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Abstract: The efficiency of heuristic search algorithms is a critical factor in the realm of cryptographic
primitive construction, particularly in the generation of highly nonlinear bijective permutations,
known as substitution boxes (S-boxes). The vast search space of 256! (256 factorial) permutations
for 8-bit sequences poses a significant challenge in isolating S-boxes with optimal nonlinearity, a
crucial property for enhancing the resilience of symmetric ciphers against cryptanalytic attacks.
Existing approaches to this problem suffer from high computational costs and limited success rates,
necessitating the development of more efficient and effective methods. This study introduces a novel
approach that addresses these limitations by dynamically adjusting the cost function parameters
within the hill-climbing heuristic search algorithm. By incorporating principles from dynamic
programming, our methodology leverages feedback from previous iterations to adaptively refine the
search trajectory, leading to a significant reduction in the number of iterations required to converge
on optimal solutions. Through extensive comparative analyses with state-of-the-art techniques, we
demonstrate that our approach achieves a remarkable 100% success rate in locating 8-bit bijective
S-boxes with maximal nonlinearity, while requiring only 50,000 iterations on average—a substantial
improvement over existing methods. The proposed dynamic parameter adaptation mechanism not
only enhances the computational efficiency of the search process, but also showcases the potential
for interdisciplinary collaboration between the fields of heuristic optimization and cryptography.
The practical implications of our findings are significant, as the ability to efficiently generate highly
nonlinear S-boxes directly contributes to the development of more secure and robust symmetric
encryption systems. Furthermore, the dynamic parameter adaptation concept introduced in this
study opens up new avenues for future research in the broader context of heuristic optimization and
its applications across various domains.

Keywords: cryptographic primitives; bijective permutations; substitution boxes; nonlinearity; heuris-
tic search; dynamic programming; cost function optimization; cryptanalysis

1. Introduction and Analysis of Related Works

Robust cryptographic primitives are vital for safeguarding information in the digital
age. As cyber threats continue to evolve, developing advanced encryption algorithms
capable of withstanding sophisticated attacks has become a critical research endeavor [1,2].
Among these primitives, substitution boxes (S-boxes) play a pivotal role in introducing
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nonlinearity to symmetric ciphers, thereby enhancing their resilience against cryptanalytic
techniques such as linear and differential cryptanalysis [3,4].

The construction of optimal S-boxes, which exhibit high nonlinearity and satisfy the
strict avalanche criterion, has been a central focus of cryptographic research [5,6]. However,
the generation of such S-boxes is a challenging combinatorial optimization problem, owing
to the vast search space and complex cryptographic properties that must be satisfied [7–9].
Classical algebraic constructions, while providing S-boxes with optimal parameters, often
introduce undesirable algebraic structures that can be exploited by attackers [10,11]. On
the other hand, purely random generation methods, although free from such structures,
have an exceedingly low probability of yielding S-boxes with the desired cryptographic
strength [6,12].

To address these challenges, researchers have increasingly turned to heuristic op-
timization techniques for S-box generation. These methods combine the elements of
randomness and guided search to efficiently explore the vast search space while avoiding
the pitfalls of purely algebraic or random constructions. Simulated annealing [6,13], genetic
algorithms [14–16], and hill climbing (HC) [17,18] have emerged as popular heuristic ap-
proaches in this domain. Significant progress has been made in adapting these algorithms
to the specific requirements of S-box generation, such as the incorporation of novel cost
functions to evaluate the cryptographic properties of candidate solutions [19–21].

Despite these advancements, generating optimal S-boxes remains a computationally
intensive task. Existing heuristic methods often require a large number of iterations to
converge on solutions with the desired nonlinearity [7,19,20]. Furthermore, the effectiveness
of these algorithms is highly dependent on the careful tuning of their parameters and the
design of the cost function [21–23]. There is a need for more efficient and adaptive heuristic
techniques that can navigate the search space more effectively and locate optimal S-boxes
with fewer computational resources. Table 1 presents a comparative overview of the
most prominent heuristic methods, highlighting their key features, performance metrics,
and limitations.

Table 1. Comparison of heuristic techniques for S-box generation.

Technique Key Features Performance Metrics Limitations

Simulated Annealing
[6,13]—Probabilistic
search

Temperature-based
acceptance criteria

Nonlinearity:
102–104, Iterations:
>500,000

High computational
cost, sensitive to
parameter tuning

Genetic Algorithms
[14–16]—Population-
based search

Crossover and
mutation operators

Nonlinearity:
100–104, Iterations:
>200,000

Premature
convergence,
difficulty in
maintaining diversity

Hill Climbing
[17,18]—Gradient-
based search

Local neighborhood
exploration

Nonlinearity:
102–104, Iterations:
>100,000

Prone to getting stuck
in local optima,
dependent on initial
solution

Particle Swarm
Optimization [24]

Swarm intelligence,
Velocity and
position updates

Nonlinearity: 94–100 Susceptibility to
local optima

Our Proposed
Method

Dynamic parameter
adaptation, Efficient
hill climbing with
WCFS cost function

Nonlinearity: 104,
Iterations: <50,000

Potential for further
improvement

As evident from Table 1, existing heuristic techniques for S-box generation suffer
from various limitations, such as high computational costs, sensitivity to parameter tuning,
premature convergence, and susceptibility to local optima. Moreover, these methods often
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require a large number of iterations to converge on solutions with the desired nonlinearity,
leading to significant computational overhead.

In contrast, our proposed method introduces a novel dynamic parameter adaptation
mechanism that enhances the efficiency and effectiveness of the hill-climbing algorithm.
By dynamically adjusting the cost function parameters based on the search progress, our
approach is able to locate optimal S-boxes with fewer iterations and higher nonlinearity
compared to state-of-the-art techniques.

We validate our method through extensive experiments and comparative analyses
with state-of-the-art heuristic techniques for S-box generation. The results demonstrate that
our dynamic parameter adaptation strategy consistently outperforms existing approaches,
achieving a 100% success rate in finding S-boxes with nonlinearity of 104 or higher while
requiring significantly fewer iterations. Furthermore, we provide insights into the behavior
of our algorithm and discuss the implications of our findings for the design of efficient
heuristic methods in cryptography.

The comparative analysis presented in Table 1 highlights the novelty and advantages
of our proposed method over state-of-the-art techniques. By addressing the limitations
of existing approaches and introducing a dynamic parameter adaptation mechanism, our
work contributes to the advancement of heuristic optimization techniques for S-box genera-
tion in cryptographic applications. The main contributions of this paper are as follows:

1. We introduce a novel dynamic parameter adaptation mechanism for heuristic search
algorithms in the context of S-box generation.

2. We demonstrate the effectiveness of our approach through rigorous experiments and
comparative analyses with state-of-the-art techniques.

3. We provide insights into the behavior of our algorithm and discuss the implications
of our findings for the design of efficient heuristic methods in cryptography.

The remainder of this paper is organized as follows. The background section lays the
necessary theoretical foundation, covering the mathematical properties of S-boxes, heuristic
search algorithms, and the Walsh–Hadamard transform. The proposed methodology
introduces a dynamic parameter adaptation mechanism and an enhanced hill-climbing
algorithm for efficient S-box generation. The article then presents the experimental setup,
benchmark instances, performance metrics, and a detailed analysis of the results obtained
from three series of experiments. The discussion section interprets the findings, compares
the proposed method with state-of-the-art techniques, and addresses the limitations and
future research directions. Finally, the conclusion summarizes the main contributions,
emphasizes the novelty and effectiveness of the approach, and offers concluding remarks
on the potential impact of the research in the field of cryptography.

2. Nomenclature

This section provides a comprehensive list of the symbols, notations, and abbreviations
used throughout the article. Each entry includes a clear and concise definition to facilitate
the reader’s understanding of the presented concepts and formulas.

S—An S-box (substitution box), a basic component in symmetric key cryptography
n—The size of the S-box input in bits
m—The size of the S-box output in bits
x—An input value to the S-box
y—An output value from the S-box
{0;1}n—The set of all possible n-bit binary strings
WHT(a,b)—Walsh–Hadamard Transform of the S-box at points a and b
a·x—The inner product of a and x in the Boolean algebra context
b·S(x)—The inner product of b and S(x) in the Boolean algebra context
N(S)—The nonlinearity of the S-box S
∆(S)—The differential uniformity of the S-box S
→
H(S)—The histogram of the Walsh–Hadamard coefficients for the S-box S
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imax—The maximum absolute value of the Walsh–Hadamard coefficients for the S-box
li—The number of Walsh–Hadamard coefficients with an absolute value i
Ss—The search space in the context of heuristic search
f—The cost function or objective function in the context of heuristic search
R—A parameter of the WCFS cost function
X—A parameter of the WCFS cost function
WCFS(S)—The cost function used in the hill-climbing algorithm for S-box generation

3. Background

The heuristic generation of S-boxes stands as a cornerstone in modern symmetric
ciphers, ensuring nonlinearity and reducing vulnerabilities to attacks [5,6,25]. This sec-
tion delves into the essential terminologies and cryptographic measures of S-boxes, and
explicates the heuristic methods in targeting an optimal state. Additionally, the promi-
nence of the hill-climbing method in combinatorial optimization is elaborated, setting the
stage for our subsequent discourse on the prevailing gaps in research and our innovative
contribution to this domain.

3.1. S-Boxes (Substitution-Boxes)

In the realm of symmetric cryptography, the S-box (Substitution box) stands as a
pivotal nonlinear transformation component [26,27]. Its primary role is to map input bits to
output bits, introducing a level of confusion and complexity to the encryption process [28].

From a conceptual standpoint, an S-box can be visualized as a black box that takes a
fixed number of bits as inputs and produces a fixed number of bits as outputs. The trans-
formation is defined by a lookup table, which specifies the output for each possible input.

In the context of Boolean algebra, an S-box can be represented as a set of Boolean
functions [29,30]. Given an m-bit input and an n-bit output, an S-box is defined by n
Boolean functions, each taking m variables.

For an S-box with a size of n×m, it can be represented as [30]:

S:{0;1}m−→{0;1}n

where {0;1}n is the domain representing all possible n-bit binary strings and {0;1}m is the
codomain representing all possible m-bit binary strings. Specifically, we focus on S-boxes
that take an 8-bit input and produce an 8-bit output, ensuring a one-to-one mapping
between the input and output spaces.

To ensure an S-box is resilient against cryptanalysis, several measures have been
postulated [30]:

• Bijectiveness ensures that every input has a unique output and vice versa. For an
S-box to be bijective, it must be both injective (one-to-one) and surjective (onto). Math-
ematically, an S-box S is bijective if, and only if, for every pair of distinct inputs x and
y, their outputs are also distinct, and every possible output has a corresponding input:

∀x, y ∈ {0, 1}8, S(x) = S(y)⇒ x = y.

• Nonlinearity measures the deviation of an S-box from affine functions. It provides
resistance against linear cryptanalysis. The nonlinearity of an S-box is computed using
the Walsh–Hadamard transform. Given an S-box S, its nonlinearity N(S) is defined as:

N(s) =
1
2
(2n −maxa,b ̸=0|WHT(a, b)|),

where WHT(a, b) is the Walsh–Hadamard transform of S and is defined as:

WHT(a, b) = ∑x∈{0,1}n(−1)b·S(x)+a·x (1)

Here, a·x and b·S(x) are the inner products in the Boolean algebra context.
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• Differential Uniformity is a measure of the resistance of the S-box against differential
cryptanalysis. The lower the differential uniformity, the better the S-box is in terms
of resisting differential attacks. For an S-box S, its differential uniformity ∆(S) is
defined as:

∆(S) = max∆x,∆y

∣∣∣{x ∈ {0, 1}8 : S(x)⊕ S(x⊕ ∆x) = ∆y
}∣∣∣,

where ⊕ denotes the bitwise XOR operation.

• There are several other properties of S-boxes that are crucial for their cryptographic
strength, such as the Avalanche effect, Strict Avalanche Criterion, Bit Independence
Criterion, and more. Each of these properties ensures that the S-box provides good
diffusion and resistance against various cryptanalytic attacks.

3.2. Heuristic Techniques

Heuristic search, grounded in the realm of optimization and problem solving, emerges
as a pivotal strategy when faced with extensive search spaces or computationally rigorous
problems [31,32]. This approach delicately toes the line between finding optimal solutions
and ensuring computational viability.

Central to the heuristic search is the concept of a search space, the entire domain com-
prising potential solutions [33,34]. Given the complexity of certain problems, the vastness
of this space can render exhaustive searches nonviable. In such landscapes, a heuristic, a
rule-of-thumb technique, provides a promising avenue. It may not always guarantee the
most optimal solution, but it navigates the vast space to produce an approximation in a
time frame that is algorithmically acceptable.

A quintessential component that drives heuristics is the cost function or the objective
function [35]. Mathematically, if we let Ss be our search space, the cost function f can be
represented as f : Ss−→S, mapping each candidate solution to a real value, indicative of
its quality. This function not only quantifies the desirability or fitness of a solution, but
also becomes the guiding light, directing the heuristic search towards regions of the search
space that show potential. Furthermore, it offers a comparative landscape, allowing one
solution to be weighed against another, and often serves as a termination beacon, indicating
when the search should conclude.

Numerous heuristic search strategies have found prominence in the literature and
practice. Among them, Genetic Algorithms draw inspiration from natural selection [33,36],
encoding solutions as ‘genes’ and iteratively refining them over successive generations
using processes akin to mutation and crossover. Another fascinating method, Simulated An-
nealing, borrows its philosophy from metallurgy, particularly the annealing process [36,37].
This probabilistic technique oscillates between accepting solutions of varying quality based
on a dynamically adjusted temperature parameter. Yet another strategy, the Tabu Search,
incorporates memory in its operations, maintaining a list of recently traversed solutions to
avoid cyclical traps [35,36].

However, the hill-climbing algorithm deserves special mention [36]. Its conceptual
simplicity combined with iterative refinement makes it a darling in the world of combi-
natorial optimization [38]. The algorithm initiates with a randomly chosen solution and
steadily refines it by evaluating its neighbors in Algorithm 1. The quality of these neighbors
is adjudged by the cost function, and the best among them is chosen for the next iteration.
This process perseveres until no further refinement yields a better solution. Its inherent
advantage lies in its straightforwardness, adaptability, and efficiency.

The hill-climbing algorithm is an iterative optimization algorithm that starts with
an arbitrary solution to a problem and iteratively refines the current solution by making
small changes to it. The idea is to always move towards a better solution in the search
space [36,38].
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Algorithm 1: Hill-Climbing Algorithm (Generalized Version)

Algorithm HillClimbing(search_space)
current_solution← initialize_random_solution(search_space)
current_value← evaluate(current_solution)

while True do
neighbors← generate_neighbors(current_solution)

if neighbors is empty then
return current_solution

end if

next_solution← best_solution(neighbors)
next_value← evaluate(next_solution)

if next_value ≤ current_value then
return current_solution

end if

current_solution← next_solution
current_value← next_value

end while
end Algorithm

Description and Comments:

1. Initialization: The algorithm begins by initializing a solution randomly. This serves as
our current reference point.
current_solution←initialize_random_solution(search_space)
Here, the search_space represents the entire space of possible solutions.
The function initialize_random_solution simply picks a point (or solution) from this
space at random.

2. Evaluation: We assess the quality or fitness of our current solution using an
evaluation function.
current_value←evaluate(current_solution)

3. Iterative Refinement:

• The main loop of the algorithm focuses on refining the current solution.
• In every iteration, we look at the neighboring solutions of our current state, which

is performed by the generate_neighbors function. These neighbors are typically
small variations of the current solution.

• If there are no neighbors (an edge case), we simply return the current solution as
our best found.

• From these neighbors, we choose the best one (having the highest or lowest
value, depending on whether it is a maximization or minimization problem). The
function best_solution facilitates this selection.

• We then evaluate this new best solution from the neighbors.
• A critical decision point ensues. If the new solution’s value is not better than our

current solution, the algorithm terminates, and our current solution is returned
as the best found. If the new solution is better, we shift our current solution to
this new point and continue the process.

4. Termination:

• The algorithm terminates either when no better neighboring solutions can be
found or when there are no neighbors left for the current solution.

The generation of cryptographic S-boxes, which act as vital components in symmetric
key algorithms, poses a formidable challenge. The need to ensure bijectiveness and simul-
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taneously achieve high nonlinearity demands robust optimization techniques. Enter the
specialized hill-climbing algorithm in Algorithm 2—crafted with a discerning focus on this
particular challenge [39–41]. The pseudo-code for this variant is detailed in Appendix C of
the work [17].

Algorithm 2: Hill-Climbing Algorithm for S-boxes Generation (version from [17])

Algorithm SpecializedHillClimbing (S,NoE)
while (NoE > 0) do

S’←S
Select random distinct positions i,j
Swap outputs of S’ corresponding to i and j
if N(S’) > N(S) or N(S’) = N(S) and CS’ < CS then

S←S’
end if

NoE← NoE−1
end while
return S

end Algorithm

Description and Comments:

1. Initialization: The algorithm accepts an initial random substitution S and a predeter-
mined number of solution evaluations, NoE, which is typically set to 106, as suggested
in [17].

2. Iterative Refinement:

• During each iteration, a copy S’ of the current solution S is made. Two random
distinct positions, i and j, are selected from this substitution.

• A pivotal step involves swapping the outputs of S’ corresponding to the positions
i and j. This is the essence of creating a neighboring solution in the context of
S-box generation.

• The newly formed neighbor, S’, is then evaluated on two primary metrics: N(S)
(nonlinearity) and CS’ (cost function value, as evaluated by the WCFS). If S’ offers
superior nonlinearity or, in the event of identical nonlinearity, a lower cost, it
supplants the current solution S.

3. Termination: The algorithm halts after a preset number of evaluations, NoE, ensuring
bounded computation.

The merit of this tailored hill-climbing approach, when synergized with the new cost
function (called WCFS), is underscored by its empirical success. Remarkably, in just an av-
erage of 70,000 iterations, it was able to generate an 8× 8 bijective S-box with a nonlinearity
of 104 [17]. Further honing this technique, the same researchers managed to slash this to an
even more impressive 65,933 iterations [20], edging ever closer to cryptographic perfection.

The concepts and techniques discussed in this background section lay the foundation
for our proposed methodology. By understanding the mathematical properties of S-boxes,
such as bijectiveness, nonlinearity, and differential uniformity, we can formulate effective
cost functions and heuristic search strategies for generating optimal S-boxes. The Walsh–
Hadamard transform, in particular, plays a crucial role in evaluating the nonlinearity of
S-boxes and guiding the search process. Moreover, the hill-climbing algorithm, with its
iterative refinement approach and specialized adaptations for S-box generation, serves
as the backbone of our proposed method. Building upon these fundamental concepts
and leveraging the strengths of heuristic optimization, our work aims to develop a more
efficient and effective approach for constructing cryptographically strong S-boxes. In
the following sections, we will delve into the details of our methodology, presenting the
dynamic parameter adaptation mechanism and the enhanced hill-climbing algorithm that
form the core of our contribution to the field of S-box generation.
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4. Methodology

S-box generation has been a central pillar in the realm of cryptographic research. Our
investigative endeavors are predicated upon the foundational works detailed in [17,20],
where seminal results in this domain were elucidated. These prior research contributions
offer an optimal search algorithm and an associated cost function, both of which lay
the groundwork for our own explorations. With this canvas, we extend the paradigm
by introducing refined mechanisms to optimize the search process, integrating dynamic
parameter adjustments, and, consequently, ushering in a more nuanced understanding of
nonlinear substitution generation.

4.1. Cost Function

Grounded in the research drawn from [17,20], we employ the WCFS function as our
cost function, which is represented as:

WCFS(S) = ∑b ∈ {0, 1}n, b ̸= 0
|WHT(b, i)| > X

∑i∈{0,1}n(
|WHT(b, i)|−X

4
)R, (2)

where WHT indicates the WalshHadamard transform (see Equation (1)) and both R and X are
specified real numbers.

The efficacy of any search algorithm hinges on its capacity to find the target S-box
within a minimal number of iterations. Specifically, for our approach, the metric of interest
is a bijective S-box that aligns with our desired nonlinearity N(S). Given that evaluating the
cost function is computationally intensive, our algorithm’s runtime primarily corresponds
to the iteration count, making each invocation of the WCFS function crucial.

4.2. Hill Climbing Algorithm

While leveraging the robust hill-climbing algorithm propounded in [17,20], we insti-
tuted a series of modifications aimed at refining its efficiency and precision. Central to our
enhancements is the integration of novel termination conditions:

Achievement of a maximum number of inner cycles, termed as max_frozen_loops,
where no discernible improvements in state—either in terms of nonlinearity augmentation
or, given consistent nonlinearity, a reduction in the cost function—are realized.

Attainment of the stipulated nonlinearity, defined as target_nonlinerity.
These nuanced stop criteria sculpt our specialized version of the S-boxes search

algorithm in Algorithm 3.
In any algorithmic investigation, particularly in cryptographic research, the choice of

parameters is neither arbitrary nor capricious; it emerges as a decisive factor that heavily
influences the efficiency and effectiveness of the underlying algorithm. Such choices are
honed through empirical testing, analytical insights, and often, prior foundational work.
Our decision to configure the parameters as mentioned is deeply intertwined with our
previous scholarly endeavors, elucidated in [23,42,43]. Below, we undertake a meticulous
discourse on our parameter selection.

Nonlinearity remains a quintessential measure of an S-box’s ability to resist linear
cryptanalysis. The higher the nonlinearity, the more resilient the S-box is against potential
analytical attacks. Our choice to set the target nonlinearity at either 106 or 104 stems
from both empirical studies and the evolving requirements of modern cryptographic
applications. As examined in [43], the ramifications of varying nonlinearity levels on
security were explored in-depth. Choosing 106 or 104 as target benchmarks encapsulates a
balance, aiming for high resistance while also ensuring computational feasibility.
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Algorithm 3: Hill-Climbing Algorithm for S-boxes Generation (Our version)

Algorithm EnhancedHillClimbing(S, max_loops, max_frozen_loops, target_nonlinerity)
while (max_loops > 0) AND (n < max_frozen_loops) AND (N(S) < target_nonlinerity)) do
S’←S
n←0

Select at random two different positions i and j
Swap outputs of S’ corresponding to i and j
if N(S’) > N(S) OR (N(S’) = N(S) AND WCFS(S’) ≤WCFS(S)) then

S←S’
n←0

else:
n←n + 1
max_loops←max_loops−1

return S
end Algorithm

4.3. Parameter Selection

Heuristic algorithms, by nature, involve a degree of exploration and are inherently
probabilistic. Thus, setting a bound on the number of loops is crucial to ensure that the
algorithm does not perpetuate indefinitely, especially when the search space is vast and
the optimum might be elusive. Our decision to set a ceiling at 2,500,000 is rooted in
findings from [23,42], where the influence of iteration bounds on the convergence and
performance of heuristic algorithms was explored. Too few iterations might result in prema-
ture convergence, while an excessive count risks computational wastage. Through rigorous
testing, 2,500,000 emerged as an empirically robust choice, allowing the algorithm ample
opportunity to navigate the search space without becoming prohibitively time consuming.

A nuanced innovation in our version of the hill-climbing algorithm is the introduction
of a secondary loop threshold, max_frozen_loops. This parameter is crucial in mitigating
the risks of stagnation. If the algorithm fails to improve after a sequence of iterations,
it indicates potential entrapment in a local minimum. As detailed in [23,42], setting a
bound on such ‘frozen’ iterations provides an elegant escape mechanism, ensuring that
the search is not paralyzed by local optima. The 2500 count has been refined through
extensive simulations, striking a balance between allowing the algorithm room to ‘breathe’
and ensuring timely extrication from potential stagnation points.

So, we use the hill-climbing algorithm with the following parameters:

• target_nonlinerity = 106 or 104;
• max_loops = 2,500,000;
• max_frozen_loops = 2500.

At each iteration of the algorithm, we use the change of two randomly selected
positions in the S-box as mutations.

4.4. Hierarchical Description and Component Interaction

The proposed methodology for efficient S-box generation can be viewed as a hierarchi-
cal system composed of interacting components. At the highest level, the system comprises
three main components (Figure 1): the cost function, the hill-climbing algorithm, and the
parameter selection mechanism. These components work in concert to achieve the desired
computational efficiency and generate high-quality S-boxes.

The cost function component, represented by the WCFS function (2), serves as the
guiding force behind the search process. It evaluates the quality of candidate S-boxes
by measuring their nonlinearity and other cryptographic properties. The cost function
is invoked repeatedly by the hill-climbing algorithm to assess the fitness of each S-box
configuration explored during the search.
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The hill-climbing algorithm component forms the core of the methodology. It is respon-
sible for navigating the vast search space of possible S-box configurations and iteratively
refining the candidate solutions. The algorithm starts with an initial S-box and performs a
series of mutations, swapping randomly selected positions to generate new configurations.
The cost function is used to evaluate the quality of each new configuration, and the algo-
rithm decides whether to accept or reject the mutation based on the improvement in the
cost function value.

The parameter selection component plays a crucial role in determining the behavior
and efficiency of the hill-climbing algorithm. It encompasses the choice of target non-
linearity (target_nonlinerity), the maximum number of iterations (max_loops), and the
secondary loop threshold (max_frozen_loops). These parameters are carefully chosen based
on empirical studies and theoretical considerations to strike a balance between exploration
and exploitation in the search process.

The interaction between these components is characterized by a tight feedback loop.
The hill-climbing algorithm relies on the cost function to guide its search, while the cost
function’s effectiveness is determined by the quality of the S-boxes generated by the
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algorithm. The parameter selection component influences the behavior of the hill-climbing
algorithm, which, in turn, affects the efficiency and effectiveness of the overall methodology.

To achieve computational efficiency, the proposed approach leverages the inherent
parallelism of the hill-climbing algorithm. The algorithm can be easily parallelized by
running multiple instances of the search process concurrently, each starting from a different
initial S-box configuration. This parallel exploration of the search space allows for a more
efficient utilization of computational resources and can significantly reduce the overall
runtime of the methodology.

Furthermore, the dynamic adjustment of the cost function parameters within the hill-
climbing algorithm contributes to the improved computational efficiency. By adapting the
parameters based on the progress of the search, the methodology can effectively balance the
exploration of new regions in the search space with the exploitation of promising solutions.
This dynamic adaptation helps the algorithm to converge faster towards high-quality
S-boxes, reducing the number of iterations required to achieve the desired nonlinearity.

Figure 1 elucidates the architecture of an optimized S-box generation methodology,
highlighting a sophisticated interaction among its primary components: the cost func-
tion, the hill-climbing algorithm, and the parameter selection mechanism. This model
emphasizes a dynamic and recursive evaluation process that strategically employs hill-
climbing techniques and parameter adjustments to enhance cryptographic robustness and
computational efficiency.

In summary, the proposed methodology achieves enhanced computational efficiency
through the careful orchestration of its components. The cost function guides the search
process, while the hill-climbing algorithm efficiently explores the search space. The param-
eter selection mechanism ensures that the algorithm strikes an optimal balance between
exploration and exploitation. The inherent parallelism of the hill-climbing algorithm is
exploited to accelerate the search process, and the dynamic adjustment of cost function
parameters contributes to faster convergence. Through this hierarchical design and the
synergistic interaction of its components, the proposed methodology is able to efficiently
generate high-quality S-boxes for cryptographic applications.

5. Results

In this study, we conduct a series of experiments to evaluate the performance and
behavior of our proposed heuristic search algorithm for generating highly nonlinear S-
boxes. The experiments are designed to assess the impact of various parameter settings and
cost function configurations on the algorithm’s ability to find optimal S-boxes efficiently.

5.1. Organization of Overall Experiments

Our experimental approach is based on the analysis of the Walsh–Hadamard spectrum

of the S-boxes. Let
→
H(S) be the histogram of the Walsh–Hadamard coefficients for the

S-box S (as introduced in [19]). This is a vector whose value at position i corresponds to
the number of coefficients in position |i| of the Walsh–Hadamard spectrum of the S-box
S. Let imax denote the maximum (last) position in this vector with a non-zero value. Then,
the maximum absolute value of the Walsh–Hadamard coefficients for the S-box S is imax,
and this coefficient determines the nonlinearity of the S-box. We denote li by the number of
values of the Walsh–Hadamard coefficients for each i.

Reducing the value of the WCFS function narrows the histogram of the Walsh–Hadamard
coefficients. We present the obtained estimates of the maximum narrowing that brings us
closer to nonlinearity in N(S) = 106.

To assess the progress more accurately, we conducted two tests with 1000 runs of
the search algorithms for the bijective S-boxs with N(S) = 104 each (the search algorithm
parametrizations are similar to the above). In the first test, the parameters of the cost
function WCFS were (R = 11, X = 4), and in the second—(R = 12, X = 0). The arithmetic
value kitr = 53,508 was set to (R = 11, X = 4) and kitr = 53,025 for (R = 12, X = 0).
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The average absolute (i.e., taken for |i|) number of the first three maximum values of
the Walsh–Hadamard coefficients was:

• for (R = 11, X = 4): l|i=40| = 607; l|i=44| = 256; l|i=48| = 73;
• for (R = 12, X = 0): l|i=40| = 606; l|i=44| = 255; l|i=48| = 73.

Given that the number of possible changes in two positions in the S-box is
256·257

2 = 32, 896, we slightly modified the search algorithm. Initially, the algorithm was
executed as described above, and starting from some state (for example, if N(S) = 102 was
found), a full search of all possible mutations (change of two positions) was performed. If
an improvement in the cost function was found, it was implemented, and the full search
was started again. At the same time, the criteria for stopping the search algorithm were
also slightly changed:

• finding a bijective S-box with nonlinearity of 106 (never performed for this modifica-
tion of the search algorithm);

• achievement of the maximum number of iterations;
• performing all possible mutations for the current S-box and not finding any improve-

ment (almost always performed).

Thanks to the full search, we firstly guaranteed that a local minimum was found (no
mutation could lead to an improvement in the cost function), and secondly, we reduced the
total number of iterations by excluding random changes that were repeatedly made and
did not lead to improvements.

We conducted 100 independent runs of the hill-climbing search algorithm with the
above modification and the following WCFS function parameters:

• R = 11, X = −16; −16; −12; −8; −4; 0; 4; 8; 12; 16; 20;
• R = 12, X = −20; −16; −12; −8; −4; 0; 4; 8.

The histograms of the distribution of the averaged absolute values of the Walsh–Hadamard
coefficients for these tests are shown in Figures 2 and 3, respectively. The results are presented
on a logarithmic scale. For comparison, the last column shows similar values of the results
presented in Figure 4.
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5.2. Benchmark Instances and Cost Function Parameters

In this subsection, we present the benchmark instances and cost function parameters
used in our experiments. We focus on the generation of 8-bit S-boxes with high nonlinearity,
specifically targeting a nonlinearity of N(S) = 104 or higher. The choice of these benchmark
instances is motivated by their relevance to modern cryptographic applications and the
challenges they pose for heuristic search algorithms.

Our experimental analysis reveals several key findings regarding the behavior of the
search algorithm and the impact of cost function parameters on its performance:

1. With an increase in the parameter X, at a fixed value R, the variance in the graph of
the distribution of the averaged absolute values of the Walsh–Hadamard coefficients
increases. This leads to a narrowing of the distribution in the middle part, but a
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widening in the extreme parts. For example, Figure 4 shows the distribution for
two values of X. If we try to reduce the number l|i=48| by decreasing the parameter
X, then imax increases, with which the nonlinearity decreases to 100 and below. If we
manage to find an S-box with N(S) = 104, it usually leads to an increase in l|i=48| (see
the last columns of Figures 2 and 3).

2. To achieve a local minimum using the specified search method, an average of
kitr = 250,000 ÷ 350,000 iterations is required, which is 5–6 times more than that to
achieve only N(S) = 104.

3. Considering the regions of minimal values of the average number of iterations (where
the parameters correspond to the ratio X = 52 − 4·R), when the local minimum of
the WCFS function is reached, the average value of the number of coefficients for the
extreme positions in the Walsh–Hadamard spectrum distribution is:

• l|i=44| = 190 ÷ 314;
• l|i=48| = 38 ÷ 74;
• l|i=52| = 2.4 ÷ 0.7.

It should be noted that when l|i=48| ≈ 38, the number of coefficients of the spectrum
of i = 52 is l|i=52| ≈ 2 ÷ 3 (corresponding to N(S) = 102), and 1–2% have coefficients of
i = 56 (N(S) = 100). When we approach N(S) = 104, the average number of coefficients
of the spectrum of i = 48 is about l|i=48| = 60 ÷ 75. This indicates the practical
impossibility of forming S-boxes of N(S) = 106. The goal of achieving the local
minimum of l|i=48| = 0, using the described algorithm, is almost unattainable.

Given the above, it is necessary to further modify the search algorithm, introducing
additional changes that would help to achieve the goal. We see the following ways:

• Extending the mutation of the current S-box. Instead of changing two positions in
the S-box, use three or more positions. However, if the number of possible changes
in two positions in the S-box is 256·257

2 = 32,896 iterations, then using the formula for
the number of placements from n to k, for the case of a three-change mutation, the
possible number of mutations will be:

n!
(n− k)!

=
256!

(256− 3)!
= 256·255·254 = 16, 581, 120,

which significantly increases the complexity and time of the search. We conducted
selective testing of this method and, in our opinion, it is not a rational way. Time costs
increase by more than two orders of magnitude, and improvements are rarely or not
at all found. In the case of a significant mutation (a change of three or more positions),
the distribution of the spectrum of the Walsh–Hadamard coefficients obtained by the
S-box almost always deteriorates significantly.

• Using dynamic changes in the cost function. If we are at a local minimum for one
function, this does not mean that this state of the system will be a local minimum for
another function. However, it is impossible to change the cost function drastically,
because it will greatly worsen the spectral distribution of the Walsh–Hadamard coeffi-
cients. We propose a slight change in the parameters of the WCFS function we have
already chosen. This will be discussed in more detail below.

• An alternative to the above point is to use several different cost functions that are
somewhat similar to each other (which will not allow for significant changes in the
best solution) but have different value tracks (which will lead to different values of
local minima and allow for exit from them).

• Applying the acceptance of deterioration of the cost function in the search algorithm.
It is possible to modify the search algorithm using the methods of the annealing
simulation algorithm, which will help to escape from the local minimum.

• At the same time, using a combination of the above methods.

The hill-climbing algorithm was used in the following modification. Initially, the
hill-climbing algorithm was performed in its “classical” form. After the first time, the
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nonlinearity of N(S) = 102 or the number of iterations without an improvement in the cost
function exceeded 32,000, and instead of randomly selecting a pair of S-box positions for
mutation, a complete search of all possible mutations of the two positions was performed.
If an improvement in the cost function was found, it was accepted, and the search was
started again with the new current S-box. If no improvement was found, the value X was
changed, and the search continued.

It was found that if we changed the parameters X and R simultaneously, moving along
the ratio X = 48 − 4 × R, then there was almost no improvement in the distribution of
the spectrum of the Walsh–Hadamard coefficients. Most likely, no improvements were
observed due to the fact that the shape of the spectrum distribution, while maintaining
X = 48 − 4 × R, did not change.

5.3. Experimental Environment

To ensure a rigorous and fair evaluation of our proposed algorithm, we conducted
a series of experiments designed to assess its performance and behavior under various
settings and in comparison with state-of-the-art techniques. The primary motivation behind
our experimental design was to comprehensively investigate the effectiveness and efficiency
of the dynamic parameter adaptation mechanism in the context of S-box generation.

All experiments were performed on a standard desktop computer equipped with an
Intel Core i7 processor and 16 GB of RAM, providing a consistent hardware environment
across all runs. The algorithms were implemented in C++ and compiled using GCC
version 9.2.0.

We employed a diverse set of problem instances, including randomly generated S-
boxes, to evaluate the algorithm’s performance across a wide range of scenarios. The
dynamic adaptation rate and initial cost function parameters were varied for our algorithm,
while the recommended default settings were used for the compared techniques to maintain
a fair comparison.

5.4. Performance Metrics

To evaluate the performance of the proposed algorithm and compare it with existing
heuristic techniques, we considered three key metrics:

1. Success Rate: The success rate represents the percentage of runs in which the algorithm
successfully finds an S-box with the target nonlinearity. In our experiments, we
focused on generating 8 × 8 S-boxes with a nonlinearity of 104. A higher success rate
indicates a more reliable and effective algorithm.

2. Average Iterations: The average number of iterations required by the algorithm to
find the target S-box is a crucial metric for assessing the computational efficiency.
A lower average iteration count signifies a faster convergence and more efficient
search process.

3. Runtime: The runtime metric measures the average wall-clock time (in seconds) taken
by the algorithm to complete a single run. This metric provides a practical assessment
of the algorithm’s efficiency and scalability, considering both the computational
complexity and the actual execution time.

By considering these performance metrics, we aim to provide a comprehensive eval-
uation of our proposed algorithm and demonstrate its effectiveness in comparison with
state-of-the-art techniques. The success rate and average iterations metrics shed light on the
algorithm’s ability to find optimal S-boxes consistently and efficiently, while the runtime
metric offers insights into its practical applicability and computational overhead.

In the following subsections, we present the experimental results obtained for each
series of experiments, along with a detailed analysis and discussion of the findings. Through
this rigorous experimental evaluation, we seek to validate the superiority of our dynamic
parameter adaptation approach and establish its potential for generating high-quality
S-boxes in cryptographic applications.
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5.5. Visualization and Explanation of Results
5.5.1. Dynamic Parameter Adaptation: Impact on Convergence and Nonlinearity

In this series of experiments, we investigate the impact of dynamic parameter adapta-
tion on the convergence behavior and nonlinearity of the generated S-boxes. By visualizing
and analyzing the trajectories of the Walsh–Hadamard coefficient distributions across dif-
ferent parameter settings, we gain insights into the effectiveness of our proposed approach.
In all runs of the first series of the search algorithm, the value of the parameter R was fixed.
The tests were performed with R = 8; 9; 10; 11; 12. The results were averaged over at least
100 runs. In each run, four cycles of changing parameter X were performed in the following
chain (see Table 2).

Table 2. Selected parameters X and R in the first series of experiments (the first part).

R X

8 28 24 20 16 12 8 4 0 4 8 12 16 20 24 28
9 24 20 16 12 8 4 0 −4 0 4 8 12 16 20 24

10 20 16 12 8 4 0 −4 −8 −12 −16 −12 −8 −4 0 4 8 12 16 20
16 20 16 12 8 4 0 −4 −8 −12 −16 −20 −16 −12 −8 −4 0 4 8 12 16 20
12 16 12 8 4 0 −4 −8 −12 −16 −20 −24 −20 −16 −12 −8 −4 0 4 8 12 16

Figures 5–16 show the trajectory of change in the average number of absolute values
of the Walsh–Hadamard spectral coefficients at the end of the algorithm for each value of
X, at: i = 52(a); i = 48(b); i = 44(c). They also show the average total number of iterations
performed by the search algorithm since its launch (d).
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Figure 7. The trajectory of the l|i| S-box at dynamical change X (4 cycles) and R = 10.
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Figure 8. The trajectory of the l|i| S-box at dynamical change X (4 cycles) and R = 11.
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Figure 10. The trajectory of the l|i| S-box at dynamical change X (1 cycles) and R = 8.
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Figure 12. The trajectory of the l|i| S-box at dynamical reduction X and R = 6. Figure 12. The trajectory of the l|i| S-box at dynamical reduction X and R = 6.



Electronics 2024, 13, 1825 27 of 52
Electronics 2024, 13, x FOR PEER REVIEW  28  of  53 
 

 

 

(a) 

 

(b) 

 

(c) 

Figure 13. Cont.



Electronics 2024, 13, 1825 28 of 52Electronics 2024, 13, x FOR PEER REVIEW  29  of  53 
 

 

 

(d) 

Figure 13. Trajectory of the l|i| S-box at dynamical reduction X and R = 8. 

 

(a) 

 

(b) 

Figure 13. Trajectory of the l|i| S-box at dynamical reduction X and R = 8.
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Figure 14. The trajectory of the l|i| S-box at dynamical reduction X and R = 10.
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Figure 15. Trajectory of the l|i| S-box at dynamical reduction X and R = 12. Figure 15. Trajectory of the l|i| S-box at dynamical reduction X and R = 12.
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Figure 16. The trajectory of the l|i| S-box at dynamical reduction X = −32 ൊ 4 and R = 8. 
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R  X 

4  24  28  32  36  40  44                             

6  4  8  12  16  20  24  28  32  36  40  44                   

8  0  4  8  12  16  20  24  28  32  36  40  44                 

10  −16  −12  −8  −4  0  4  8  12  16  20  24  28  32  36  40  44         

12  −32  −28  −24  −20  −16  −12  −8  −4  0  4  8  12  16  20  24  28  32  36  40  44 

Figure 16. The trajectory of the l|i| S-box at dynamical reduction X = −32 ÷ 4 and R = 8.

• When applying the above dynamic changes in the parameter X, the search algorithm
manages to almost halve the average value of the number of Walsh–Hadamard spec-
tral coefficients in the position i = 48 from l|i=48| = 60 ÷ 75 a fixed parameter X to
l|i=48| = 28 ÷ 31; a cyclic change in the parameter X.

However, about 10% of the runs still had coefficients at i = 52.
At the end of each of the studied cycles, the values of l|i=48| and l|i=52| were in the

minimum (for the cycle) state, and the value of l|i=44| was in the maximum state.
Given that the value l|i=48| decreased with each of the four cycles, but not significantly

(1–2 values), while each cycle significantly increased the number of iterations performed
(at least 32,896 iterations were performed for each parameter X), it is advisable to limit this
to one cycle. Taking into account the decrease in the values of l|i=52| with an increase in
the parameter l|i=52|, it is advisable to increase the parameter X to the maximum value
(for N(S) = 106 this, it will be X = 44). Taking into account the above considerations, the
next 100 runs were carried out from one cycle and the parameter X was changed in the
following chain: for R = 8: X = 28; 24; 20; 16; 12; 8; 4; 0; 4; 8; 12; 16; 20; 24; 28; 32; 36; 40; 44.

The results are shown in Figure 10.
Starting from X = 32 and more, none of the values of X had spectral coefficients greater

than imax = 48. The increase in the final parameter X from 28 to 44, on average, led to a
slight decrease (by onr coefficient) in the average statistical value of l|i=48|. Using one cycle
instead of four or five allowed us to reduce the average statistical number of iterations by
more than half (to 1,830,951 iterations).

Our next step was to reduce the cycle by starting it from the minimum values of X. For
all runs of the search algorithm, the value of the parameter R was also recorded. The tests
were performed with R = 4; 6; 8; 10; 12. The results were averaged over 100 runs. In each
run, a cycle of parameter X changes was performed in the following chains (see Table 3).

Table 3. Selected parameters X and R in the first series of experiments (the second part).

R X

4 24 28 32 36 40 44
6 4 8 12 16 20 24 28 32 36 40 44
8 0 4 8 12 16 20 24 28 32 36 40 44

10 −16 −12 −8 −4 0 4 8 12 16 20 24 28 32 36 40 44
12 −32 −28 −24 −20 −16 −12 −8 −4 0 4 8 12 16 20 24 28 32 36 40 44
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The results are shown in Figures 11–15. Reducing the cycle only to the region
where the parameter X was reduced made it possible to reduce the average statistical
value by four, to l|i=48| = 24 ÷ 27 (at all l|i=52| = 0). Expanding the range of changes
in values

X = −32; −28; −24; −20; −16; −12; −8; −4; 0; 4; 8; 12; 16; 20; 24; 28; 32; 36; 40; 44
with a fixed value R = 8 led to an even greater average statistical decrease l|i=48| = 22. The
results are shown in Figure 16.

When commenting on the experimental results, it should be noted that the prob-
ability of finding an improvement in the objective function slightly decreases with an
increase in the parameter X. However, as the change in the parameter X increases, the
weight values of the coefficients in the spectrum distribution change. This leads to a
corresponding calculation of the objective function. As a result, it becomes easier to
find the improvement of the objective function. This result can be used to optimize
the search.

5.5.2. Exploring the Interplay of Cost Function Parameters

The second series of experiments focuses on the interplay between the cost function
parameters R and X. By systematically varying these parameters and examining the result-
ing performance metrics, we uncover the optimal parameter combinations that lead to an
improved efficiency and higher nonlinearity in the generated S-boxes.

These tests were carried out with a slight change in the parameter R (up to three units),
while the parameter X was changed in such a way that the changes for each slight change R
were parallel to the values determined by the ratio X = 52 − 4·R. The results were averaged
over 100 runs. In each run, a cycle of parameters R and X changes was performed according
to the chain shown in Table 4. The results are shown in Figures 17–22 (the value of the
change in R is not shown in the figure).

Table 4. Changes in parameters R and X in the search algorithm runs, the results of which are shown
in Figures 17–22.

R ∈ [2, 3, 4] R ∈ [4, 5, 6] R ∈ [6, 7, 8] R ∈ [8, 9, 10] R ∈ [10, 11, 12] R ∈ [12, 13, 14] X ∈ [−20 . . . 40]

0 2 4 6 8 10 12 −20
1 2 4 6 8 10 12 −16
2 3 5 7 9 11 13 −20
3 4 6 8 10 12 14 −24
4 2 4 6 8 10 12 −12
5 3 5 7 9 11 13 −16
6 4 6 8 10 12 14 −20
7 2 4 6 8 10 12 −8
8 3 5 7 9 11 13 −12
9 4 6 8 10 12 14 −16

10 2 4 6 8 10 12 −4
11 3 5 7 9 11 13 −8
12 4 6 8 10 12 14 −12
13 2 4 6 8 10 12 0
14 3 5 7 9 11 13 −4
15 4 6 8 10 12 14 −8
16 2 4 6 8 10 12 4
17 3 5 7 9 11 13 0
18 4 6 8 10 12 14 −4
19 2 4 6 8 10 12 8
20 3 5 7 9 11 13 4
21 4 6 8 10 12 14 0
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Table 4. Cont.

R ∈ [2, 3, 4] R ∈ [4, 5, 6] R ∈ [6, 7, 8] R ∈ [8, 9, 10] R ∈ [10, 11, 12] R ∈ [12, 13, 14] X ∈ [−20 . . . 40]

22 2 4 6 8 10 12 12
23 3 5 7 9 11 13 8
24 4 6 8 10 12 14 4
25 2 4 6 8 10 12 16
26 3 5 7 9 11 13 12
27 4 6 8 10 12 14 8
28 2 4 6 8 10 12 20
29 3 5 7 9 11 13 16
30 4 6 8 10 12 14 12
31 2 4 6 8 10 12 24
32 3 5 7 9 11 13 20
33 4 6 8 10 12 14 16
34 2 4 6 8 10 12 28
35 3 5 7 9 11 13 24
36 4 6 8 10 12 14 20
37 2 4 6 8 10 12 32
38 3 5 7 9 11 13 28
39 4 6 8 10 12 14 24
40 2 4 6 8 10 12 36
41 3 5 7 9 11 13 32
42 4 6 8 10 12 14 28
43 2 4 6 8 10 12 40
44 3 5 7 9 11 13 36
45 4 6 8 10 12 14 32
46 2 4 6 8 10 12 44
47 3 5 7 9 11 13 40
48 4 6 8 10 12 14 36
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Figure 17. Trajectory of the l|i| S-box at dynamical change of parameters for R = 2 ൊ 4. Figure 17. Trajectory of the l|i| S-box at dynamical change of parameters for R = 2 ÷ 4.
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Figure 18. Trajectory of the l|i| S-box at dynamical change of parameters for R = 4 ൊ 6. 
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Figure 18. Trajectory of the l|i| S-box at dynamical change of parameters for R = 4 ÷ 6.
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Figure 18. Trajectory of the l|i| S-box at dynamical change of parameters for R = 4 ൊ 6. 
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Figure 19. Trajectory of the l|i| S-box at dynamical change of parameters for R = 6 ൊ 8. 
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Figure 19. Trajectory of the l|i| S-box at dynamical change of parameters for R = 6 ÷ 8.
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Figure 19. Trajectory of the l|i| S-box at dynamical change of parameters for R = 6 ൊ 8. 
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Figure 20. Trajectory of the l|i| S-box at dynamical change of parameters for R = 8 ൊ 10. Figure 20. Trajectory of the l|i| S-box at dynamical change of parameters for R = 8 ÷ 10.
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Figure 21. Trajectory of the l|i| S-box at dynamical change of parameters for R = 10 ൊ 12. 
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Figure 21. Trajectory of the l|i| S-box at dynamical change of parameters for R = 10 ÷ 12.
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Figure 21. Trajectory of the l|i| S-box at dynamical change of parameters for R = 10 ൊ 12. 
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Figure 22. Trajectory of the l|i| S-box at dynamical change of parameters for R = 12 ൊ 14. 
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Figure 22. Trajectory of the l|i| S-box at dynamical change of parameters for R = 12 ÷ 14.

Despite the fact that the total number of iterations increases with an increasing R
(Figures 17–22d), the best result is shown by cycles with a smaller value of R. For all cycles,
the value l|i=52| = 0 is achieved (Figures 17–22a).

The dynamics of achieving the minimum value l|i| are summarized in Table 5.

Table 5. Values of parameters R and X at which the minimum value l|i| is achieved.

i = 52

R X l|i|

R ∈ [2, 3, 4] X ≥ 44 l|i| = 0
R ∈ [4, 5, 6] X ≥ 32 l|i| = 0
R ∈ [6, 7, 8] X ≥ 36 l|i| = 0
R ∈ [8, 9, 10] X ≥ 28 l|i| = 0

R ∈ [10, 11, 12] X ≥ 24 l|i| = 0
R ∈ [12, 13, 14] X ≥ 20 l|i| = 0
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Table 5. Cont.

i = 48

R X l|i|

R ∈ [2, 3, 4] X ≥ 44 l|i| = 21
R ∈ [4, 5, 6] X ≥ 36 l|i| = 20
R ∈ [6, 7, 8] X ≥ 36 l|i| = 21
R ∈ [8, 9, 10] X ≥ 36 l|i| = 22

R ∈ [10, 11, 12] X ≥ 36 l|i| = 25
R ∈ [12, 13, 14] X ≥ 36 l|i| = 28

i = 44

R X l|i|

R ∈ [2, 3, 4] 12 ≥ X ≥ 28 l|i| = 150
R ∈ [4, 5, 6] X ≤ 20 l|i| = 160
R ∈ [6, 7, 8] X ≤ 20 l|i| = 160
R ∈ [8, 9, 10] X ≤ 4 l|i| = 160

R ∈ [10, 11, 12] X ≤ 4 l|i| = 180
R ∈ [12, 13, 14] X ≤ 4 l|i| = 200

The use of a small change in the parameter R (up to three units) allowed us to reduce
the average statistical value l|i=48| by another two (to l|i=48| = 20) compared to the best
result obtained in the first series of tests.

5.5.3. Pushing the Boundaries: Nonlinearity and Computational Efficiency

In the third series of experiments, we push the boundaries of our algorithm by explor-
ing its performance under challenging scenarios, such as generating S-boxes with extremely
high nonlinearity. Through comprehensive visualizations and detailed explanations, we
showcase the limitations and potential of our approach in pushing the state-of-the-art in
S-box generation.

These tests were conducted with a linear increase in the parameter R and a propor-
tional increase in the parameter X. The results were averaged over 100 runs. In each
run, a cycle of parameter change was performed and the following chains were followed
(see Table 6).

Table 6. Selected parameters X and R in the third series of experiments.

X = −36 + 4·R
R 5 6 7 8 9 10 11 12 13 14
X −16 −12 −8 −4 0 4 8 12 16 20

X = −28 + 4·R
R 4 5 6 7 8 9 10 11 121 3 14 15 16 17 18
X −12 −8 −4 0 4 8 12 16 456 −16 28 32 36 40 44

The results are shown in Figures 23 and 24 (the values of the change in R are not
shown in the figure).
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Figure 23. Trajectory of the l|i| S-box at dynamical change of parameters for R = 5 ൊ 20. 
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Figure 23. Trajectory of the l|i| S-box at dynamical change of parameters for R = 5 ÷ 20.
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Figure 24. Trajectory of the l|i| S-box at dynamical change of parameters for R = 4 ൊ 18. 
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Figure 24. Trajectory of the l|i| S-box at dynamical change of parameters for R = 4 ÷ 18.

With the above parameters, no improvement was achieved in the third series. The
average statistical value l|i=48| for both cycles was about l|i=48| = 22). The average number
of iterations of the search algorithm was about 1.5 × 106 iterations.

6. Discussions

Our study delved deep into the heuristic methods of nonlinear substitution search,
commonly known as S-boxes. This pivotal research area ties directly to enhancing the
robustness of cryptographic algorithms that leverage a secret key. By injecting nonlinearity
through these S-boxes, resilience against cryptanalytic attacks receives a significant boost.

We embarked on this journey with a very specific aim: the generation of 8-bit bijective
substitutions with a nonlinearity benchmarked at 104 or higher. Our findings revealed that
the traditional static methodologies have intrinsic limitations. This realization led us to the
conceptualization of a novel approach to S-box generation—dynamic heuristic methods
with evolving parameters for the cost function.

6.1. Comparison with State of the Art

The narrative of research, especially within the realm of heuristic search and cryptog-
raphy, is enriched when engaged in comparative analysis. Table 7 delineates a discerning
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landscape where diverse methodologies are juxtaposed, unraveling the intricacies and
performance metrics of various search methods in generating S-boxes. Herein, our explo-
ration unfolds along two pivotal dimensions: the ‘Average number of iterations’ and the
‘Frequency of achieving the target outcome’. A closer, nuanced examination of these indices
elucidates the layered complexities and insights nestled within these numbers.

Table 7. Results of a comparative analysis of known techniques for generating S-boxes with nonlin-
earity 104.

Literary Source Search Method Average Number of Iterations Frequency of Achieving the
Target Outcome

[44] Simulated Annealing over 3,000,000 1/200 (for generating S-boxes with
nonlinearity 102)

[16] Genetic and Tree over 3,000,000 no data
[6] Simulated Annealing around 3,000,000 no data
[45] Simulated Annealing around 450,000 56.4%
[19] Genetic and Tree over 160,000 no data
[17] Hill climbing over 70,000 no data
[20] Hill climbing over 65,000 11/30

Our work
Hill climbing,

dynamic selection of cost
function parameters

around 50,000 100%

• Average Number of Iterations: This metric manifests as a tangible, quantitative indica-
tor of computational effort, encapsulating the average exertion required by an algo-
rithm to gravitate towards a solution. In heuristic landscapes, this becomes particularly
poignant, embodying the exploration–exploitation balance and algorithmic efficiency.

• Frequency of Achieving the Target Outcome: This transcends mere numeric repre-
sentation, dovetailing into the stochastic nature of heuristic methods. Recognizing
that achieving the target is a probabilistic event, this metric epitomizes an algorithm’s
reliability and robustness in diverse scenarios and over multiple runs.

Pitting diverse methodologies against one another within a unified framework epit-
omizes a subtle art, ensconcing the principle of universal comparability. While classical
approaches tether themselves to determinism and rigidity, our comparative matrix here
invokes a spectrum of heuristic methodologies and objectively scrutinizes them under a
universally applicable lens. The essence of this methodology pivots on its capability to
furnish a coherent, relatable comparison amidst the probabilistic and non-deterministic
nature of heuristic algorithms.

The comparative analysis presented in Table 7 reveals several key insights into the
performance of various heuristic search techniques for S-box generation.

Firstly, it is evident that early approaches, such as Simulated Annealing [6,13] and
Genetic Algorithms [14–16], suffer from high computational costs. These methods often
require millions of iterations to find S-boxes with the desired nonlinearity. Moreover,
their success rates are either low or not reported, indicating a lack of consistency and
reliability. For instance, the Simulated Annealing approach in [6,44] achieved a success
rate of only 1/200 for finding S-boxes with a nonlinearity of 102, while requiring over
3,000,000 iterations.

However, more recent studies have demonstrated a clear trend of improvement. The
works of [7,19,20] showcased significant reductions in the number of iterations needed, as
well as higher success rates. This progress can be attributed to advancements in heuristic
techniques, such as the development of more efficient cost functions and the fine-tuning
of algorithm parameters. For example, the hill-climbing approach employed by Freyre-
Echevarría et al. [17,20], which introduces the WCFS cost function, requires an average of
65,000 iterations to find S-boxes with a nonlinearity of 104, with a success rate of 36.7%.
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Our work builds upon these advancements and achieves a substantial leap forward
in both computational efficiency and reliability. By integrating dynamic parameter ad-
justment into the hill-climbing algorithm, we reduce the average number of iterations to
just 50,000—a significant improvement over the previous state of the art. Furthermore,
our approach guarantees a 100% success rate in finding S-boxes with a nonlinearity of
104 or higher, demonstrating a level of consistency and robustness that is unmatched by
prior methods.

6.2. Significance of Achieved Results

The implications of our findings are far-reaching. In the context of cryptographic
engineering, where the efficiency and reliability of S-box generation are of paramount
importance, our approach offers a promising solution. By dramatically reducing the com-
putational cost and ensuring a high success rate, our method paves the way for more
efficient and secure cryptographic systems. Moreover, the dynamic parameter adjustment
technique introduced in our work has the potential to be applied to other optimization prob-
lems in cryptography and beyond, opening up new avenues for research and innovation.

To gain deeper insights, let us dissect the hill-climbing algorithm employed in our
research. Our version of this algorithm integrated the WCFS heuristic cost function from
reference [20]. The focus was unambiguous: to ascertain the potential of dynamic parameter
adjustments in amplifying the algorithm’s efficiency. The graphical data from our study
affirm our hypothesis. The declining trend in the maximum absolute values of the Walsh–
Hadamard coefficients illustrates that such parameter modifications can indeed expedite
the generation process. In simpler terms, higher nonlinearity among the S-box alternatives
in the search space can be achieved in fewer iterations.

While our results were promising, they were not without challenges. Generating a
random 8-bit bijective S-box with a nonlinearity of 106 remained elusive. Nevertheless, we
came tantalizingly close. The histogram of Walsh–Hadamard coefficients (as depicted in
Figure 25) for the most optimal random S-box we unearthed speaks volumes. With just
12 coefficients standing tall with |WHT[b,i]| > 44, the implications are clear: only these
12 values need transformation to reach the coveted:

N(S)
256−max

b,i
|WHT(b, i)|

2
= 106.
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In the grand tapestry of research in this domain, our findings are notable. To our
understanding, the results we achieved are unmatched in the current literature, spotlight-
ing the potential of our approach. The gaps in the current research field, particularly
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around efficient methods for generating S-boxes, are being progressively filled by dy-
namic methodologies like ours. The uncharted territory of obtaining random S-boxes with
N(S) = 106 remains, and it is this tantalizing challenge that forms the crux of our future
research endeavors.

In wrapping up, our research serves as a pivotal point, introducing an innovative
dynamic methodology to the S-box generation discourse. It bears a conceptual kinship
with dynamic programming—a computer science paradigm predicated on breaking down
larger problems into smaller, more manageable subproblems. Dynamic programming,
renowned for its optimization procedures, often capitalizes on previously solved subprob-
lems, negating the need for redundant recalculations. Drawing parallels, our approach, by
dynamically adjusting cost function parameters, also inherently leverages past learnings to
better inform the ongoing search process.

6.3. Limitations of the Results

While our method has made substantial progress towards generating S-boxes with
optimal cryptographic properties, it is important to acknowledge the limitations and
challenges that remain. Achieving a nonlinearity of 106 for 8-bit bijective S-boxes is still
an open problem, and our approach, while coming closer than many previous methods,
has not yet reached this goal. Nevertheless, the quantitative results presented in this
study demonstrate the potential for further improvements and serve as a benchmark for
future research.

7. Conclusions

This study explores the application of heuristic methods for constructing nonlinear
substitution boxes (S-boxes), which are crucial components in symmetric key cryptogra-
phy. Our research focuses on generating 8-bit bijective S-boxes with high nonlinearity,
specifically targeting values of 104 and above.

The key innovation of our approach lies in the dynamic adjustment of cost function
parameters within the heuristic search process. This adaptive mechanism allows for a more
efficient exploration of the vast search space, leading to improved results compared to
traditional static methods. The comparative analysis in Table 7 quantitatively demonstrates
the superiority of our approach in terms of both iteration count and success rate.

On average, our method requires only 50,000 iterations to find an S-box with the
desired nonlinearity, a significant reduction compared to the 65,000 iterations reported by
Freyre-Echevarría et al. [17,20] and the 450,000 iterations needed in [45]. Moreover, our ap-
proach guarantees a 100% success rate, a substantial improvement over the 36.7% achieved
by Freyre-Echevarría et al. [17,20] and the 56.4% reported in [45]. These quantitative metrics
highlight the efficiency and reliability of our method.

The effectiveness of our approach is further evidenced by the reduction in Walsh–
Hadamard coefficient values, as illustrated in Figure 25. By dynamically adjusting the cost
function parameters, we are able to minimize the number of coefficients with high absolute
values, thus improving the nonlinearity of the generated S-boxes. Specifically, our method
consistently produces S-boxes with only 12 coefficients exceeding the absolute value of 44,
a significant achievement in the context of 8-bit bijective S-boxes.

From a broader perspective, our work establishes a quantitative foundation for the
integration of dynamic programming principles into the field of cryptographic transfor-
mation. The dynamic parameter adjustment technique introduced in this study showed
promising results in terms of efficiency and reliability, and its potential applications extend
beyond S-box generation to other optimization problems in cryptography. Recent studies
in fractional calculus, such as the analysis of Kuramoto–Sivashinsky equations with non-
singular kernel operators [46], the investigation of fractional-order Helmholtz equations
in two space dimensions [47], and the exploration of symmetric soliton solutions for the
fractional coupled Konno–Onno system [48], highlight the potential for interdisciplinary
collaborations in applied mathematics and computational physics. These topics inspire us
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to consider the broader implications and future directions of our work in the context of ad-
vancing scientific knowledge across various domains. Furthermore, as supported by recent
studies [49,50], the resistance of S-boxes to side-channel attacks, particularly power analysis
attacks, is a critical aspect that requires further investigation. Future research should focus
on developing heuristic methods that not only optimize the cryptographic properties of
S-boxes, but also incorporate techniques to enhance their resistance to side-channel attacks.
This direction is crucial to ensure the long-term security of symmetric key cryptographic
algorithms, even in the face of evolving threats such as post-quantum attacks.
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