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Abstract: This paper investigates the optimization of an unmanned aerial vehicle (UAV) network
serving multiple downlink users equipped with single antennas. The network is enhanced by the
deployment of either a passive reconfigurable intelligent surface (RIS) or an active RIS. The objective
is to jointly design the UAV’s trajectory and the low-bit, quantized, RIS-programmable coefficients to
maximize the minimum user rate in a multi-user scenario. To address this optimization challenge, an
alternating optimization framework is employed, leveraging the successive convex approximation
(SCA) method. Specifically, for the UAV trajectory design, the original non-convex optimization prob-
lem is reformulated into an equivalent convex problem through the introduction of slack variables
and appropriate approximations. On the other hand, for the RIS-programmable coefficient design,
an efficient algorithm is developed using a penalty-based approximation approach. To solve the
problems with the proposed optimization, high-performance optimization tools such as CVX are
utilized, despite their associated high time complexity. To mitigate this complexity, a low-complexity
algorithm is specifically tailored for the optimization of passive RIS-programmable reflecting ele-
ments. This algorithm relies solely on closed-form expressions to generate improved feasible points,
thereby reducing the computational burden while maintaining reasonable performance. Extensive
simulations are created to validate the performance of the proposed algorithms. The results demon-
strate that the active RIS-based approach outperforms the passive RIS-based approach. Additionally,
for the passive RIS-based algorithms, the low-complexity variant achieves a reduced time complexity
with a moderate loss in performance.

Keywords: reconfigurable intelligent surface (RIS); unmanned aerial vehicle (UAV) networks; successive
convex approximation (SCA); low-bit quantized programmable coefficients

1. Introduction

The future of 5G radio access networks promises to revolutionize connectivity, support-
ing unprecedented traffic volumes, billions of connected devices, and diverse requirements
regarding reliability, latency, and battery life [1]. However, with the explosive growth of
mobile data traffic driven by the Internet of Things, the global mobile traffic is expected to
hit 1 zettabyte per month by 2028, placing immense strain on current infrastructure and tele-
com operators. While HetNets have been explored to address this challenge, unexpected or
emergency situations often render the deployment of terrestrial infrastructure economically
unviable. In such scenarios, intelligent heterogeneous architecture utilizing Unmanned
Aerial Vehicles (UAVs) emerges as a promising solution [2]. UAVs offer a cost-effective
and adaptable approach to facilitate key usage scenarios like enhanced Mobile Broadband
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(eMBB), Ultra-Reliable Low-Latency Communications (URLLC), and massive Machine-
Type Communications (mMTC). Their potential to provide network service recovery in
disasters, enhance public safety, and handle emergencies underscores the importance of
UAVs as a crucial component of 5G/B5G wireless technologies [3]. With the ever-evolving
landscape of wireless communication, UAVs have become indispensible components of the
quest to move beyond fifth-generation networks. As technology marches forward, these
aerial vehicles have established themselves as pivotal players, revolutionizing the field
with their unparalleled capabilities [4]. Distinguishing themselves from traditional ground-
based stations, UAVs offer unique benefits, such as superior mobility, cost-effectiveness,
and unhindered line-of-sight transmission. These advantages have led to the extensive
utilization of UAVs in diverse fields, leveraging their versatility and high mobility for a
wide range of applications [5]. From the perspective of wireless communication, UAVs
can be deployed as aerial communication platforms, for instance, as flying base stations or
mobile relays. By mounting communication transceivers, UAVs can provide or enhance
communication services to ground targets in high-traffic and overloaded scenarios; these
are commonly referred to as UAV-assisted communications. Additionally, UAVs can func-
tion as aerial nodes, enabling a multitude of applications ranging from cargo delivery to
surveillance; these are known as cellular-connected UAVs [6]. While UAVs offer numerous
innovative opportunities for wireless communication, the deployment of ground infras-
tructure in emergency or unexpected situations often faces economic and environmental
challenges. In this context, the potential and value of UAVs as an integral part of 5G/B5G
wireless technology become even more evident. As we continue to explore the boundaries
of wireless communication, UAVs will undoubtedly play a crucial role in shaping the future
of our connected world.

Leveraging these attributes, UAVs can serve as temporary airborne base stations,
significantly improving communication quality for terrestrial users. To optimize the UAV
communication network and achieve the maximal rate or energy efficiency, research has
focused on trajectory and placement optimization [7–9]. Ref. [7] proposed a mobile relay-
ing technique using UAVs, demonstrating that, by optimizing the source/relay transmit
power and relay trajectory under practical constraints, significant throughput gains can be
achieved compared to static relaying, thus highlighting the potential of UAV-based mobile
relaying for performance enhancement. Energy-efficient wireless communication with
unmanned aerial vehicles were investigated in [8] by optimizing their horizontal trajectory
at a fixed altitude, considering both communication throughput and propulsion energy
consumption. Ref. [9] explored energy minimization in a UAV-assisted sensor network by
jointly optimizing the UAV trajectory and sensor uploading power, utilizing a TSP-based
approach for optimal serving orders and a PSPSCA/AQSCA algorithm for UAV positioning
and sensor power allocation, achieving a superior performance compared to benchmark
schemes. This strategic endeavor aims to meticulously shape the UAV’s trajectory, thereby
enhancing the network’s user rate or energy efficiency [10–12]. Ref. [10] investigated a
UAV-enabled multicasting system, optimizing the UAV trajectory to minimize mission time
and ensure high-probability file recovery. A fly-and-communicate protocol for minimizing
completion time and energy consumption in UAV-enabled multicasting was designed
in [11]. For quadrotor UAVs within the IoT framework, an optimized energy consumption
model is established in [12].

Despite the significant potential of unmanned aerial vehicles (UAVs) to enhance com-
munication quality by optimizing their trajectory or placement, the intricate landscapes
of air-to-ground (A2G) communications introduce a set of unique challenges. One such
challenge is the potential for link blockage in complex environments [13,14]. The presence
of obstacles like tall buildings, mountains, and dense foliage can cause signal interference
and attenuation, resulting in a significant reduction in communication quality. This issue
becomes even more critical in urban areas, where the dense concentration of buildings and
other structures can create numerous obstacles for A2G links. To address this challenge,
researchers have explored various techniques to optimize the trajectory and placement
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of UAVs [15]. For instance, by leveraging advanced algorithms and models, UAVs can
be directed to avoid areas with high potential for link blockage. Additionally, the use
of multiple UAVs in a coordinated manner can help ensure redundancy and reliability
in communication links, minimizing the impact of link blockage on overall network per-
formance [16]. However, the successful implementation of these techniques requires a
deep understanding of the intricacies of A2G communication landscapes. Factors such as
the density and distribution of obstacles, the propagation characteristics of radio waves,
and the dynamic nature of the environment must all be taken into account. By consider-
ing these factors and developing innovative solutions, we can harness the full potential
of UAVs to enhance communication quality, even in the most complex and challenging
environments. To surmount this hurdle, certain researchers have turned to reconfigurable
intelligent surfacs (RIS) [17–19]. Ref. [17] introduced the integration of wireless localiza-
tion and sensing capabilities, tailored for future cellular systems, where, by manipulating
electromagnetic characteristics, RISs’ performance can be enhanced, opening new research
horizons. Overviews of future communications are provided in [18,19], including the avail-
able hardware architectures for reconfiguring such surfaces and highlighting the related
opportunities. By integrating an RIS into multi-user wireless communication networks fea-
turing UAV deployments, the quality of A2G communication links can be elevated through
the intelligent configuration of the RIS components [20–24]. Guided by the aforementioned
advantages of integrating RIS into UAV-assisted wireless networks, several prior studies
have endeavored to explore the potential performance enhancements brought forth by
RIS in a range of scenarios pertaining to UAV-based air-to-ground communication [25–28].
In the study presented by [25], UAVs and RISs were employed to enhance communications
by jointly optimizing the UAV’s trajectory, phase shifts of the RIS, allocation of sub-bands,
and power control to maximize the minimum average achievable rate for all ground users
(GUs) in the system. To maximize the system rate performance, the conjugate gradient
and particle swarm optimization scheme was proposed to optimize the RIS phase shifts
and the UAV altitudes [26]. A communication system involving a UAV and an RIS for
ground-based IoT devices was investigated in [27], where the performance of the net-
work was enhanced by optimizing the UAV’s placement and beamforming of RIS. An
RIS was employed to enhance the communication quality of UAV-based communication
systems [28], an alternating optimization technique that optimized the UAV trajectory and
RIS beamforming to maximize the average communication rate was proposed.

The investigation into active RIS and passive RIS has yielded profound insights into
their respective roles in enhancing multiuser communication within UAV networks [29].
Passive RIS, with its fixed phase shifts, offers a cost-effective solution for improving signal
reception without the need for additional power amplification. Its simplicity and reliability
make it a viable option in various communication scenarios. However, the lack of active
interference management limits its performance in complex environments [30]. On the
other hand, active RIS, with its tunable phase shifts and amplification capabilities, offers
greater flexibility and performance enhancements [31,32]. Its ability to actively manage
interference and optimize signal transmission opens up new possibilities for enhancing
communication efficiency and reliability. While the added complexity and cost may be a
consideration, the significant improvements in communication performance justify its use
in critical applications [33,34].

The above investigations have studied unquantized, programmable RIS coefficients’
optimization in RIS-assisted UAV networks. In this paper, quantized programmable RIS
coefficients’ optimization is investigated, and the main contribution of this work can be
summarized as follows:

• The study focuses on passive, RIS-assisted, multi-user communication within UAV
communication networks, aiming to maximize users’ worst rate. To efficiently solve
this optimization problem, it is decomposed into two subproblems: trajectory design
and PREs optimization. The SCA method is used to convexify the subproblems, and a
two-stage algorithm with high complexity is proposed to alternately optimize them.
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To simplify the algorithm, a closed-form solution is derived for the phase optimization
subproblem within passive RIS settings.

• To further enhance the benefits of RIS, this study explores active RIS (aRIS)-assisted
multiuser communication within a UAV communication system. Distinguishing from
passive RIS, the aRIS-assisted UAV network experiences self-interference. To ad-
dress this, a two-stage algorithm is proposed, incorporating power-amplified PREs
optimization and UAV trajectory design.

Notation. Variables are printed in boldface; AH denotes the Hermitian conjugate of
matrix A. For a vector x = (x1, . . . , xn)T , Diag(x) creates a diagonal matrix with x as its
diagonal entries. [A]2 corresponds to AAH , ⟨A⟩ signifies the trace of matrix A, and ⟨A, B⟩
is the trace of AH B, applicable to matrices A and B. The Frobenius norm of matrix A is
defined as ||A|| =

√
trace(AH A), which is also equal to

√
∑m

i=1 ∑n
j=1 a2

ij. A ⪰ 0 (A ≻ 0)

signifies that A is a positive semi-definite (positive definite) matrix. λmax(A) represents
the largest eigenvalue of the Hermitian symmetric matrix A. A circular Gaussian random
variable with a zero mean and variance σ is represented as C(0, σ).

2. Problem Statements and Reformulations

Consider the downlink transmission of an RIS-assisted UAV communication network,
as shown in Figure 1, where the direct links between the UAV and users are blocked by
obstacles. An RIS is deployed at a high altitude to guarantee line-of-sight communication
with K single-antenna users, as indicated in [35]. The UAV is equipped with a single
antenna and the flight time of T is equally divided into the N time slot with the slot
lenth δt. We assume that the horizontal locations of RIS and GUs are denoted by wr =
[xr, yr, zr]T and wk = [xk, yk, 0]T , respectively, with k ∈ K ≜ {1, . . . , K}. The UAV’s
trajectory can be approximated by the sequence qn = [xn, yn, z]T , n ∈ N ≜ {1, . . . , N},
with the following constraints:

∥qn − qn−1∥ ≤ Vmaxδt, ∀n, (1)

qini = q0, qend = qN , (2)

where qini and qend denote the initial point and end point of the UAV, respectively.
The RIS is equipped with M = Mx × Mz elements, forming an Mx × Mz uniform

rectangular array. Let zn ≜ (zn,1, . . . , zn,M)T denote the programmable coefficients of the
mth-reflecting element in the nth time slot.

Figure 1. RIS-assisted multi-user communication network.
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Let h̃n,R-k =
√

βn,RIS-khn,R-k ∈ CM×1 and G̃n,U-R =
√

βn,UAV-RIS(qn)GU-R,n ∈ C1×M

denote the baseband equivalent channels for the RIS→user k, UAV→user k links in the nth
time slot, respectively, with k ∈ K ≜ {1, . . . , K}, βn,RIS-k = β0d−α

k,Rk and βn,UAV-RIS = β0d−κ
n,UR.

β0 is the path loss at the reference distance, α and κ are the path loss exponents related
to the RIS-to-GUs (R-G) link and UAV-to-RIS (U-R) link, and dn,Rk and dn,UR(qn) are the
distance between the RIS and kth ground user and the distance between the UAV and the
RIS during the nth slot, respectively [36–38]. hn,R-k and Gn,U-R are modeled by Rician fading,
presenting the RIS→user k and UAV→RIS links in the nth time slot, respectively [36].

2.1. Passive RIS

Like many other papers on RIS-assisted UAV communication networks [14–16], the ef-
fective channel spanning from the UAV to user k assisted by passive RIS in the nth time
slot is given by the following:

H̃n,k(qn, zn) = h̃n,R-kR1/2
R-k diag(zn)G̃n,U-R(qn)

=
√

βn,RIS-khn,R-kR1/2
R-k diag(zn)

√
fin,UAV-RIS(qn)Gn,U-R(qn)

= h̃n,R-kdiag(zn)Gn,U-R(qn) ∈ C1×M. (3)

for
h̃n,R-k ≜

√
βn,UAV-RIS(qn)

√
βn,RIS-khn,R-kR1/2

R-k , (4)

where RR-k ∈ CM×M represents the spatial correlation matrix of RIS’s PREs with respect to
user k [37,39].

We consider PREs with b-bit resolution, which leads to

zn,m = eȷθθθn,m , m ∈ M, (5)

with

θθθn,m ∈ ∆ ≜
{

α
2π

2b , α = 0, 1, . . . , 2b − 1
}

, m ∈ M. (6)

Let sk ∈ C(0, 1) with E(|sk|2) = 1 represent the information intended for user k, and
let Pk be the split power for user k transmitted by the UAV. The signal received from the
UAV at user k in the nth time slot can be written as follows:

yn,k = H̃k,n(qn, zn)Pksk + nk, (7)

where nk ∈ C(0, σ) represents the additive white Gaussian noise.
The rate of user k in the nth time slot is expressed as follows:

rn,k(qn, zn) = ln

(
1 +

|H̃n,k(qn, zn)
√

Pk|2

∑j∈K\{k} |H̃n,k(qn, zn)
√

Pj|2 + σ

)
, k ∈ K. (8)

The max–min rate optimization problem (MR problem) can be expressed as follows:

max
zn ,qn

min
k∈K

rn,k(qn, zn) s.t. (1), (2), (5), (6), (9)

To solve the MR problem (9), we alternately optimize the UAV trajectory and RIS
PREs. Specifically, for rn,k(zn) ≜ [rn,1(qn, zn), . . . , rn,K(qn, zn)]

T ∈ RK, the MR problem is
given by

max
qn ,znθθθn

fp[rn(qn, zn)] ≜ min
k∈K

rn,k(qn, zn) s.t (1), (2), (5), (6). (10)



Electronics 2024, 13, 1826 6 of 20

We use the penalty term ||zn − eȷθθθn ||2 to eliminate the discrete constraints (5), leading
to the following exactly penalized optimization problem:

max
qn ,zn ,θθθn

fp,c(qn, zn, θθθn) ≜ fp[rn(qn, zn)]− c||zn − eȷθθθn ||2 s.t. (1), (2), (6), (11)

where c > 0 serves as the penalty parameter.

2.2. Active RIS

The effective channel spanning from the UAV to user k assisted by the aRIS in the nth
time slot is given by the following:

˜̄Hn,k(q̄n, z̄n) = h̃n,aR-kdiag(z̄n)Gn,U-aR(q̄n) ∈ C1×M. (12)

For the practical implementation of aRIS, we consider power-amplified PREs with a
b-bit resolution, which leads to the following:

z̄n,m = pppn,meȷθ̄θθn,m , m ∈ M, (13)

with pppn,m ∈ R defining the power amplification coefficients, and

θ̄θθn,m ∈ Λ ≜
{

β
2π

2b , β = 0, 1, . . . , 2b − 1
}

, m ∈ M. (14)

defining the PREs of b-bit resolution.
The signal received from the UAV at user k in the nth time slot can be written as follows:

ȳn,k =
˜̄Hn,k(zn, qn)Pksk + h̃n,R-kdiag[z̄n,m]m∈Mν + nk, (15)

where ν ∈ C(0, σν I) is the dynamic noise induced by aRIS.
The rate of user k in the nth time slot is expressed as follows:

r̄n,k(q̄n, z̄n) = ln

(
1 +

| ˜̄Hn,k(q̄n, z̄n)
√

Pk|2

∑j∈K\{k} | ˜̄Hn,k(q̄n, z̄n)
√

Pj|2 + σν ∑m∈M |h̃n,R-k(m)|2|z̄n,m|2 + σ

)
,

k ∈ K.

(16)

The reflected power constraint of the aRIS given the budget PA is as follows:

∑
k∈K
||diag[z̄n,m]m∈MGn,U−R(q̄n)||2Pk + σν||diag[z̄n,m]m∈M||2 ≤ PA (17)

⇔ z̄H
n Q1z̄n ≤ PA, (18)

where
Q1 ≜ ∑k∈K diag[|Gn,U−R(q̄n)|2Pk]m∈M + σν IM. (19)

The MR problem can be formulated as follows:

max
zn ,qn

min
k∈K

r̄n,k(q̄n, z̄n) s.t. (1), (2), (13), (14), (18). (20)

Similarly, for r̄n(q̄n, z̄n) ≜ [r̄n,1(q̄n, z̄n), . . . , r̄n,K(q̄n, z̄n)]
T ∈ RK, the MR problem is

written as follows:

max
q̄n ,z̄n ,θ̄θθn

f̄a[r̄n(q̄n, z̄n)] ≜ min
k∈K

r̄n,k(q̄n, z̄n) s.t (1), (2), (13), (14), (18). (21)
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We use the penalty term |z̄n,m − pppn,meȷθ̄θθn,m |2 to eliminate the discrete constraints (13),
leading to the following exactly penalized optimization problem:

max
q̄n ,z̄n ,pppn ,θ̄θθn

f̄a,ρ(q̄n, z̄n, pppn, θ̄θθn) ≜ f̄a[r̄n(q̄n, z̄n)]− ρ ∑
m∈M

|z̄n,m − pppn,meȷθ̄θθn,m |2

s.t. (1), (2), (14), (18). (22)

where ρ > 0 serves as the penalty parameter.

3. Passive RIS Convex-Solver-Based Algorithms

Alternating optimization is studied in this part with respect to each of the variables
(qn, zn, θθθn) while holding the others fixed to generate the next iterative point. Starting with
the initialization of (11) using the feasible point (q(0)n , z(0)n , θ

(0)
n ), let (q(τ)n , z(τ)n , θ

(τ)
n ) denote a

feasible point for (11) obtained from the (τ − 1)-st iteration.

3.1. Alternating Optimization of UAV Trajectory

To seek q(τ)n so that

fp[q
(τ+1)
n , z(τ)n , θ

(τ)
n ] > fp[q

(τ)
n , z(τ)n , θ

(τ)
n ], (23)

the trajectory optimization subproblem can be reformulated as follows:

max
qn

min
k

1
N

N

∑
n=1

ln

(
1 +

|H̃n,k(qn)|2Pk

∑j∈K\{k} |H̃n,k(qn)|2Pj + σ

)
(24a)

s.t. (1)− (2). (24b)

By introducing the slack variable s, problem (24) can be given by

max
qn ,s

s (25a)

s.t. (1)–(2), (25b)

1
N

N

∑
n=1

ln

1 +
A(τ)

n,k

B(τ)
n,k + dκ

n,U−R(qn)

 ≥ s, ∀k ∈ K. (25c)

where A(τ)
n,k = |h̃n,R-kdiag(zτ

n)
√

β0GU-R,n|2Pk/σ, B(τ)
n,k = ∑j∈K\{k} |h̃n,R-jdiag(zτ

n)
√

β0GU-R,n|2
Pj/σ and dκ

n,U−R(qn) = ∥qn −wr∥κ .
However, the problem (25a) cannot be solved directly due to the nonconvex constraint

(25c). By using the inequality (A1), the lower bound of the left-hand side of the constraint
(25c) can be derived at the feasible point qτ

n:

1
N

N

∑
n=1

ln

1 +
A(τ)

n,k

B(τ)
n,k + dκ

n,U−R(qn)

 ≥ 1
N

N

∑
n=1

ln

1 +
A(τ)

n,k

B(τ)
n,k + dr,κ

n,U−R


+

A(τ)
n,k

A(τ)
n,k + B(τ)

n,k + d(τ)κn,U−R

1−
dκ

n,U−R

d(τ)κn,U−R


≜ R̄lb

k ,

(26)

Thus, the trajectory optimization problem can be expressed as follows:

max
qn ,s

s (27a)

s.t. (1)–(2), (27b)

R̄lb
k ≥ s, ∀k ∈ K. (27c)
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3.2. Alternating Optimization of the Passive PREs

To seek z(τ+1)
n , so that:

fp,c[q
(τ+1)
n , z(τ+1)

n , θ
(τ)
n ] > fp,c[q

(τ+1)
n , z(τ)n , θ

(τ)
n ] (28)

⇔ fp[rn(q
(τ+1)
n , z(τ+1)

n )]− c||z(τ)n − eȷθ
(τ)
n ||2 > fp[rn(q

(τ+1)
n , z(τ)n )]− c||z(τ)n − eȷθ

(τ)
n ||2, (29)

we consider the following problem:

max
zn

min
k∈K

rn,k(zn)− c||zn − eȷθ
(τ)
n ||2 (30)

where, according to (8), we have:

rn,k(zn) = ln

(
1 +

|H̃n,k(zn)
√

Pk|2

∑j∈K\{k} |H̃n,k(zn)
√

Pj|2 + σ

)
, k ∈ K. (31)

Using the inequality (A2) for (a, b) = (H̃n,k(zn)
√

Pk, ∑j∈K\{k} |H̃n,k(zn)
√

Pj|2) and

(ā, b̄) = (H̃n,k(q
(τ+1)
n , z(τ)n )

√
Pk, ∑j∈K\{k} |H̃n,k(q

(τ+1)
n , z(τ)n )

√
Pj|2), we can obtain a concave

quadratic function by approximating rn,k(zn).

r̃(τ)1n,k(zn) ≜ ln(1 +
|H̃n,k(q

(τ+1)
n , z(τ)n )

√
Pk|2

∑j∈K\{k} |H̃n,k(q
(τ+1)
n , z(τ)n )

√
Pj|2 + σ

)

−
|H̃n,k(q

(τ+1)
n , z(τ)n )

√
Pk|2

∑j∈K\{k} |H̃n,k(q
(τ+1)
n , z(τ)n )

√
Pj|2 + σ

−σ
|H̃n,k(q

(τ+1)
n , z(τ)n )

√
Pk|2

(∑j∈K\{k} |H̃n,k(q
(τ+1)
n , z(τ)n )

√
Pj|2 + σ)(∑j∈K |H̃n,k(q

(τ+1)
n , z(τ)n )

√
Pj|2 + σ)

+
2

∑j∈K\{k} |H̃n,k(zn)
√

Pj|2 + σ

√
Pk

HH̃H
n,k(q

(τ+1)
n , z(τ)n )H̃n,k(zn)

√
Pk}

−σ
|H̃n,k(q

(τ+1)
n , z(τ)n )

√
Pk|2(|H̃n,k(zn)

√
Pk|2 + ∑j∈K\{k} |H̃n,k(zn)

√
Pj|2)

(∑j∈K\{k} |H̃n,k(q
(τ+1)
n , z(τ)n )

√
Pj|2 + σ)(∑j∈K |H̃n,k(q

(τ+1)
n , z(τ)n )

√
Pj|2 + σ)

≜ x̃(τ)1n,k +
2ℜ{
√

Pk
HH̃H

n,k(q
(τ+1)
n , z(τ)n )H̃n,k(q

(τ+1)
n , z(τ)n )

√
Pk}

ã(τ+1)
1n,k

−ζ̃
(τ)
1n,k ∑

j∈K
|H̃n,k(zn)

√
Pk|2 (32)

with
x̃(τ)1n,k ≜ rn,k(z

(τ)
n )− σã(τ)n,k − |H̃n,k(q

(τ+1)
n , z(τ)n )|2Pk/ã(τ)n,k ,

0 < ζ̃
(τ)
1n,k ≜ |H̃n,k(q

(τ+1)
n , z(τ)n )|2Pk/(ã(τ)n,k |H̃k,n(q

(τ+1)
n , z(τ)n )|2Pk + ã(τ)n,k ),

ã(τ)1n,k ≜ ∑j∈K\{k} |H̃n,k(q
(τ+1)
n , z(τ)n )|P2

j + σ.

(33)

H̃n,k(zn) defined in (12) can be represented by the following:

H̃n,k(zn) ≜ h̃n,R-kdiag(zn)Gn,U-R(q
(τ+1)
n )

= ∑
m∈M

h̃n,R-k∆n,mGn,U-R(q
(τ+1)
n )zn,m, (34)
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where ∆n,m is a matrix of size (M×M) with zero entries everywhere except for its (m, m)-
entry, which is one. Therefore, we have:

ℜ{(Pk)
HH̃H

n,k(z
(τ)
n )H̃n,k(q

(τ+1)
n , zn)Pk}

ã(τ)1n,k

= ỹ(τ)1n,kzn, (35)

where ỹ(τ)1n,k ∈ C1×M with the entries

ỹ(τ)1n,k(m) = (Pk)
HH̃H

n,k(q
(τ+1)
n , z(τ)n )h̃n,R-k∆n,mGn,U-R(q

(τ+1)
n )Pk/ã(τ)1n,k, m ∈ M, (36)

while

∣∣H̃n,k(zn)Pj
∣∣2 =

∣∣∣∣∣ M

∑
m=1

b̃(τ+1)
1n,k,j (m)zn,m

∣∣∣∣∣
2

(37)

=
K

∑
j=1

zH
n Ψ̃(τ+1)

1n,k,j zn (38)

where
b̃(τ+1)

1n,k,j (m) = h̃n,R-k∆n,mGn,U-R(q
(τ+1)
n )Pj, m ∈ M, (39)

and
Ψ̃(τ+1)

1n,k,j (m, m′) ≜
(

b̃(τ+1)
1n,k,j (m)

)∗
b̃(τ+1)

1n,k,j (m), (m, m′) ∈ M×M. (40)

Based on (35) and (38), we can derive the exact concave quadratic form of r̃(τ)k,n (z) as
defined in (32):

r̃(τ)1n,k(zn) = x̃(τ)1n,k + 2ℜ{ỹ(τ+1)
1n,k zn} − ζ̃

(τ)
1n,k ∑

j∈K
zH

n Ψ̃(τ+1)
1n,k,j zn. (41)

This allows us to find z(τ+1)
n , which satisfies (28) or (29) by solving the following

convex problem:

max
zn

fp[r̃
(τ)
n,1 (zn), . . . , r̃(τ)n,K(zn)]− c||zn − eȷθ

(τ)
n ||2. (42)

3.3. Quantized Alternating Optimization

By seeking θ(τ+1) so that

fp,c[q
(τ+1)
n , z(τ+1)

n , θ
(τ+1)
n ] > fp,c[q

(τ+1)
n , z(τ+1)

n , θ
(τ)
n ] (43)

⇔ ||z(τ+1)
n − eȷθ

(τ+1)
n || > ||z(τ+1)

n − eȷθ
(τ)
n ||, (44)

we can solve the following problem

min
θθθn
||z(τ+1)

n eȷθθθn ||2 s.t. (14), (45)

which has a closed-form solution given by (⌊∠z(τ+1)
n,m ⌉b = νb

2π
2b with

νb ≜ arg min{ν,ν+1}

∣∣∣ν 2π
2b −∠z(τ+1)

n,m

∣∣∣ for ∠z(τ+1)
n,m ∈ [ν 2π

2b , (ν + 1) 2π
2b ].)

θ
(τ+1)
n,m =

⌊
∠z(τ+1)

n,m

⌉
b
, m ∈ M. (46)
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4. Passive RIS Reduced-Complexity PRE Optimization for the MR Problem

In this section, the process of generating z(τ+1)
n is simplified by employing a closed-

form expression with scalable complexity. To achieve this, we utilize the following equiva-
lent formulation of (10).

max
θθθn

min
k∈K

rn,k(eȷθθθn) s.t. (14). (47)

We denote (θ
(τ)
n ) as a point of (47), found from (τ − 1)-st round.

Alternating Optimization of the PREs

To seek θ(τ+1) so that

min
k∈K

rk(eȷθ
(τ+1)
n ) > min

k∈K
rk(eȷθ

(τ)
n ) (48)

under the condition that eȷθ
(τ+1)
n ̸= eȷθ

(τ)
n , we address the subsequent discrete problem:

max
θθθn

min
k∈K

rk(w(τ+1), eȷθθθn) s.t. (14). (49)

Let r̃(τ)2n,k(e
ȷθθθn) be derived from r̃(τ)1n,k(e

ȷθθθn), defined from (41), with z(τ)n replaced by eȷθ
(τ)
n .

Then,

r2n,k(eȷθθθn) ≥ r̃(τ)2n,k(e
ȷθθθn)

= x̃(τ)1n,k + 2ℜ{ ∑
m∈M

ỹ(τ+1)
1n,k (m)eȷθθθn,m} − ∑

j∈K
(eȷθθθn)HΨ̃(τ+1)

2n,k eȷθθθn

≥ x̃(τ)1n,k + 2ℜ{ ∑
m∈M

(ỹ(τ+1)
1n,k (m)− ∑

m′∈M
e−ȷθ

(τ)

n,m′ Ψ̃(τ+1)
2n,k (m′, m) + λmax(Ψ̃

(τ+1)
2n,k )

e−ȷθ
(τ)
n,m)eȷθθθn,m} − (eȷθ

(τ)
n )HΨ̃(τ+1)

2n,k eȷθ
(τ)
n − 2Mλmax(Ψ̃

(τ+1)
2n,k ) (50)

= ˆ̃x(τ+1)
2n,k + 2 ∑

m∈M
ℜ{ ˆ̃y(τ+1)

2n,k (m)eȷθθθn,m}, (51)

≜ r̂(τ)2n,k(e
ȷθθθn), (52)

for
Ψ̃(τ+1)

2n,k ≜ ζ̃
(τ)
1n,k ∑

j∈K
Ψ̃(τ+1)

1n,k,j ,

where we have:

ˆ̃x(τ+1)
2n,k ≜ x̃(τ+1)

1n,k − (eȷθ
(τ)
n )HΨ̃(τ+1)

2n,k eȷθ
(τ)
n − 2Mλmax(Ψ̃

(τ+1)
2n,k ),

and

ˆ̃y(τ+1)
2n,k (m) ≜ ỹ(τ+1)

2n,k (m)− ∑
m′∈M

e−ȷθ
(τ)

n,m′ Ψ̃(τ+1)
2n,k (m′, m) + λmax(Ψ̃

(τ+1)
2n,k )e−ȷθ

(τ)
n,m .

Furthermore,

min
k=1,...,K

˜̃r(τ)2n,k(e
ȷθθθn) ≥ ˆ̃r(τ)(eȷθθθn) ≜ min

k∈K
ˆ̃x(τ+1)
2n,k + 2

M

∑
m=1

min
k∈K
ℜ{ ˆ̃y(τ+1)

2n,k (m)eȷθθθn,m}. (53)
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Now, by using ˆ̃r(τ)(θθθn) in (53), we can address the following problem to generate
θ
(τ+1),0
n ≜ (θ

(τ+1),0
n,1 , . . . , θ

(τ+1),0
n,M )T :

max
θθθn

ˆ̃r(τ)(θθθn), (54)

which is decomposed into M subproblems to find the optimal solution for each element:

max
θθθn,m∈B

min
k∈K
ℜ{ ˆ̃y(τ+1)

k (m)eȷθθθn,m}. (55)

For each PRE, the optimal solution θ
(τ+1),0
n,m can be determined by evaluating fn,m(θθθn,m) ≜

mink∈K ℜ{ ˆ̃y(τ+1)
n,k (m)eȷθθθn,m}where θθθn,m ∈ 2π at 2b points. For example, for the first θθθn,1 ∈ ∆

at 2b points, we can find the minimum value of ℜ{ ˆ̃y(τ+1)
n,k (m)eȷθθθn,1} for K users. For the

second θθθn,2 ∈ ∆ at 2b points, we can also find the minimum value of ℜ{ ˆ̃y(τ+1)
n,k (m)eȷθθθn,2}

for K users, and so on; in this way, we can obtain m values. Hence, we selected θθθn,m ∈ ∆,
which yields the largest fn,m(θθθn,m).

We also solve the following problem to obtain θ
(τ+1),k
n ≜ (θ

(τ+1),k
n,1 , . . . , θ

(τ+1),k
n,M )T ,

k = 0, 1, . . . , K, ensuring that rn,k(eȷθ
(τ+1),k
n ) > rn,k(eȷθ

(τ)
n )

max
θθθn

r̂(τ)n,k (e
ȷθθθn), (56)

where the function r̂(τ)n,k (e
ȷθθθn) in (52) is an affine function of eȷθθθn . By noting that ℜ{aejθn} =

|a| cos(∠a + θn), and thus is maximized at θn = −∠a, we obtain the closed-form solution
given by

θ
(κ+1),k
n,m = 2π −

⌊
∠ ˆ̃y(τ+1)

n,k (m)
⌉

b
, m ∈ M. (57)

Consequently, we obtain θ
(τ+1)
n from θ

(τ+1),k′
n for k′ = 0, 1, . . . , K and θ

(τ)
n , which

results in the highest mink∈K rn,k(eȷθθθn), i.e.,

θ
(τ+1)
n ≜ arg max

θθθn∈{θ(τ+1),k′
n ,k′=0,1,...K}∪{θ(τ)n }

min
k∈K

rk(eȷθθθn), (58)

to validate (48). This is valid as long as θ
(τ+1)
n ̸= θ

(τ)
n .

5. Active RIS Convex-Solver-Based Algorithms

In this section, alternate optimization is implemented for each set of variables (q̄n,z̄n,
pppn, θ̄θθn) while keeping the others fixed to generate the next iterative point. Starting with
the feasible point obtained by initializing (20) as (q̄(0)n , z(0)n , θ

(0)
n ), we let (q(τ)n , z(τ)n , θ

(τ)
n )

represent a feasible point for (20), found in the (τ − 1)-st iteration.

5.1. Alternating Optimization of UAV Trajectory

To seek q̄(τ+1)
n such that

f̄a,ρ[q̄
(τ+1)
n , z̄(τ+1)

n , p(τ)n , θ̄
(τ)
n ] > f̄a,ρ[q̄

(τ)
n , z̄(τ)n , p(τ)n , θ̄

(τ)
n ], (59)

the trajectory optimization subproblem can be reformulated as follows:

max
q̄n

min
k

1
N

N

∑
n=1

ln

(
1 +

| ˜̄Hn,k(q̄n)|2Pk

∑j∈K\{k} | ˜̄Hn,k(q̄n)|2Pj + Dn

)
(60a)
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s.t. (1)–(2), (60b)

where Dn = σν ∑m∈M |h̃n,R-k(m)|2|z̄n,m|2 + σ. The slack variable u is introduced, and
problem (60) can be reformulated as follows:

max
q̄n ,s

u (61a)

s.t. (1)–(2), (61b)

1
N

N

∑
n=1

ln

(
1 +

| ˜̄Hn,k(q̄n)|2Pk

∑j∈K\{k} | ˜̄Hn,k(q̄n)|2Pj + Dn

)
≥ u, ∀k ∈ K. (61c)

Subsequently, the problem (61) can be transformed as follows:

max
q̄n ,s

u (62a)

s.t. (1)–(2), (62b)

1
N

N

∑
n=1

ln

1 +
AaR(τ)

n,k

BaR(τ)
n,k + dκ

n,U−R

 ≥ u, ∀k ∈ K. (62c)

where AaR(τ)
n,k = |h̃n,R-kdiag(zτ

n)
√

β0GU-R,n|2Pk/σ, BaR(τ)
n,k = ∑j∈K\{k} |h̃n,R-jdiag(zτ

n)
√

β0

GU-R,n|2Pj/σ + σν ∑m∈M |h̃n,R-k(m)|2|z̄n,m|2/σ and dκ
n,U−R = ∥q̄n −wr∥κ .

However, the problem (62) cannot be solved directly due to the nonconvex constraint
(62c). Similarly, the lower bound of the left-hand side of the constraint (62c) can be derived
at the feasible point q̄r

n

1
N

N

∑
n=1

ln

1 +
AaR(τ)

n,k

BaR(τ)
n,k + dτ

n,U−R

 ≥ 1
N

N

∑
n=1

ln

1 +
AaR(τ)

n,k

BaR(τ)
n,k + dr,τ

n,U−R


+

AaR(τ)
n,k

AaR(τ)
n,k + BaR(τ)

n,k + dr,τ
n,U−R

(
1−

dτ
n,U−R

dr,τ
n,U−R

)
≜R̃aR,lb

k ,

(63)

Thus, the trajectory optimization problem can be expressed as follows:

max
q̄n ,s

s (64a)

s.t. (1)–(2), (64b)

R̃aR,lb
k ≥ u, ∀k ∈ K. (64c)

5.2. Alternating Optimization of the Power-Amplified PREs

To seek z(τ+1)
n such that

f̄a,ρ[q̄
(τ+1)
n , z̄(τ+1)

n , p(τ)n , θ̄
(τ)
n ] > f̄a,ρ[q̄

(τ+1)
n , z̄(τ)n , p(τ)n , θ̄

(τ)
n ]⇔ (65)

f̄a[r̄n(z
(τ+1)
n )]−ρ ∑

m∈M
|z̄(τ)n,m−p(τ)n,meȷθ̄

(τ)
n,m |2> f̄a[r̄n(z

(τ)
n )]−ρ ∑

m∈M
|z̄(τ)n,m−p(τ)n,meȷθ̄

(τ)
n,m |2, (66)

We now consider an unconstrained optimization problem:

max
z̄n

f̄a,ρ ≜

[
min
k∈K

r̄n,k(z̄)− ρ ∑
m∈M

|z̄n,m − p(τ)n,meȷθ̄
(τ)
n,m |2

]
s.t. (18), (67)

where, as per (16), we obtain:
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r̄n,k(z̄n) = ln

(
1 +

| ˜̄Hn,k(z̄n)
√

Pk|2

∑j∈K\{k} | ˜̄Hn,k(z̄n)
√

Pj|2 + σν ∑m∈M |h̃n,R-k(m)|2|z̄n,m|2 + σ

)
, k ∈ K. (68)

Using the inequality (A2) for (a, b) = ( ˜̄Hn,k(zn)
√

Pk, ∑j∈K\{k} | ˜̄Hn,k(zn)
√

Pj|2) and

(ā, b̄) = ( ˜̄Hn,k(q
(τ+1)
n , z(τ)n )

√
Pk, ∑j∈K\{k} | ˜̄Hn,k(q

(τ+1)
n , z(τ)n )

√
Pj|2), we can obtain a concave

quadratic function with approximating r̄k,n(z̄n).

˜̃r(τ)n,k (z̄n) ≜ ln(1 +
| ˜̄Hn,k(q̄

(τ+1)
n , z̄(τ)n )

√
Pk|2

∑j∈K\{k} | ˜̄Hn,k(q̄
(τ+1)
n , z̄(τ)n )

√
Pj|2 + σ

)

−
| ˜̄Hn,k(q̄

(τ+1)
n , z̄(τ)n )

√
Pk|2

∑j∈K\{k} | ˜̄Hn,k(q̄
(τ+1)
n , z̄(τ)n )

√
Pj|2 + σ

−σ
| ˜̄Hn,k(q̄

(τ+1)
n , z̄(τ)n )

√
Pk|2

(∑j∈K\{k} | ˜̄Hn,k(q̄
(τ+1)
n , z̄(τ)n )

√
Pj|2 + σ)(∑j∈K | ˜̄Hn,k(q

(τ+1)
n , z(τ)n )

√
Pj|2 + σ)

+
2

∑j∈K\{k} | ˜̄Hn,k(z̄n)
√

Pj|2 + σ

√
Pk

HH̃H
n,k(q̄

(τ+1)
n , z̄(τ)n ) ˜̄Hn,k(z̄n)

√
Pk}

−σ
| ˜̄Hn,k(q̄

(τ+1)
n , z̄(τ)n )

√
Pk|2(| ˜̄Hn,k(z̄n)

√
Pk|2 + ∑j∈K\{k} | ˜̄Hn,k(z̄n)

√
Pj|2)

(∑j∈K\{k} | ˜̄Hn,k(q̄
(τ+1)
n , z̄(τ)n )

√
Pj|2 + σ)(∑j∈K | ˜̄Hn,k(q̄

(τ+1)
n , z̄(τ)n )

√
Pj|2 + σ)

≜ ˜̃x(τ)n,k +
2ℜ{PH

k
˜̄HH

n,k(q̄
(τ+1)
n , z̄(τ)n ) ˜̄Hn,k(z̄n)Pk}

˜̃a(τ+1)
n,k

− ˜̃ζ(τ)n,k ∑
j∈K
| ˜̄Hn,k(z̄n)|2Pk, (69)

with
˜̃x(τ)n,k ≜ rn,k(z̄

(τ)
n )− σ ˜̃a(τ+1)

n,k − | ˜̄Hn,k(z̄
(τ)
n )|2Pk/ ˜̃a(τ+1)

n,k ,

0 < ˜̃ζ(τ)n,k ≜ | ˜̄Hn,k(z̄n)|2Pk/( ˜̃a(τ+1)
n,k |H̃k,n(z̄

(τ)
n )|2Pk + ˜̃a(τ+1)

n,k )),
˜̃a(τ+1)

n,k ≜ ∑j∈K\{k} | ˜̄Hn,k(z̄
(τ)
n )|P2

j + σ.

(70)

We thus generate z̄(τ+1)
n , verifying (69) by solving the following convex quadratic problem:

max
z̄n

[
min
k∈K

˜̃r(τ)n,k (z̄n)− ρ ∑
m∈M

|z̄n,m − p(τ)n,meȷθ̄
(τ)
n,m |2

]
s.t. (18). (71)

5.3. Alternating Optimization of Amplifier and PREs

We generate p(τ+1)
n and θ̄

(τ+1)
n by

p(τ+1)
n,m = arg min

pppn,m
|z̄(τ+1)

n,m − pppn,meȷθ̄
(τ)
n,m |2 = |z̄(τ+1)

n,m | cos(∠z̄(τ+1)
n − θ̄

(τ)
n,m), m ∈ M, (72)

and
θ̄
(τ+1)
n,m = arg min

θ̄θθn,m∈B
|z̄(τ+1)

n,m − p(τ+1)
n,m eȷθ̄θθn,m |2 = ⌊∠z̄(τ+1)

n,m ⌉b, (73)

which yields

f̄a,ρ(q̄
(τ+1)
n , z̄(τ+1)

n , p(τ+1)
n , θ̄

(τ+1)
n ) > f̄a,ρ(q̄

(τ+1)
n , z̄(τ+1)

n , p(τ+1)
n , θ̄

(τ)
n )

> f̄a,ρ(q̄
(τ+1)
n , z(τ+1)

n , p(τ)n , θ̄
(τ)
n ). (74)
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6. Numerical Examples

Furthermore, the spatial correlation matrix of RIS i is given by the following:

[RR-k]m,m′ = ejπ(m−m′) sin ψ̃k sin θ̃k , (75)

where ψ̃k and θ̃k represent the azimuth and elevation angles of user k, respectively. The
horizontal initial point and end point of the UAV are [−100, 20]T and [100.20]T , respectively.
The locations of RIS and GUs are set as [0, 0, 40]T , [−80, 60, 0]T , [−60, 40, 0]T , [−40, 50, 0]T ,
[40, 50, 0]T , [60, 40, 0]T , [80, 60, 0]T , respectively. The maximum speed of the UAV is 25 m/s
and the altitude of the UAV is 80 m. β0 = −30 dB and κ = 2, while white noise
σ = −90 dBm. The time slot δt = 1 s. Unless specified otherwise, we assume that the
transmit power is Pk = Pout = 20dBm, k ∈ K, flight time is T = 50 s, the aRIS power
is PA = 0.01Pout, the number of RIS elements is M = Mx ×Mz = 10× 10, and the PRE
resolution is b = 3.

For the simulation, we used Matlab R2022a along with the CVX solver. Our proposed
algorithms are readily adaptable to other programming languages, including “C++ " and
“Python". Below, we use the following legends to specify the proposed implementations:

• CVX-based MR RIS/aRIS denotes the performance achieved by Algorithms 1 and 2,
respectively, which relies on Matlab 2022a along with the CVX solver to solve the
problem (11)/(22) and addresses the MR problem with RIS/aRIS equipped with 3-bit
quantized PREs.

• Partially scalable MR RIS represents the performance of Algorithm 3, which em-
ploys an iterative approach involving the convex problem (27) and the closed-form
expression (58) to address the MR problem (11) using RIS with 3-bit quantized PREs.

Algorithm 1 CVX-based algorithm for computing (11)

1: Initialization: Initialize the UAV trajectory q(0)n with constraints (1)–(2). Randomly
generate (z(0)n , θ

(0)
n ) feasible for (11), with the fixed UAV trajectory q(0)n . Set τ = 0.

2: Repeat:
3: UAV trajectory design: Generate q(τ+1)

n by solving the problem (27) with fixed
(z(τ)n , θ

(τ)
n ).

4: Repeat until objective value of problem (11) reaches convergence: with a fixed UAV
trajectory q(τ+1)

n , generate z(τ+1)
n by solving the convex problem (42), and θ

(τ+1)
n by (9).

Reset τ ← τ + 1.
5: Until: The objective value of problem (11) reaches convergence.

6: Output (eȷθ
(τ)
n , q(τ)n ) and rn,k(q

(τ)
n , eȷθ

(τ)
n ), k ∈ K.

Algorithm 2 CVX-based algorithm for computing (22)

1: Initialization: Initialize the UAV trajectory q(0)n with constraints (1)–(2). Randomly
generate (z(0)n , p(0)n , θ

(0)
n ), feasible for (22). Set τ = 0.

2: Repeat:
3: UAV trajectory design: Generate q(τ+1)

n by solving the problem (64) with fixed
(z(τ)n , θ

(τ)
n ).

4: Repeat until objective value of problem (20) reaches convergence: with a fixed
UAV trajectory q(τ+1)

n , generate z̄(τ+1)
n by solving the convex problem (71). Generate

(p(τ+1)
n , θ̄

(τ+1)
n ) by (72)–(73). Reset τ ← τ + 1.

5: Until: The objective value of problem (20) reaches convergence.
6: Output (q(τ)n , z(τ)n , p(τ)n , θ̄

(τ)
n ) and rk(q

(τ)
n , z̄(τ)n ), k ∈ K.
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Algorithm 3 Partially scalable MR algorithm

1: Initialization: Initialize the UAV trajectory q(0)n with constraints (1)–(2). Randomly
generate a feasible (θ(0)) for (47). Set τ = 0.

2: Repeat:
3: UAV trajectory design: Generate q(τ+1)

n by solving the problem (27) with fixed
(z(τ)n , θ

(τ)
n ).

4: Repeat until objective value of problem (11) reaches convergence: with a fixed UAV
trajectory q(τ+1)

n , generate z(τ+1)
n by solving the convex problem (58). Reset τ ← τ + 1.

5: Until: The objective value of problem (11) reaches convergence.

6: Output (qτ
n, eȷθ

(τ)
n ) and rates rn,k(qτ

n, eȷθ
(τ)
n ), k = 1, . . . , K.

Figure 2 illustrates the convergence of the proposed algorithms, demonstrating that
the objective functions increase with the number of iterations and gradually converge
within 25 iterations. The practicality of the proposed algorithms can be observed.
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Figure 2. The convergence of the proposed algorithms.

“Table 1 presents the average computational time of the proposed algorithms, mea-
sured using a CPU with a 3.7 GHz Intel Core i9 and 32 GB RAM. Algorithm 3 is based on
our partially scalable complexity iterations. These can run more than 20 times faster than
Algorithm 1, which is based on cubic-complexity iterations, confirming the superiority of
scalable complexity iterations”.

Table 1. The average computational time to reach 70% of the optimal performance within the
proposed algorithms with the same parameter settings.

Algorithm 1 Algorithm 2 Algorithm 3

4.74 h 4.87 h 0.19 h

Figure 3 plots the min-rate increase in line with the transmit power budget Pout. The
min-rate increases with the increase in transmit power budget Pout. Figure 3 reveals that
CVX-based MR aRIS significantly outperforms both CVX-based MR RIS and partially
scalable MR RIS. It can be seen that CVX-based MR RIS achieves a better min-rate than
partially scalable MR RIS. It can be also seen that MR RIS with random θn exhibits the
poorest performance.
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Figure 3. Achieved min-rate versus transmit power, Pout.

Figure 4 plots the achievable min-rate upon varying the number of RIS elements
Mx, Mz. Figure 4 shows that CVX-based MR aRIS achieves the highest min-rate, while
MR RIS with random θn attains the lowest min-rate. It can be observed that the min-
rate achieved by CVX-based MR RIS is better than that of partially scalable MR RIS. As
expected, all the algorithms benefit from an increase in the number of RIS elements, leading
to performance improvements.

7 8 9 10 11 12

0

2.4

4.8

7.2

9.6

12

Figure 4. Achieved min-rate versus the number of RIS elements Mx, Mz.

Figure 5 plots the achievable min-rate versus the flight time T. With the increase in
flight time, the achieved min-rate increases. It can be observed that the performance of MR
aRIS outperforms other algorithms because active RIS can not only tune the phase of the
reflected signals, but can also amplify the power of the reflected signals. As expected, MR
RIS with random θn is the worst performer.

Figure 6 plots the UAV trajectory of different algorithms. It can be seen that the
trajectories of the proposed algorithms closely align with the RIS positions, with the UAV
hovering in close proximity to the RIS. This behavior minimizes path fading due to the
reduced distance between the UAV and the RIS, thereby improving the communication rate.

Figure 7 plots the min-rate attained by the b-bit solution for various values of b. It can
be observed that when b increases, there is only a marginal improvement. This observation
highlights the ability of the proposed algorithms to achieve equitable minimum rates even
at low resolutions.
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Figure 5. Achieved min-rate versus the flight time T.
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Figure 6. Optimized UAV trajectory of different algorithms.
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Figure 7. Achieved min-rate versus the reflection coefficient resolution b.

7. Summary and Conclusions

This paper explores the utilization of RIS to boost multiuser communication within
UAV networks, aiming to maximize the worst-case user rate. Initially, the study delves
into passive RIS, addressing the non-convex optimization problem through a two-stage
algorithm. This algorithm decomposes the optimization into trajectory and phase optimiza-
tion subproblems, leveraging the SCA method to convert them into convex forms. Notably,
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the paper contributes a closed-form solution for phase optimization in passive RIS configu-
rations, simplifying the process. Expanding its scope, the investigation further examines
aRIS-assisted multiuser communication within UAV systems. Employing a sophisticated
optimization approach that combines SCA and alternate optimization, the study identifies
local optimal solutions. The simulation experiments that were conducted validate the
superior performance of the UAV-aRIS strategy compared to alternative approaches.The
results demonstrate the significant potential of RIS in enhancing UAV communication
systems, particularly in multiuser scenarios. The contributions of this paper, including the
closed-form solution and the optimized algorithm, provide valuable insights for future
research in this area.
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Appendix A

The following result [40] is used

ln(1 + 1/x) ≥ ln(1 + 1/x̄)+
1

(x̄ + 1)

(
1− x

x̄

)
, ∀x ∈ R2

+, x̄ ∈ R2
+. (A1)

The paper utilizes the following matrix inequality [41] for a ∈ C, ā ∈ C, b ≥ 0, b̄ ≥ 0,
and σ > 0:

ln(1 +
|a|2

b + σ
) ≥ ln(1 +

|ā|2

b̄ + σ
)− |ā|

2

b̄ + σ
− σ

|ā|2

(b̄ + σ)(|ā|2 + b̄ + σ)

+
2

b̄ + σ
ℜ{ā∗a} − |ā|2

(b̄ + σ)(|ā|2 + b̄ + σ)
(|a|2+b). (A2)
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