26,267) 110,178 (13,134) Test800 Test1600 Test2400
6532 (800) 11,385 (1600) 17,638 (2400)

VeRi-Wild 224 × 224 176 416,314 (40,671) 277,794 (30,671) Test3000 Test5000 Test10000
41,816 (3000) 69,389 (5000) 138,517 (10,000)

For the cross-domain vehicle Re-ID task, the Rank-n accuracy (i.e., n = 1 or 5), and the
mean average precision (mAP) are utilized to evaluate overall performance for test images.

Calculation of Rank-n. The Rank-n is used to represent the hit probability of the
vehicle Re-ID ranking result, which represents the probability that the probe image i finds
the positive candidate sample within the top-n retrieval results,

Rank-n =
∑M

i=1 gt(i, n)
M

(7)

where M represents the total number from the probe set to be queried, and gt(i, n) is a
two-value logic function. When there are positive samples i in the top-n ranking results,
the value of gt(i, n) is equal to 1, otherwise it is 0.

Calculation of mAP. For each probe image, the average precision (AP) is computed as

AP =
∑N

j=1 p(j)× gt(j)

N
(8)

where N is the total number of images in the gallery set. Values p(j) and gt(j) represent the
precision at the j-th position in the ranking list and a two-value logic function, respectively.
If a probe matches the j-th element, then gt(j) = 1; otherwise, gt(j) = 0.

Then, the average accuracy mAP of each probe image by the value of AP can be
calculated as

mAP =
∑M

i=1 AP(i)
M

(9)

where M represents the total number from the probe set to be queried, and AP(i) represents
the accuracy AP calculated for each probe image i.

Calculation of Macro-averaged F1 score. The F1 score is the harmonic mean of
precision and recall, and it is commonly used to determine the accuracy of classification
tasks. Precision refers to the proportion of correctly identified positive items to all identified
positive items, while recall refers to the proportion of correctly identified positive items to
all actual positive items. The F1 score can be calculated as

F1 = 2 × Precision × Recall
Precision + Recall

=
2TP

2TP + FP + FN
(10)
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where TP (i.e., true positive) represents items correctly identified as positive, FP (i.e., false
positive) represents items incorrectly identified as positive, and FN (i.e., false negative)
represents items incorrectly identified as negative.

The Macro-F1 score used in this paper evaluates the overall classification performance
of vehicle Re-ID by calculating the arithmetic mean of all label F1 scores in the gallery. The
formula for Macro-F1 score is written as

Macro-F1 =
1
L

L

∑
l=1

2TPl
2TPl + FPl + FNl

(11)

where TPl , FPl , and FNl represent the number of true positives, false positives, and false
negatives for class l in all samples in the gallery set, respectively. L represents the number
of categories for all vehicles in the gallery set. The larger the value of Macro-F1, the better
the classification performance of the vehicle.

4.2. Experiment Settings

The experimental running environment is the Ubuntu 18.04 LTS operating system.
The proposed PLPNet is adopted as the backbone network during the entire UDA task.
The learning rate was set to 0.00035, the batch size to 64, and the updating rate to 0.2. All
training images were resized to 224 × 224. The Re-ID model is updated by the stochastic
gradient descent (SGD) optimizer and the total epoch is equal to 50. Significantly, for the
VehicleID, only coarse annotations of the front and rear views are available. To verify that
the proposed angle-level viewpoint annotations can alleviate the ambiguity definition,
VehicleID is unified as the source domain, and VeRi-776 and VERI-Wild are adopted as the
target domains in the subsequent cross-domain Re-ID experiments.

4.3. Ablation Studies

To evaluate the effectiveness of the proposed method in cross-domain tasks, we
conducted a sequence of detailed ablation analyses, as described in this section.

Effectiveness of each module. To verify the contribution of each individual module,
Table 2 reports the performance of different modules in cross-domain vehicle Re-ID. Each
module is explained as follows:

• “Direct Transfer” means adopting the traditional cross-domain Re-ID method, using
ResNet-50 as the backbone.

• The term “w/o (O + A)” means adopting the traditional cross-domain Re-ID method,
using PLPNet as the backbone.

• The term “w/o O” means not using the meta-orientation adaptation learning strategy
and only using the angle invariance pre-training method for cross-domain Re-ID tasks.

• The term “w/o A” means not using the angle invariance pre-training method and only
using the meta-orientation adaptation learning strategy for cross-domain Re-ID tasks.

• “Ours” means using all proposed modules.

As can be seen from the experimental results, the performance of the “Direct Transfer”
method is the worst. The key reason is that the negative impacts of viewpoint variations on
pre-training and downstream tasks are not considered. Compared with “Direct Transfer,”
the “w/o (O + A)” method greatly improves the accuracy of mAP and Rank. It is further
confirmed that the fine-grained features extracted by PLPNet in the source domain pre-
training can improve the accuracy of downstream tasks. It is noteworthy that “Our”
method achieves better performance than “w/o O” and “w/o A”. This result proves that
our method combines the advantages of angle-level viewpoint invariance and orientation-
level viewpoint generalization.
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Table 2. Comparison of each individual module when tested on two datasets. “R1” and “R5”
represent the accuracy rates of Rank-1 and Rank-5, respectively, with numerical units in percentages.
The highest accuracy is marked in bold.

Different
Modules

VeRi-776 VERI-Wild

R1 R5 mAP
Test3000 Test5000 Test10000

R1 R5 mAP R1 R5 mAP R1 R5 mAP

Direct Transfer 65.40 73.50 25.50 50.97 70.57 20.74 29.34 49.72 12.06 27.46 46.25 9.36
Ours w/o (O + A) 77.80 84.90 34.10 52.10 74.80 27.00 45.10 68.20 23.10 35.30 58.30 18.10

Ours w/o O 78.10 85.60 34.20 53.60 75.50 27.50 46.80 69.80 23.90 35.50 58.00 17.60
Ours w/o A 80.80 87.10 36.80 55.80 77.50 28.70 48.70 71.10 24.90 39.90 62.90 20.90

Ours 83.10 89.00 37.80 59.90 80.70 31.40 51.90 74.90 27.30 41.80 65.80 21.70

Effectiveness of different pre-training models. To demonstrate the superiority of
PLPNet as a pre-training model, we further explore the three backbones of ResNet-50, PCB,
and DenseNet for pre-training. Specifically, the ResNet-50 is a widely used traditional
baseline for feature extraction tasks, one which achieved high accuracy on each large target
classification dataset. PCB is a strong baseline for learning part-informed features, which
can better capture fine-grained features and context information between vehicle-part
regions. Compared with ResNet, DenseNet has a smaller number of parameters, and its
bypass enhances feature reuse with better resistance to fit. However, the complementary
parsing of coarse-grained features and fine-grained feature information plays an important
role in vehicle re-identification, one which is lacking in these three backbones above.
PLPNet adopts the advantages of pyramidal convolution, which can both accurately
capture fine-grained features and explore the relationship between different levels of
feature information. Thus, PLPNet improves the resolution accuracy of different angle-
level viewpoints of the same vehicle. As shown in Table 3, PLP-Net performs the best
compared with all the other pre-training models in both mAP and Rank-1 accuracy in
the two datasets, which verifies that PLPNet is a competitive pre-training model in the
cross-domain Re-ID task.

Table 3. Comparison of different pre-training models when tested on two datasets. “R1” and “R5”
represent the accuracy rates of Rank-1 and Rank-5, respectively, with numerical units in percentages.
The highest accuracy is marked in bold.

Different
Pre-Training

Models

VeRi-776 VERI-Wild

R1 R5 mAP
Test3000 Test5000 Test10000

R1 R5 mAP R1 R5 mAP R1 R5 mAP

ResNet-50 81.30 87.90 37.00 57.10 78.50 29.80 49.00 72.80 25.60 38.50 62.40 20.20
PCB 81.10 87.70 36.80 58.20 80.00 30.80 50.40 73.70 26.60 40.10 63.90 21.10

DenseNet 80.00 86.80 35.10 58.80 80.60 31.10 51.40 74.10 27.10 41.20 64.40 21.20
PLPNet (Ours) 83.10 89.00 37.80 59.90 80.70 31.40 51.90 74.90 27.30 41.80 65.80 21.70

The influence of different orientation-level view partitions N. The selection of
different orientation-level view partitions will be analyzed first, as it will directly affect
the precision of dual-level view definition at the orientation level. We evenly divide the
orientation-level view labels into 9, 12, 18, and 36 parts in the entire angle-level range.
Table 4 shows the influence of different selections on UDA Re-ID performance. In the
experimental results, it can be seen that our method yields the best Rank-1, Rank-5, and
mAP when the partition N is equal to 18. Therefore, the more orientation-level view labels
are divided, the performance of Re-ID may be increasingly affected, and it should be
maintained within an appropriate range.
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Table 4. Influence analyses of different orientation-level view partitions when tested on two datasets.
“R1” and “R5” represent the accuracy rates of Rank-1 and Rank-5, respectively, with numerical units
in percentages. The highest accuracy is marked in bold.

Orientation-Level
View Partition N

VeRi-776 VERI-Wild

R1 R5 mAP R1 R5 mAP

9 82.20 87.90 36.90 57.10 78.50 29.70
12 81.00 85.90 35.60 56.00 78.60 29.70
18 83.10 89.00 37.80 59.90 80.70 31.40
36 82.20 88.20 36.80 59.00 79.80 31.00

Sensitivity analysis on meta-learning split ratio. To find the best split ratio of meta-
orientation training step and meta-orientation testing step, we set a parameter λ between
0 and 1. Table 5 compares the Rank-1, Rank-5, and mAP of different λ in a meta-learning
manner. Notably, the proposed method achieves 83.10% Rank-1 and 37.80% mAP accuracy
when λ is set to 0.6 on VeRi-776. The interval accuracy of the value of parameter λ is close
to 0.6. It can be observed that during the training process of using two datasets as target
domains, the highest Re-ID performance is achieved when parameter λ is in a range close to
0.5 to 0.7, and when parameter λ is far from this range, it will make the Re-ID performance
more sensitive. That is to say, the selection of parameter λ will change the distribution of
vehicle viewpoint in the meta-learning process, thereby affecting the Re-ID performance.
On the other hand, the closer the value of parameter λ is to the range of 0.5 to 0.7, the
more evenly distributed the viewpoint information contained in the partitioned meta-
orientation training and meta-orientation testing. This also fully verifies the robustness of
our dual-level viewpoint-annotation proposal method, which can calculate the viewpoint
information of each sample in datasets with different data distributions.

Table 5. Influence analyses of different split ratios λ when tested on two datasets. “R1” and “R5”
represent the accuracy rates of Rank-1 and Rank-5, respectively, with numerical units in percentages.
The highest accuracy is marked in bold.

Meta-Learning
Split Ratio λ

VeRi-776 VERI-Wild

R1 R5 mAP R1 R5 mAP

0.1 79.30 87.90 36.20 56.40 78.20 29.90
0.2 81.10 87.60 36.10 59.30 79.60 31.00
0.3 78.90 88.60 35.00 58.60 80.10 31.40
0.4 79.70 88.10 35.90 59.80 80.60 31.40
0.5 81.20 88.60 36.10 59.40 80.30 31.30
0.6 83.10 89.00 37.80 59.90 80.70 31.40
0.7 81.60 87.90 36.70 58.70 80.30 31.30
0.8 79.50 87.70 36.30 57.80 79.30 30.70
0.9 78.80 87.80 35.90 57.40 79.20 30.60

4.4. Qualitative Visualization Analysis

Comparison of vehicle-part detection under different lighting conditions. To verify
the robustness of YOLOv4 under different lighting conditions, we visualize the detection
results of vehicle parts under bright and dark lighting conditions, as shown in Figure 4.
It can be observed that the YOLOv4 model can accurately detect predefined vehicle-
part bounding boxes under different lighting conditions. For instance, Example B can
accurately detect car windows, even if the surrounding background and reflective window
are extremely similar in color, under bright lighting conditions.
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Figure 4. Detection results of YOLO v4 on vehicle parts under different lighting conditions.

The t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization. We visual-
ize the t-SNE feature map of 10 classes of vehicles randomly sampled from the VeRi-776
dataset under different settings. It is worth noting that t-SNE is a non-linear dimensionality
reduction technique used to map high-dimensional data to a two-dimensional spatial coor-
dinate system. Therefore, the x-axis and y-axis represent the position information of the
vehicle sample in the reduced two-dimensional space, respectively. As shown in Figure 5,
different colors denote vehicle instance examples with different IDs, and different shapes
represent different viewpoints. “Ours” means using all proposed modules. “Baseline” and
“PLPNet” indicate that ResNet-50 and PLPNet are adopted as backbones for the traditional
cross-domain Re-ID method. It can be seen that PLPNet and our model achieve more
separable results among different classes than does the baseline model. Specifically, the
features of the same category extracted by PLPNet are most compact in the feature space.
What is more, the clusters of different categories are pulled away from each other. This
indicates that our model is not only able to learn angle invariance features by capturing
the fine-grained features of vehicles, but also has strong generalization ability to vehicle
viewpoint variations.
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Feature attention map visualizations. To further evaluate the validity of the features
generated from PLPNet in the “Ours” method, we randomly selected three images from the
VeRi-776 and compared them with the feature attention maps obtained from the baseline
(i.e., ResNet-50). As shown in Figure 6, it can be observed that the feature maps obtained
from the baseline only concentrate on some relatively fuzzy regions. The “Ours” method
using PLPNet focuses on more discriminative and fine-grained details of the vehicle, like
headlights and wheels, which are superior in capturing discriminative cues from the
vehicle image.
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image. These feature maps highlight distinctive semantic features obtained from each pre-training model.

The ranking results visualization. For each group, we list the top-10 ranking results
produced by the “Baseline”, “PLPNet”, and “Our” models in Figure 7, respectively. The
green bounding boxes indicate correct results and red ones correspond to false results.
Clearly, the “Baseline” model mainly identifies the different vehicles with the same view-
point, as the correct matchings are evident in both examples. However, “Our” model
can hit the highest number of correctly matched vehicles with different viewpoints in the
earlier ranking, and also achieves better performance than PLPNet. The main reason is
that there are frequent cases of the same vehicle with different viewpoints, which easily
confuses the Re-ID model. For Example B, the proposed dual-level viewpoint-proposal
method is used to calculate the viewpoint of the rear vehicle image. Subsequently, during
the training process, the appearance of vehicles from different viewpoints is learned to
obtain the ability to identify and track vehicles in different directions. Finally, the simi-
larities of feature vectors extracted between Example B and the candidate image sets are
used to determine whether it is the tracked target. Previous methods based on vehicle-
part detection mainly tracked specific targets via the region information of vehicle-part
bounding boxes. Unlike these methods, our method utilizes the position information of
vehicle-part bounding boxes to assist the Re-ID model in learning viewpoint-sensitive
appearance features for tracking targets, rather than relying on the appearance information
inside the part bounding boxes. Therefore, the “Ours” model combines PLPNet with
a meta-learning strategy to further improve the performance. In cases where different
vehicles have similar viewpoints, PLPNet can notice more subtle differences in vehicles
and discover additional clues, and the meta-learning strategy makes the Re-ID model more
sensitive to unseen-viewpoint perception.

Sample pair distances under different image attribute settings. To verify the robust-
ness of this article, we randomly selected 1500 pairs of positive and negative sample pairs
from the VeRi-776 dataset for Euclidean distance calculation. Subsequently, we randomly
increased or decreased brightness, contrast, and saturation by 20% for these sample pairs
to simulate different image attribute variations. Figure 8 shows the similarity distributions
of these sample pairs in the context of image brightness, contrast, and saturation. From
Figure 8a, it can be observed that the distance between the positive sample pairs of the orig-
inal image and the distance between the positive sample pairs after changing brightness,
contrast, and saturation are very similar, and the Euclidean distance value is small. The
distance distributions of the negative sample pairs after changing various image attributes
in Figure 8b are also similar and have a large Euclidean distance value. This indicates that
the proposed method can robustly bring positive sample pairs closer and push negative
sample pairs farther in an image context that changes brightness, contrast, and saturation.
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4.5. Comparison with State-of-the-Art Approaches

To demonstrate the superiority of the dual-level viewpoint-learning framework, we
compare the proposed method with the state-of-the-art methods on two UDA Re-ID
tasks, including VehicleID-to-VeRi-776 and VehicleID-to-VERI-Wild. The experimental
results are summarized in Table 6. Our method achieves a performance of 37.80% on
mAP and 83.10% on Rank-1 accuracy with VehicleID-to-VeRi-776. MMT combines hard
and soft pseudo labels in a collaborative training manner to tackle the problem of noisy
pseudo labels in the clustering phase. Although MMT has achieved remarkable clustering
results, the noise introduced by changes in vehicle perspective still reduces the accuracy
of clustering. Compared with the MMT, our method shows increases of 14.71% on mAP
and 22.73% on Rank-1 accuracy with VehicleID-to-VeRi-776. Additionally, our method
gains improvements of 8.91% mAP and 14.60% in Rank-1 accuracy over the second-best
performance method AE when tested on VeRi-776. Although AE minimizes distances
between similar identity instances to address the domain-shift problem, it does not consider
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the differences between different views of the same identity. For this purpose, our method
overcomes the shortcomings of the AE by combining dual-level viewpoint-information
during the training process.

Table 6. Comparison of the state-of-the-art cross-domain methods when tested on two datasets. “R1”
and “R5” represent the accuracy rates of Rank-1 and Rank-5, respectively, with numerical units in
percentages. The highest accuracy is marked in bold.

Methods

VeRi-776 VERI-Wild

R1 R5 mAP
Test3000 Test5000 Test10000

R1 R5 mAP R1 R5 mAP R1 R5 mAP

Direct Transfer 43.56 54.11 14.77 50.97 70.57 20.74 29.34 49.72 12.06 27.46 46.25 9.36
SPGAN [42] 50.72 62.63 15.83 28.77 48.27 10.63 24.60 42.96 8.97 23.40 40.78 7.13

UDA_TP [43] 51.85 64.54 18.12 46.30 59.20 12.30 16.20 29.00 5.21 17.65 29.99 4.53
ECN [44] 42.80 55.40 16.20 30.10 49.20 13.30 25.60 43.60 10.90 19.40 35.50 8.00

DomainMix [45] 53.30 64.60 15.40 33.20 53.80 14.10 28.40 48.10 12.20 21.10 38.90 9.00
SpCL [46] 58.90 68.00 24.40 48.80 72.80 25.10 42.00 66.10 21.50 32.70 55.70 16.60
MMT [47] 60.37 70.14 23.09 55.63 77.43 27.71 47.70 71.46 23.63 40.24 64.98 18.00

AE [48] 68.50 78.60 28.89 55.60 76.60 28.00 50.90 73.60 24.60 41.50 64.70 18.90
Ours 83.10 89.00 37.80 59.90 80.70 31.40 51.90 74.90 27.30 41.80 65.80 21.70

When using VehicleID as the source domain and VERI-Wild as the target domain, we
also achieve the best performance, of 31.40%, on mAP and 59.90% on Rank-1 accuracy,
which are 3.40% and 4.30% higher than AE. To further verify the effectiveness of our
proposed method, we also compare it with state-of-the-art ones, i.e., DomainMix and SpCL,
for viewpoint-aware problems in meta-learning for UDA vehicle Re-ID. It should be noted
that our method has a significant performance gain compared with them on each of the
three subsets of VERI-Wild. The proposed method outperforms the previous methods
by a considerable margin, which proves the superiority of dual-level viewpoint-learning
framework in alleviating the challenge of viewpoint variations.

To further validate the performance and efficiency of the proposed method in cross-
domain tasks, Table 7 reports the comparison of the proposed method with existing meth-
ods in Macro-averaged F1 score and time complexity. Compared to the well-performing
SpCL and MMT methods, the proposed method still maintains the best performance on
the Macro-averaged F1 score. The main reason is that these methods did not take into
account the challenge of vehicle viewpoint variations during the training process, while
the proposed method utilizes redefined dual-level viewpoint-information to fully explore
the visual appearance variations within and between domains.

Table 7. Comparison of computation time and classification performance with the state-of-the-art
cross-domain methods when tested on VeRi-776. “Time” and “Macro-F1” represent the computational
times and Macro-averaged F1 score, respectively. The units of values for “Time” and “Macro-F1” are
“hours: minutes: seconds” and percentages, respectively. The highest accuracy is marked in bold.

Methods
VeRi-776

Time Macro-F1

Direct Transfer 5 h: 30 m: 03 s 72.36
SPGAN [42] 7 h: 11 m: 22 s 85.43

UDA_TP [43] 8 h: 22 m: 15 s 81.71
ECN [44] 6 h: 47 m: 43 s 78.16

DomainMix [45] 9 h: 28 m: 48 s 85.22
SpCL [46] 14 h: 40 m: 39 s 84.96
MMT [47] 12 h: 01 m: 30 s 85.93

AE [48] 7 h: 33 m: 37 s 74.98
Ours 10 h: 31 m: 00 s 91.02
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In terms of computational time, the proposed method may not have the fastest training
speed due to the time cost of viewpoint calculation. Compared to other methods, the
computational time of our method is still within an acceptable range, and it is reasonable
to sacrifice a small portion of time to improve the Re-ID performance. In summary, the
proposed method can achieve excellent cross-domain vehicle Re-ID performance within a
reasonable calculation time interval.

4.6. Further Studies in Unsupervised Setting

The proposed dual-level viewpoint-learning framework is not only applicable to UDA
Re-ID tasks but also to unsupervised Re-ID ones. PLPNet is also employed as the backbone
of unsupervised Re-ID tasks. Simultaneously, angle bias metric loss and meta-orientation
adaptation learning jointly conduct the entire unsupervised training process to fuse dual-
level viewpoint-information. Table 8 shows the proposed method performance on the
two Re-ID datasets against state-of-the-art unsupervised methods. “Ours (Uns)” means
that the proposed method adopts an unsupervised manner to train the Re-ID model. The
comparison with these unsupervised methods shows that the dual-level viewpoint-learning
framework has also achieved competitive performance in unsupervised Re-ID tasks.

Table 8. Comparison of the state-of-the-art unsupervised methods when tested on two datasets. “R1”
and “R5” represent the accuracy rates of Rank-1 and Rank-5, respectively, with numerical units in
percentages. The highest accuracy is marked in bold.

Methods

VeRi-776 VERI-Wild

R1 R5 mAP
Test3000 Test5000 Test10000

R1 R5 mAP R1 R5 mAP R1 R5 mAP

MMT [47] 25.40 61.70 71.60 23.30 46.70 70.90 19.80 39.70 64.20 15.10 30.10 53.20
SPCL [46] 25.80 65.60 74.30 27.80 52.60 76.50 23.60 45.30 69.70 18.20 34.70 59.30

GSMLP-SMLC [49] 13.30 44.30 51.60 15.80 37.60 54.10 13.60 32.60 49.90 10.30 25.40 41.90
MetaCam [33] 25.60 67.10 76.00 28.20 53.90 76.90 24.10 46.00 70.20 18.80 35.90 59.70

SSML [28] 20.20 60.90 69.80 13.90 35.80 57.20 11.70 30.70 50.10 8.70 23.20 41.10
RLCC [50] 25.60 64.00 73.30 28.20 53.80 78.10 24.00 45.60 71.60 18.70 35.50 60.50
CACL [51] 23.70 55.70 69.00 28.00 53.30 77.40 24.00 45.70 70.80 18.50 35.30 60.40
Ours (Uns) 28.80 72.20 79.10 30.60 56.30 79.00 25.30 47.80 72.10 19.80 37.20 61.60

5. Conclusions

The rough definition of viewpoint annotations in existing methods will make it difficult
for Re-ID models to learn viewpoint-invariant features, leading to cross-view misalignment.
In this paper, our motivation is to redefine viewpoint annotations accurately to obtain
a cross-domain Re-ID model that can adapt to various viewpoint variations. Thus, a
dual-level viewpoint-learning framework is proposed to alleviate the viewpoint variations
in cross-domain Re-ID tasks. For the source domain pre-training, the proposed PLPNet
captures the subtle differences of vehicles from different angle-level viewpoints to gain
angle invariance features. Based on the pre-training model, we develop a meta-orientation
adaptation learning strategy to enhance generalization ability as to unknown viewpoints
in the target domain.

Compared to existing cross-domain methods, the strength of the proposed method
is that it can use two novel defined viewpoint annotations to learn vehicle viewpoint
variations at the angle and direction levels, respectively. That is to say, the proposed
method can not only achieve angle-level discrimination capacity in the source domain
pre-training but also extend generalization for the unknown orientation-level viewpoint in
the target domain. Extensive experimental results in VeRi-776 and VERI-Wild demonstrate
the superiority of the proposed method. In future work, pixel-level information will be
considered to determine identity relevance between diverse viewpoints.
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