
Citation: Giazitzis, S.; Sakwa, M.;

Leva, S.; Ogliari, E.; Badha, S.; Rosetti

F. A Case Study of a Tiny Machine

Learning Application for Battery

State-of-Charge Estimation. Electronics

2024, 13, 1964. https://doi.org/

10.3390/electronics13101964

Academic Editor: Ahmed Abu-Siada

Received: 29 March 2024

Revised: 8 May 2024

Accepted: 13 May 2024

Published: 16 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Case Study of a Tiny Machine Learning Application for Battery
State-of-Charge Estimation
Spyridon Giazitzis 1, Maciej Sakwa 1,* , Sonia Leva 1 , Emanuele Ogliari 1 , Susheel Badha 2 and Filippo Rosetti 2

1 Department of Energy, Politecnico di Milano, 20156 Milan, Italy; spyridon.giazitzis@polimi.it (S.G.);
sonia.leva@polimi.it (S.L.); emanuelegiovanni.ogliari@polimi.it (E.O.)

2 Infineon Technologies, 9500 Villach, Austria; susheel.badha@infineon.com (S.B.);
filippo.rosetti@infineon.com (F.R.)

* Correspondence: maciej.sakwa@polimi.it

Abstract: Growing battery use in energy storage and automotive industries demands advanced
Battery Management Systems (BMSs) to estimate key parameters like the State of Charge (SoC)
which are not directly measurable using standard sensors. Consequently, various model-based and
data-driven approaches have been developed for their estimation. Among these, the latter are often
favored due to their high accuracy, low energy consumption, and ease of implementation on the cloud
or Internet of Things (IoT) devices. This research focuses on creating small, efficient data-driven SoC
estimation models for integration into IoT devices, specifically the Infineon Cypress CY8CPROTO-
062S3-4343W. The development process involved training a compact Convolutional Neural Network
(CNN) and an Artificial Neural Network (ANN) offline using a comprehensive dataset obtained from
five different batteries. Before deployment on the target device, model quantization was performed
using Infineon’s ModusToolBox Machine Learning (MTB-ML) configurator 2.0 software. The tests
show satisfactory results for both chosen models with a good accuracy achieved, especially in the
early stages of the battery lifecycle. In terms of the computational burden, the ANN has a clear
advantage over the more complex CNN model.

Keywords: state of charge; TinyML; battery; deep learning; IoT

1. Introduction

Progressing electrification in the transportation sector is nowadays incentivized by
various policies to boost the penetration of Renewable Energy Sources (RESs) and minimize
the use of fossil fuels [1]. An increased capacity of Lithium-Ion (Li-ion) batteries is the
necessary solution to the mismatch between the power load and generation from RESs [2],
which makes them an interesting topic to many researchers. However, apart from the
development of batteries themselves, it is important to create a sophisticated and intelligent
Battery Management System (BMS), as they play a critical role in enhancing energy effi-
ciency and ensuring battery protection by dealing with tasks such as balancing the charge
levels of cells, monitoring the temperature, and regulating the current and voltage.

BMSs should be able to estimate several important parameters, such as State of Charge
(SoC), State of Health (SoH), and Remaining Useful Life (RUL), that cannot be measured
directly through sensors [3]. In particular, precise estimation of the SoC is crucial for
providing accurate information about the energy level of the battery, preventing over/under
charging, power failures, voltage imbalances, and thermal runaway, which can result in fire
or explosion in batteries [4–7]. Thus, many thermal runaway prevention and mitigation
strategies [8] have been developed considering the battery’s SoC. Moreover, precise SoC
control can enhance the battery life and generally improve the overall battery performance,
as it mitigates additional stress on the batteries that leads to chemical reactions degrading
the battery materials [9].

Electronics 2024, 13, 1964. https://doi.org/10.3390/electronics13101964 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13101964
https://doi.org/10.3390/electronics13101964
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0006-9537-5703
https://orcid.org/0000-0002-7883-0034
https://orcid.org/0000-0002-2106-0374
https://doi.org/10.3390/electronics13101964
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13101964?type=check_update&version=2

Electronics 2024, 13, 1964 2 of 17

The SoC is defined as a ratio of the available capacity of the battery to the maximum
possible capacity, given a specific degradation state [10]:

SoC =
Qcur(t)

Qmax(cycle)
· 100% (1)

where Q(t)cur is the actual current battery capacity at a given point in the discharge cycle
and the Qmax is the maximum battery capacity in the studied discharge cycle. In contrast,
the SoH is defined as a percentual ratio of the maximum available capacity of the battery in
a specific degradation state to the maximum nominal capacity [11]:

SoH =
Qmax(cycle)

Qmax(nominal)
· 100% (2)

where Qmax(cycle) is the maximum available capacity of the battery in the discharge
cycle and the Qmax(nominal) is the maximum nominal capacity at the beginning of the
lifecycle. In relation to the SoH, the RUL can be defined as the remaining number of
charge/discharge cycles until the battery falls under the SoH threshold that warrants a
replacement. Taking electric vehicles (EVs) as an example, this threshold is usually defined
at 80% of the SoH, under which battery degradation might cause unpredictable behavior
and faster-than-expected discharging. In the field of BMSs designed for EVs, it is vital to
accurately estimate all three parameters. In this way, a complete picture of the current
degradation state of the battery can be obtained. Furthermore, the corresponding maximum
driving range and the actual current driving range can be easily found and communicated
to the user.

1.1. State-of-the-Art SoC Estimation

As described, the SoC has to be estimated based on other measurements, such as
voltage (V), current (I), and temperature (T) [12]. In Figure 1, an overview of SoC estimation
methods is presented, which are normally applied to accurately estimate the SoC. It should
be emphasized that laboratory methods for estimating the SoC can only be effectively
utilized under specific conditions and with knowledge of certain initial battery parameters
to achieve satisfactory results [13]. However, they are not feasible in real-time applications
due to measurement offsets and a potentially noisy environment that could compromise
measurement accuracy.

Figure 1. Different approaches to SoC estimation.

Various physical-model-based approaches have been used, such as electrochemical
models [14], equivalent circuit models [15], and electro-thermal models [16]. To achieve a
satisfactory SoC estimation accuracy, these models rely on partial differential equations
and/or complex electrical circuits for describing electrochemical reactions/phenomena,

Electronics 2024, 13, 1964 3 of 17

such as porous electrode theory, lithium diffusion, and polarization [17]. Furthermore, the
parameters of the elements in circuit models can change due to several external factors such
as the battery temperature and degradation level, so an additional algorithm would have
to be developed to update these parameters. For this reason, to improve the accuracy and
robustness of these models, algorithms based on filters (Kalman, particle, H infinity) and
observers (Luenberger) are also included [18]. In [19], the authors developed a model-based
method for SoC estimation based on an improved adaptive particle swarm filter to enhance
its accuracy and robustness, achieving an error of less than 1%. Moreover, they mitigate
the error generated due to the initial SoC offset and battery aging. On the other hand,
in [20], an improved physics-based equivalent circuit model combined with an extended
Kalman filter was developed for estimating the SoC. The pseudo-two-dimensional model
was modified to improve the relationship between the electrochemical and the electrical
parts and achieved an SoC estimation error of less than 1%. Overall, model-based methods
achieve low errors when the parameters of the model and initial conditions are accurately
calculated. This leads to a time-consuming procedure that requires excessive memory and
computational requirements, making them inefficient for real-time applications [21].

On the other hand, due to the advancement in computational power of the devices
and increased availability of historical data, data-driven methods are more often chosen as
a suitable solution for SoC estimation. The developed models can be used as a ‘black-box’
to perform SoC estimation with a low error and without the need to solve any PDE or
create a complicated ECM. Numerous data-driven approaches have been tested up to date,
with methodologies focusing both on Machine Learning (ML) techniques such as Gaussian
Process Regression or Support Vector Machines, and Deep Learning (DL)-related Neural
Networks (NNs) [22]. Thorough reviews of the available methods paired with detailed
performance analyses can be found in [23,24]. Examples of applications include [25], where
the authors developed a temporal convolutional network for SoC estimation, which is
mainly based on stacked CNN layers and dilation, to control kernel spacing, capturing
temporal dependencies and achieving an error of less than 1% and outperforming RNN
models such as LSTM and GRUs. Moreover, in [26], a bidirectional long short-term memory
neural network was developed, where its parameters were optimized through the Bayesian
optimization algorithm. The model achieved SoC estimation with an accuracy of around
1% for both MAE and RMSE metrics.

While data-driven methods offer ease of implementation and high performance for
BMS applications, they are not universally suitable. In some scenarios, their deployment
might be impractical. A key challenge of data-driven approaches lies in their potential
for parameter explosion, particularly with Convolutional Neural Networks (CNNs). This
significant parameter count restricts deployment to powerful computers or cloud-based
solutions, limiting their applicability in resource-constrained environments. For instance, a
BMS deployed on an EV would likely operate remotely without consistent high-bandwidth
internet access, rendering cloud-based solutions infeasible. However, data-driven methods
have the advantage of being adaptable to direct sensor readings (e.g., battery voltage or
current) and require a minimal cell-specific configuration.

To address the limitations of data-driven methods in remote settings while leveraging
their direct data usage capabilities, a solution exists: Tiny Machine Learning (TinyML).
TinyML techniques can be applied to reduce the model size and memory footprint, enabling
deployment on resource-constrained embedded devices suitable for remote locations. This
process typically involves a trade-off between model size and performance, with a slight
decrease in accuracy in exchange for significant memory savings.

1.2. TinyML for SoX Etimation

TinyML has been identified as one of the most promising frontiers in data-driven SoC
estimation, with embedded edge sensor devices used to create smart battery packs that
can conduct a real-life evaluation of the performance and states of the battery [27]. The
challenge of designing and optimizing an ML model on low-power Internet of Things

Electronics 2024, 13, 1964 4 of 17

(IoT) devices comes with a lot of benefits, including energy efficiency, low cost, low latency,
and the ability to perform local data processing, avoiding unnecessary data transfers [28].
Despite numerous advantages, there are some drawbacks as the devices often operate
in uncontrolled environments with unpredictable surrounding conditions and energy
supply [29]. An additional challenge arises regarding the ML model. SoC estimation
is a complex and multivariate task as the value heavily depends on the battery type,
temperature, and current aging state. Moreover, there are severe limitations to the model
and algorithms that can be implemented on IoT devices due to constraints on memory and
computation power available [30,31]. Therefore, the task includes a process of optimization
as the desired outcome is a TinyML model that is small enough to fit on low-power IoT
devices and robust enough to handle the intricacies of SoC prediction for various test cases.

Generally, ML and DL models used for offline SoC prediction are well defined and
achieve satisfactory results with a mean error within a range of 2% to 3% [32–34]. However,
the IoT implementations of the models are a relatively unexplored area and are gaining
increasingly more popularity due to their high performance. However, some related studies
that tackle the same problem from a different or similar perspective have been identified
and will be briefly explored.

In a previous study [12], the authors identify the CNN and Gated Recurrent Units
(GRUs) as the most promising models in terms of quantization. A comparative study is
performed with two different post-training quantization methods. The authors achieve
splendid results, with the MAE below 2% for the CNN model. However, the training and
test procedure is based on a single charge and discharge cycle. In [35], the authors perform
an estimation of the SoC based on real-life operation data from a BMWi3 electric vehicle
(EV). Ten highly correlated features were selected after a sensitivity analysis with good
results achieved for simple DL models. An inference time study was performed to estimate
the necessary size of the computational unit post-quantization. In [36], the authors perform
a similar study but for the SoH prediction using recorded battery parameters (V, I, and T),
with the best performance achieved for a hybrid CNN-GRU model. The models were tested
both pre- and post-quantization and no significant changes to performance were observed.
A qualitative comparison between the identified related studies that utilize TinyML for
SoC and SoH (SoX) predictions and the one presented in this paper can be seen in Table 1.

Table 1. Qualitative assessment of the identified related research papers that target SoX predictions
on TinyML devices.

Authors Model Variable Quantization Dataset Result

Mazzi et al. [12] CNN, GRU SoC Post-training (TFLM,
STM32.AI)

Private, small (350 k
samples)
[I, V, T] data

CNN outperforms GRU
with an RMSE of 2.36%
for ref. models with a
drop to 4.97% for
quantized models.

Pau et al. [35] ANN, CNN, LSTM, GRU SoC Post-training
(SPC5-STUDIO.AI)

Private, Real EV use data,
multi-feature

ANN outperforms other
models with an RMSE of
1.95% for the ref. model
with 10 features. No data
on post-quantization
performance.

Crocioni et al. [36]
CNN, LSTM,
CNN-LSTM, GRU,
CNN-GRU

SoH Post-training (TFLM,
STM32.AI)

NASA [37], large (3.7 M
samples), [I, V, t, T] data

CNN-GRU model
outperforms others with
an RMSE of 4.88% for the
ref. model with a 0.5%
drop for the quantized
model.

Present study ANN, CNN SoC Post-training (IFX) Published, large (7.5 M
samples), [I, V, T] data

ANN outperforms CNN
with an RMSE of 3.79%
for ref. models with a
drop to 3.89% for
quantized models.

Electronics 2024, 13, 1964 5 of 17

Considering the present study, the approach itself is most similar to the one presented
in [12] with a three-feature time series for SoC estimation. However, it is the first time
that such a large and complete dataset has been utilized for the purpose of TinyML-based
SoX evaluation. Moreover, the proposed models achieve lower drops in accuracy from
the quantization procedure, indicating that the proposed architecture is better suited for
TinyML applications.

1.3. Paper Objective

In this paper, a new battery dataset will be used to train and test two NN architectures,
namely a CNN and an ANN. The models will be trained offline (on a desktop) and
subsequently quantized and optimized to be tested on the target IoT device. The conversion
process will be carried out using Infineon MTB-ML 2.0 software and the quantized model
will be implemented on the PSoC6 (CY8CPROTO-062S3-4343W) target device. The new
dataset allows for a test spanning a variety of charge and discharge cycles and helps to
better evaluate the potential of robust IoT implementations of SoC predictions.

This paper is structured as follows: first, the used datasets and case study are described
in Section 2, and the used DL model and techniques are later described in Section 3, followed
by a discussion o details of the model desired deployment board in Section 4. Preliminary
results of the proposed model are presented in Section 5 and final conclusions in Section 6.

2. Dataset

SoC and SoH predictions are based on generally available open-source datasets such
as the Center of Advanced Life Cycle Engineering (CALCE) [38] or NASA Li-ion Battery
Aging Dataset [37]. In this case, a new online available dataset [39] has been used to run
the training and test. The dataset is composed of recordings of six cylindrical, LG 2.5 Ah
18650 NMC batteries recorded in various temperature ranges. The discharging profiles
follow the UDDS, US06, and LA92 driving cycles and six random combinations of these
(cycles Mixed1-Mixed6). These driving profiles were chosen due to the high variety of
driving patterns they can simulate. For example, UDDS simulates an urban route with
an average speed of 31 km/h, while LA92 and US06 simulate more aggressive driving
profiles, reaching an average speed of 39.6 km/h and 77.9 km/h. This is crucial, as in [40],
the authors proved the importance of utilizing realistic diving profiles as they accelerate
the degradation of the battery. This effect is not solely caused by the temperature, the
depth of discharge, or calendar aging. Furthermore, for recharging the batteries, constant-
current constant-voltage profiles were utilized. With a sampling rate of 10 Hz, the dataset
is composed of over 7.5 million samples. The detailed parameters of the recorded data can
be seen in Table 2. Overall, the new open-access battery dataset examines several battery
cells and contains increased historical information for several features such as the cell
current, voltage, and temperature. Moreover, due to different temperature scenarios and
complex driving profiles, the new dataset provides more holistic information compared to
previously studied and open-access datasets, enhancing the complexity and robustness of
the trained models.

Table 2. Dataset main features.

Features Dataset

Battery Type LG 2.5Ah 18650 NMC
Testing Equipment Neware battery tester
Temperature Range −20 °C, −10 °C, 0 °C, 10 °C, 25 °C, 35 °C

Driving Profiles UDDS, US06, LA92, Mixed1-Mixed6
Sampling rate 10 Hz

No. of Samples 7,676,032

To reduce the training time and the computation load of the models, the datasets are
resampled to a 1 s mean. The data from the first five cells are used solely for the training of

Electronics 2024, 13, 1964 6 of 17

the designed DL models, and the data from cell 6 are used for the test. As for the driving
cycles, the recorded cycles vary from cell to cell, so the dataset is not fully consistent. For
example, for cells 1–5 used in the training procedure, UDDS, US96, and Mixed1-Mixed4
profiles were utilized, while for cell 6, LA92 and Mixed5-Mixed6 were used.

For the case study, two driving profiles (1 and 2) were chosen out of the test dataset
to compare the accuracy and the hardware requirements of the trained models based on
the same driving cycle profile (LA92) but with different degradation states (around 100th
and 400th cycles). In Figure 2, the SoC of the selected discharge profiles is depicted and
the effect of the degradation is noticeable. Driving profile 1 (from here on called cycle
100) represents the main use scenario of the developed model before the second life of the
battery should begin. In other words, for cycle 100, the SoH of the battery is far above the
value of 80% when a replacement is usually warranted. In contrast, driving profile 2 (from
here on called cycle 400) represents an edge case close to the necessary replacement of the
battery, with SoH values close to 80% for most of the tested battery cells. However, the
designed models are not informed on the stage of life of the battery (neither the SoH, the
RUL nor the degradation state), as the designed approach is purely data-driven.

Figure 2. SoC values of testing profiles 1 and 2.

3. Model Definition
3.1. Tested Models

Two different models were trained and tested using the dataset described in Section 2
with hyperparameters optimized through a Bayesian optimization (BO) approach [32].
BO is an effective method for tuning model hyperparameters, known for its efficient
performance in large hyperparameter spaces, where it performs faster compared to more
exhaustive methods like random or grid search. BO uses probabilistic models to estimate
the objective function and updates its assumptions to focus on promising areas of the
hyperparameter search. The process is initiated by setting a prior distribution based on
any existing knowledge of the parameters. As it progresses, BO intelligently tests new
configurations, learning from the results of previous tests. This iterative process helps it to
quickly converge on the best hyperparameters [41]. However, as the desired application
relies on TinyML, the choice of available hyperparameters (number of units and filters) and
activation functions is limited due to quantization and software restrictions.

The DL models were trained to use historical sensor-based data of the battery output
[I, V, T] to predict the current SoC value. Generally, the prediction task can be described as:

SoCn = f ([In−t, Vn−t, Tn−t], . . . , [In, Vn, Tn]) (3)

where the SoC at a given second is a function of the historical data from a selected period.
After a sensitivity analysis, the length of this period was set to 60 s as it offers the best
performance in terms of accuracy with the additional advantage of convenience for real-
time applications. Considering that three input features are studied at every point (I, V, and
T), the input matrix has a shape of 3 by 60 samples. This matrix is subsequently flattened in

Electronics 2024, 13, 1964 7 of 17

the first step of DL model processing. Figure 3 presents an additional visualization of the
prediction procedure.

Figure 3. Prediction process—a tensor of 60 [I, V, T] values corresponding to 60 s of data is used as
the input for the model (in blue) to predict the value of the SoC at the 60th s (in red). The output can
be described as a time series of SoC data with a 1-min sample rate.

• Artificial Neural Network (ANN)—a standard fully connected feed-forward Artificial
Neural Network was used as a universal benchmark model to be uploaded and tested
on the device. The most basic building block of an ANN is called a perception (or a
neuron) and an example can be seen in Figure 4.

Figure 4. A single perception mathematical model.

An ANN is normally composed of multiple linear layers of neurons (including the
input layer, one or more hidden layers, and an output layer) that sequentially pass the
input feature tensor to the output, applying the selected transformations according to
the equation:

yi = fi(WT
i xi + bi) (4)

where yi is the output of the i-th layer, fi(z) is the activation function, and Wi and bi are
weights and bias matrices, respectively. This allows the ANN to model complex non-linear
dependencies between the input and output. ANNs are generally used in a variety of tasks
due to their inherent simplicity and flexibility. The main parameters that have to be set
are the number and size (in terms of neurons) of hidden layers and the activation function
that decides the output of neurons. The sizes of the input and output layers are usually
imposed by the structure of the available data and the desired model output. The used
network is composed of three linear layers with a decreasing number of neurons (34, 8,
and 1, respectively) to obtain the SoC prediction at the output. All the layers use an ReLU
activation function due to quantization limitations. In total, the selected structure results in
6.5 thousand trainable parameters.

Electronics 2024, 13, 1964 8 of 17

• Convolutional Neural Network (CNN)—Convolutional layers are widely used for
feature extraction purposes of complex inputs, such as images or audio recordings [42].
It is achieved through a procedure composed of convolution and pooling operations.
In convolution, a kernel is passed over the input and multiplied (or convolved) with
its corresponding segments to create a feature map (as seen in Figure 5). In reality, a
number of kernels (also called filters) are passed over the input, each with a different
set of weights, resulting in a number of extracted feature maps. The number of filters
can be easily tuned depending on the complexity of the input. In the following step,
the feature maps are reduced in size through the function specified in the pooling
layer. While it is true that a pooling procedure can be considered destructive to the
data due to severe downsampling, in the case of TinyML applications, it is all the
more important to limit the memory footprint of the model. A single max-pooling
layer halved the number of parameters and therefore occupied flash memory in the
target device. Moreover, the inclusion of a pooling layer removes the need to flatten
the input array as it is needed in the case of an ANN. The extracted features can be
later fed into various typologies of models. In this case, it is a standard linear CNN
with a single 1D convolution layer (with 16 filters) followed by a max pooling layer.
The extracted feature maps are later flattened and passed through a series of three
linear layers with a reducing number of neurons (52, 4, and 1 neuron, respectively) to
obtain the SoC prediction at the output. All the layers use an ReLU activation function
due to quantization limitations. In total, the selected structure results in 24.5 thousand
trainable parameters.

Figure 5. One-dimensional convolution operation.

3.2. Evaluation Metrics

Several evaluation metrics were used for model comparison. Additional metrics that
describe the model performance in terms of computational and memory requirements
are provided directly through Infineon MTB-ML 2.0 software. In detail, the mean ab-
solute error (MAE) and the root mean square error (RMSE) were used to estimate the
model performance.

MAE =
1
n

n

∑
j=1

|SoCi − ˆSoCi| (5)

RMSE =

√
1
n

n

∑
i=1

(SoCi − ˆSoCi)2 (6)

where SoCi and ˆSoCi are the real value and the predicted values for each model, respectively.

4. Target Device
4.1. IoT Device

The target device that will be used for ML and DL model deployment is the
CY8CPROTO-062S3-4343W PSoC 62S3 (Figure 6), which is a low-cost hardware platform

Electronics 2024, 13, 1964 9 of 17

that enables the design and debugging of PSoC6 MCUs. The main parameters of this device
are as follows:

• MCU—PSoC 6.
• Voltage range—1.8–3.3 [V].
• Flash memory—512 kB.
• SRAM—256 kB.
• WiFi + Bluetooth—Murata LBEE5KL1DX module (based on a CYW4343W combo device).

Figure 6. CY8CPROTO-062S3-4343W PSoC 62S3 target device.

To deploy the models onto the target device, MTB-ML software by Infineon was used.
It provides a dedicated configurator for importing pre-trained DL models and generating
embedded models for the target device. Furthermore, the optimized models are validated
to provide information on the performance and resource requirements, such as the number
of cycles to run inference, the memory requirements for the model weights (flash memory),
or inference working memory (SRAM). In Table 3, a short description of the main supported
features of MTB-ML can be seen.

Table 3. Features supported by the MTB-ML quantization engine.

Features Values

Formats TFLite and H5

Inference engines TensorFlow Lite for microcontrollers
Infineon inference engine

Core NN kernels LSTM, GRU, MLP, Conv1d, Conv2d
Support NN kernels flatten, dropout, reshape, input layer

Activations relu, softmax, sigmoid, linear, tanh
Input data quantization level 32-bit float, 16/8-bit integer
NN weight quantization level 32-bit float, 16/8-bit integer
Cycle and memory estimation Yes

4.2. Quantization

Quantization reduces computational and memory costs during inference of ML/DL
models by converting high-precision data (weights and inputs) to a lower precision (e.g.,
8-bit integers). Quantization has several advantages, such as a reduction in the model
memory footprint, that are vital for implementing models on embedded devices that
possess low computation and memory capabilities (such as smartphones, smart sensors, and
other IoT devices). Moreover, it improves the inference time due to a lowered computational
complexity and enhances energy efficiency by lowering power consumption, making it
ideal for real-time applications. However, quantization usually comes at the cost of a
reduced prediction accuracy due to the reduced bit precision and noise introduced during
the model (or layer) scaling. There are two main approaches to quantization: post-training
quantization and quantization-aware training [43]:

Electronics 2024, 13, 1964 10 of 17

• Post-training quantization (PTQ)—This compresses the weights or both weights and
activations for faster interference. The process is performed without the need to retrain
the model. It is a simpler and faster method that can be performed even with limited
data, and it is widely used in existing embedded hardware solutions [44].

• Quantization aware training (QAT)—This introduces quantization during the model
training or fine-tuning. It requires vast amounts of additional labeled data to accurately
estimate the quantized weights. The fine-tuning results in some benefits, as the
network can better adapt to the noise of quantization and achieve a better prediction
accuracy compared to PTQ even for low-bit solutions [45].

In this paper, PTQ is applied using MTB-ML software due to its fastness and ease of
use. Technically, PTQ is performed by mapping the floating point variables of the original
model weights and activations to an integer grid with a size defined by the bit width b. This
is achieved by defining a scale factor s and zero-point z of the quantized layer and modifying
the weights from real variables (floating point) to integer representations calculated as [46]:

xint = clip
(⌊ x

s

⌉
+ z; 0, 2b − 1

)
(7)

where ⌊·⌉ is the rounding-to-nearest operation and clipping is the process of limiting a
value to a range between the defined minimum and maximum values (which is 0 and
2b − 1 in this case). Therefore, the real value can be approximated from the integer value
through dequantization as:

x ≈ x̂ = s(xint − z) (8)

As a consequence, PTQ introduces noise to the model predictions due to the rounding
and clipping operation errors induced through the quantization procedure. These errors
strictly depend on the selected parameters and particularly on the quantization bit width b.
The effects of a different b selection on the proposed models are later studied in Section 5.

MTB-ML supports two different quantization engines, the standard TFLM which is a
part of the TensorFlow Deep Learning ecosystem, and IFX offered by Infineon MTB-ML
2.0 software. The details of the supported quantization precisions can be seen in Table 4.
Moreover, during PTQ, the MTB-ML 2.0 software performs advanced scratch memory
optimization that further reduces the inference time with minimal impact on the model pre-
cision. In this research paper, the IFX engine was selected to perform PTQ to better evaluate
and compare the performance and accuracy loss of different quantization precisions.

Table 4. Quantization type supported by IFX quantization engine compared to the TFLM.

Quantization Type Input Data Weights Inference Engine

int8x8 8-bit f.p. 1, 8-bit f.p. IFX, TFLM
int16x8 16-bit f.p. 8-bit f.p. IFX
int16x16 16-bit f.p. 16-bit f.p. IFX

float fl.p. 2 fl.p. IFX, TFLM
1 f.p.—fixed point. 2 fl.p.—floating point

5. Results and Discussion

To validate the experiment, the models were tested both on the desktop and on the
target device to measure their computational burden and performance. Initially, the pre-
trained models had to be uploaded to the MTB-ML configurator 2.0 software, and their
quantized versions were obtained. The achieved computational and memory requirements
for the reduced models can be seen in Table 5 based on discharge profile 1 (the results are the
same for profile 2). It is well noticeable that the 16-bit operations are more computationally
efficient, with the int16x16 quantized model boasting the lowest number of cycles for both
the ANN and CNN. Regarding the memory requirements, as expected, utilizing 8-bit
information for data representation significantly reduces the amount of memory needed

Electronics 2024, 13, 1964 11 of 17

both in terms of the solid flash memory (for model weight and bias matrices) and the
temporary SRAM (scratch) for running inference. It is clearly visible that the ANN model
uses around a quarter of the memory of the CNN, which is proportional to the number of
trainable parameters of both models.

Table 5. Memory and computational burden analysis.

Model Quantization Number of Model Weights
and Scratch

Type Cycles Biases (kB) Memory (kB)

CNN
int16x16 134,790 47.99 3.69
int16x8 201,932 24.04 3.69
int8x8 155,008 24.04 2.32

ANN
int16x16 20,246 12.66 0.55
int16x8 30,878 6.36 0.55
int8x8 23,283 6.36 0.35

Considering the accuracy, in Table 6, the detailed results for both tested cycles can be
seen divided between different quantization types and models. Consistent with previous
findings [36], the models show no accuracy drop when used on the target device compared
to the desktop validation prior to deployment. Therefore, only a single result is listed
for each version. The models were validated both on the desktop and on the device, but
only on-device results are presented. Generally, the reference model performance (not
quantized) is significantly better considering the early life-cycle charging cycle 100, with
errors not exceeding 3% in terms of the MAE. At that point of the lifecycle, the battery
is still in the early cycles (linear phase) and has not degraded much; as a result, the
behavior of the battery is more stable and can be accurately predicted based on the sensor
measurements of V, I, and T. Cycle 400 is located close to the battery ’knee’ point (as can
be seen in Figure 7), where the behavior becomes unpredictable, which impedes accurate
generalization for ML and DL models. In both cases, the ANN surpasses the CNN in terms
of performance with a lower error in terms of both MAE and RMSE. For the quantized
models, the best results are achieved by the ANN int16x16 with an MAE equal to 2.81%
and an RMSE equal to 3.86%, which is around 0.5% better in comparison to the CNN at
the same quantization. Moreover, considering cycle 100, which is the main use scenario,
for the ANN, the differences between errors for different quantization bit precisions are
significantly smaller than for the CNN. The difference does not surpass 0.2% in terms of
the MAE, while for the CNN, the difference between int16x16 (best performing) and int8x8
(worst performing) exceeds 0.6%. The situation is inverted in the edge case (cycle 400) with
an error difference of 1.5% for the ANN compared to 0.8% for the CNN.

Table 6. Performance analysis for the tested models in terms of MAE and RMSE—the best model is
marked in bold.

Cycle Model ANN CNN
MAE RMSE MAE RMSE

Cycle 100

Ref. model 0.0269 0.0379 0.0295 0.0402
int8x8 0.0282 0.0389 0.0407 0.0493
int16x8 0.0303 0.0403 0.0379 0.0464

int16x16 0.0281 0.0386 0.0342 0.0432

Cycle 400

Ref. model 0.0509 0.0662 0.0518 0.0666
int8x8 0.053 0.067 0.0499 0.0614
int16x8 0.0629 0.076 0.0481 0.0619

int16x16 0.0484 0.0638 0.0565 0.0707

Electronics 2024, 13, 1964 12 of 17

Figure 7. State of Health of the six studied cells. Around cycle 400, the state of the battery starts to
degrade drastically.

For cycle 100, the quantized models behave as expected, with slight accuracy drops
compared to the reference model at each further quantization step, which is particularly true
for the CNN. However, in the case of cycle 400, a slight improvement in prediction accuracy
over the reference model can be noted in some quantization options. This phenomenon can
be further examined using graphs presented in Figures 8 and 9, which present the test error
variation between the reference non-quantized models and their quantized counterparts,
defined as:

Relative accuracy = (1 −
Errorquantized

Errorre f erence
) · 100% (9)

In the case of cycle 100, the model follows the expected pattern with the lowest
accuracy drop achieved for int16x16 quantization, which is equal to 4% for the ANN in
terms of the MAE and 16% for the CNN. Due to the model complexity being connected
to a significantly higher number of parameters, the accuracy drop is naturally higher for
the CNN model as the information loss due to a lower bit precision is relevantly more
significant. The same cannot be said about cycle 400, as it can be observed that the model
behavior is inconsistent with the information loss due to conversion. This can be justified
again by the unpredictable behavior of batteries in the later life stages, which implausibly
might converge well with the decreased generalization precision learned from the training
dataset. Hence, this situation should be seen as an exception that is caused by an artifact
present in the test data and should not be seen as the expected pattern of behavior.

Figure 8. Cycle 100—comparison between the reference model and the quantized model performance.

Electronics 2024, 13, 1964 13 of 17

Figure 9. Cycle 400—comparison between the reference model and the quantized model performance.

The inconsistencies can be further studied by examining the quantization noise corre-
sponding to each model and each quantization precision. In Figure 10, the model degra-
dation due to quantization is studied by comparing the reference model prediction with
quantized versions in terms of the MAE. It is easily visible that the int16x16 achieves a
performance that is the most comparable to the original model trained and tested on a
desktop with a quantization error not surpassing 0.5% in terms of the MAE. The error
grows to 1.5% for the mixed quantization and to 0.6% for int8x8. This behavior is consistent
with a higher bit precision and lower reductions in the model weights. Moreover, it is
highly desirable, as with PTQ, most of the model training, validation, and hyperparam-
eter tweaking is performed before quantization; therefore, any deviation may invalidate
previous fine-tuning [46].

Figure 10. Mean quantization error for each tested model. The mean was calculated based on four test
runs of each model for different test cycles.

Since the initial model design prioritized TinyML implementation, the pre-quantized
model sizes are inherently small. This characteristic allows for less aggressive quantization,
focusing on balancing memory efficiency with minimal performance degradation. In this
case, int16x16 quantization reduces the model weight size by over 50% compared to the
original precision (e.g., float32) for both the CNN and ANN models. This translates to a
memory footprint of less than 10% for the CNN and less than 5% for the ANN on the flash
memory of the target device. Furthermore, in Figure 10, it can be seen that int16x16
quantization typically introduces a minimal accuracy loss, with errors not exceeding
0.5% compared to the pre-quantized model. This ensures that the model maintains its
effectiveness in real-world applications.

Electronics 2024, 13, 1964 14 of 17

Considering both memory efficiency and performance, the int16x16 ANN model
emerges as the optimal choice for deployment and further study. Its compact size allows
for efficient operation on resource-constrained IoT devices, while the minimal performance
degradation ensures accurate battery SoC estimation. This selection prioritizes the key
considerations for TinyML applications on resource-limited devices.

Regardless of the results, there is still an issue with a declining performance in the
later stages of battery life. Despite the satisfactory results obtained by the tested models,
a good prediction accuracy should be independent of the aging phase of the battery
and the test device. Therefore, in future works, it is necessary to test other common
architectures for time-series analysis, including models like CNN-LSTM or CNN-GRU.
A robust selection procedure should be performed considering a trade-off between the
accuracy and computational and memory requirements of the model.

6. Conclusions

TinyML presents a new and exciting frontier for the development of smart measuring
devices that are capable of aggregating data and making decisions on the edge. This paper
contributes to the state of the art by presenting a robust case study on IoT implementation of
DL algorithms for SoC estimation. A new, very large open-access battery dataset published
by TUB-PoliMi has been utilized to train the proposed models and test the developed
methodology. The dataset is based on LG 2.5Ah 18650 batteries of NMC type and contains
information on the voltage, current, and temperature of the cells. Various driving profiles
are tested at different discharge temperatures ranging from −20 °C to 35 °C. These new
data allow for a detailed comparison of battery behavior, as the models could be tested
using a different battery cell and various driving cycles.

Provided with the dataset, two different DL models are trained, quantized through
PTQ, and subsequently deployed on the CY8CPROTO-062S3-4343W PSoC 62S3 target
device. The selected quantization infrastructure supports different quantization precision
values. This allows for demonstrating the benefits of using a less destructive precision—
int16x16 compared to the standard int8x8 supported by the majority of open-source frame-
works such as TFLM or ONNX. With int16x16, the models suffer from less quantization
noise, making them more comparable to the reference models trained and tested on the
desktop before PTQ. Certainly, the price to pay is the increased on-device memory footprint
of the deployed model. However, with models such as the demonstrated ANN, the memory
occupied by the model weights is less than 3% of the total available flash memory. In the
end, the best result in terms of the MAE was achieved by the ANN in the early cycles with
a 2.81% error for an already quantized model.

In the tests, the ANN outperforms the more complex CNN in terms of both inference
time and accuracy, which is in line with the previous findings in [12,35,36], where often
simpler models achieved comparable or better results than their more advanced counter-
parts. Moreover, the error achieved by the proposed ANN approach is lower compared
to those found in related research papers. Despite the satisfactory results of the presented
models, it would be necessary to evaluate other popular DL architectures that are regularly
used for SoC prediction, such as LSTM, GRU, CNN-LSTM, and CNN-GRU, in future
research. These advanced DL models for time-series analysis could deeply benefit from
being paired with a more robust and detailed dataset from TUB-PoliMi [39]. Moreover, in
future works, research can be extended to add additional steps and secondary prediction
models that could focus on tasks such as SoH estimation or RUL trajectory prediction,
which are vital for prognostics, diagnostics, and general health management of batteries.
Moreover, some further experimentation will be performed to enrich the training dataset,
such as the implementation of time-series data augmentation techniques to address the
inconsistencies in the late cycle.

Author Contributions: Conceptualization, E.O. and S.L.; methodology, S.G.; software, S.G. and M.S.;
validation, S.B. and F.R.; formal analysis, S.G.; investigation, S.G. and M.S.; resources, S.B. and F.R.;
data curation, S.G.; writing—original draft preparation, S.G. and M.S.; writing—review and editing,

Electronics 2024, 13, 1964 15 of 17

S.G., M.S. and E.O.; visualization, M.S.; supervision, S.L.; project administration, E.O.; funding
acquisition, E.O. All authors have read and agreed to the published version of the manuscript.

Funding: This study was carried out within the MOST—Sustainable Mobility Center and received
funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RE-
SILIENZA (PNRR)—MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4—D.D. 1033 17/06/2022,
CN00000023). This manuscript reflects only the authors’ views and opinions; neither the European
Union nor the European Commission can be considered responsible for them.

Data Availability Statement: The data presented in this study are available in this article.

Conflicts of Interest: Authors Susheel Badha and Filippo Rosetti were employed by the company
Infineon Technologies. The remaining authors declare that the research was conducted in the absence
of any commercial or financial relationships that could be construed as a potential conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
BMS Battery Management System
DL Deep Learning
GRU Gated Recurrent Unit cell
IoT Internet of Things
Li-Ion Lithium-Ion
LSTM Long Short-Term Memory cell
MAE Mean Absolute Error
ML Machine Learning
MTB-ML ModusToolbox Machine Learning Configurator
PTQ Post-Training Quantization
QAT Quantization-Aware Training
RMSE Root Mean Square Error
RUL Remaining Useful Life
SoC State of Charge
SoH State of Health
TinyML Tiny Machine Learning

References
1. Eleftheriadis, P.; Dolara, A.; Leva, S. An Overview of Data-Driven Methods for the Online State of Charge Estimation. In

Proceedings of the 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and
Commercial Power Systems Europe (EEEIC/I&CPS Europe), Prague, Czech Republic, 28 June–1 July 2022; pp. 1–6. [CrossRef]

2. Blomgren, G.E. The development and future of lithium ion batteries. J. Electrochem. Soc. 2016, 164, A5019. [CrossRef]
3. Hussain, S.; Ali, M.U.; Nengroo, S.H.; Khan, I.; Ishfaq, M.; Kim, H.J. Semiactive hybrid energy management system: A solution

for electric wheelchairs. Electronics 2019, 8, 345. [CrossRef]
4. Rao, Z.; Lyu, P.; Du, P.; He, D.; Huo, Y.; Liu, C. Thermal safety and thermal management of batteries. Battery Energy 2022,

1, 20210019. [CrossRef]
5. Coskun, A.K.; Rosing, T.S.; Gross, K.C. Utilizing predictors for efficient thermal management in multiprocessor SoCs. IEEE Trans.

Comput. -Aided Des. Integr. Circuits Syst. 2009, 28, 1503–1516. [CrossRef]
6. Palo, M.; Schubert, B; Wei, J.; Liu, W. Clustering-based Discrimination of multiple Partial Discharge Sources: A Case Study. In

Proceedings of the IEEE Milan PowerTech 2019, Milan, Italy, 23–27 June 2019; pp. 1–6. [CrossRef]
7. Sun, P.; Bisschop, R.; Niu, H.; Huang, X. A review of battery fires in electric vehicles. Fire Technol. 2020, 56, 1361–1410. [CrossRef]
8. Shahid, S.; Agelin-Chaab, M. A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries. Energy

Convers. Manag. X 2022, 16, 100310. [CrossRef]
9. Rahimi-Eichi, H.; Ojha, U.; Baronti, F.; Chow, M.Y. Battery Management System: An Overview of Its Application in the Smart

Grid and Electric Vehicles. Ieee Ind. Electron. Mag. 2013, 7, 4–16. [CrossRef]
10. Pop, V.; Bergveld, H.J.; Notten, P.; Regtien, P.P. State-of-the-art of battery state-of-charge determination. Meas. Sci. Technol. 2005,

16, R93. [CrossRef]
11. Xiong, R.; Li, L.; Tian, J. Towards a smarter battery management system: A critical review on battery state of health monitoring

methods. J. Power Sources 2018, 405, 18–29. [CrossRef]
12. Mazzi, Y.; Ben Sassi, H.; Gaga, A.; Errahimi, F. State of charge estimation of an electric vehicle’s battery using tiny neural network

embedded on small microcontroller units. Int. J. Energy Res. 2022, 46, 8102–8119. [CrossRef]

http://doi.org/10.1109/EEEIC/ICPSEurope54979.2022.9854413
http://dx.doi.org/10.1149/2.0251701jes
http://dx.doi.org/10.3390/electronics8030345
http://dx.doi.org/10.1002/bte2.20210019
http://dx.doi.org/10.1109/TCAD.2009.2026357
http://dx.doi.org/10.1109/PTC.2019.8810743
http://dx.doi.org/10.1007/s10694-019-00944-3
http://dx.doi.org/10.1016/j.ecmx.2022.100310
http://dx.doi.org/10.1109/MIE.2013.2250351
http://dx.doi.org/10.1088/0957-0233/16/12/R01
http://dx.doi.org/10.1016/j.jpowsour.2018.10.019
http://dx.doi.org/10.1002/er.7713

Electronics 2024, 13, 1964 16 of 17

13. Movassagh, K.; Raihan, A.; Balasingam, B.; Pattipati, K. A critical look at coulomb counting approach for state of charge
estimation in batteries. Energies 2021, 14, 4074. [CrossRef]

14. Corno, M.; Bhatt, N.; Savaresi, S.M.; Verhaegen, M. Electrochemical model-based state of charge estimation for Li-ion cells. IEEE
Trans. Control Syst. Technol. 2014, 23, 117–127. [CrossRef]

15. He, H.; Xiong, R.; Fan, J. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an
experimental approach. Energies 2011, 4, 582–598. [CrossRef]

16. Zhang, X.; Wang, Y.; Chen, Z. Soc-modified core temperature estimation of lithium-ion battery based on control-oriented
electro-thermal model. IEEE Trans. Power Electron. 2023, 38, 11642–11651. [CrossRef]

17. How, D.N.T.; Hannan, M.A.; Hossain Lipu, M.S.; Ker, P.J. State of Charge Estimation for Lithium-Ion Batteries Using Model-Based
and Data-Driven Methods: A Review. IEEE Access 2019, 7, 136116–136136. [CrossRef]

18. Meng, J.; Ricco, M.; Luo, G.; Swierczynski, M.; Stroe, D.I.; Stroe, A.I.; Teodorescu, R. An overview and comparison of online
implementable SOC estimation methods for lithium-ion battery. IEEE Trans. Ind. Appl. 2017, 54, 1583–1591. [CrossRef]

19. Ye, M.; Guo, H.; Cao, B. A model-based adaptive state of charge estimator for a lithium-ion battery using an improved adaptive
particle filter. Appl. Energy 2017, 190, 740–748. [CrossRef]

20. Pang, H.; Jin, J.; Wu, L.; Zhang, F.; Liu, K. A comprehensive physics-based equivalent-circuit model and state of charge estimation
for lithium-ion batteries. J. Electrochem. Soc. 2021, 168, 090552. [CrossRef]

21. Ng, M.F.; Zhao, J.; Yan, Q.; Conduit, G.J.; Seh, Z.W. Predicting the state of charge and health of batteries using data-driven
machine learning. Nat. Mach. Intell. 2020, 2, 161–170. [CrossRef]

22. Miraftabzadeh, S.M.; Longo, M.; Brenna, M. Knowledge Extraction From PV Power Generation with Deep Learning Autoencoder
and Clustering-Based Algorithms. IEEE Access 2023, 11, 69227–69240. [CrossRef]

23. Eleftheriadis, P.; Giazitzis, S.; Leva, S.; Ogliari, E. Data-Driven Methods for the State of Charge Estimation of Lithium-Ion
Batteries: An Overview. Forecasting 2023, 5, 576–599. [CrossRef]

24. Vidal, C.; Malysz, P.; Kollmeyer, P.; Emadi, A. Machine learning applied to electrified vehicle battery state of charge and state of
health estimation: State-of-the-art. IEEE Access 2020, 8, 52796–52814. [CrossRef]

25. Liu, Y.; Li, J.; Zhang, G.; Hua, B.; Xiong, N. State of charge estimation of lithium-ion batteries based on temporal convolutional
network and transfer learning. IEEE Access 2021, 9, 34177–34187. [CrossRef]

26. Yang, B.; Wang, Y.; Zhan, Y. Lithium battery state-of-charge estimation based on a Bayesian optimization bidirectional long
short-term memory neural network. Energies 2022, 15, 4670. [CrossRef]

27. D.V.S.R., S.; Badachi, C.; Green II, R.C. A review on data-driven SOC estimation with Li-Ion batteries: Implementation methods &
future aspirations. J. Energy Storage 2023, 72, 108420. [CrossRef]

28. Alajlan, N.N.; Ibrahim, D.M. TinyML: Enabling of Inference Deep Learning Models on Ultra-Low-Power IoT Edge Devices for AI
Applications. Micromachines 2022, 13, 851. [CrossRef] [PubMed]

29. Sabovic, A.; Aernouts, M.; Subotic, D.; Fontaine, J.; De Poorter, E.; Famaey, J. Towards energy-aware tinyML on battery-less IoT
devices. Internet Things 2023, 22, 100736. [CrossRef]

30. Pavan, M.; Caltabiano, A.; Roveri, M. TinyML for UWB-radar based presence detection. In Proceedings of the 2022 International
Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; pp. 1–8. [CrossRef]

31. Roveri, M. Is Tiny Deep Learning the New Deep Learning? In Proceedings of the Computational Intelligence and Data Analytics;
Buyya, R., Hernandez, S.M., Kovvur, R.M.R., Sarma, T.H., Eds.; Springer Nature: Singapore, 2023; pp. 23–39.

32. Eleftheriadis, P.; Leva, S.; Ogliari, E. Bayesian Hyperparameter Optimization of stacked Bidirectional Long Short-Term Memory
neural network for the State of Charge estimation. Sustain. Energy Grids Netw. 2023, 36, 101160. [CrossRef]

33. Eleftheriadis, P.; Hegde, M.; Sohal, H.S.; Leva, S. Hyperband Optimization of Stacked Bidirectional Long Short-Term Memory
Neural Network for the State of Charge Estimation. In Proceedings of the 2023 IEEE International Conference on Environment
and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid,
Spain, 6–9 June 2023; pp. 1–6. [CrossRef]

34. Eleftheriadis, P.; Giazitzis, S.; Leva, S.; Ogliari, E. Transfer Learning Techniques for the Lithium-Ion Battery State of Charge
Estimation. IEEE Access 2024, 12, 993–1004. [CrossRef]

35. Pau, D.; Denaro, D.; Gruosso, G.; Sahnoun, A. Microcontroller architectures for battery state of charge prediction with tiny
neural networks. In Proceedings of the 2021 IEEE 11th International Conference on Consumer Electronics (ICCE-Berlin), Berlin,
Germany, 15–18 November 2021; pp. 1–6. [CrossRef]

36. Crocioni, G.; Pau, D.; Delorme, J.M.; Gruosso, G. Li-Ion Batteries Parameter Estimation With Tiny Neural Networks Embedded
on Intelligent IoT Microcontrollers. IEEE Access 2020, 8, 122135–122146. [CrossRef]

37. NASA. Li-ion Battery Aging Datasets. Available online: https://data.nasa.gov/dataset/Li-ion-Battery-Aging-Datasets/uj5r-
zjdb/about_data (accessed on 22 January 2024).

38. University of Maryland, Battery Group. Center of Advanced Life Cycle Engineering Battery Data. Available online: https:
//calce.umd.edu/battery-data#INR (accessed on 12 May 2024).

39. Eleftheriadis, P. PoliMi-TUB Dataset-LG 18650HE4 Li-Ion Battery 2024. Available online: https://data.mendeley.com/datasets/
6hyhsjbwkb/1 (accessed on 12 May 2024).

http://dx.doi.org/10.3390/en14144074
http://dx.doi.org/10.1109/TCST.2014.2314333
http://dx.doi.org/10.3390/en4040582
http://dx.doi.org/10.1109/TPEL.2023.3288539
http://dx.doi.org/10.1109/ACCESS.2019.2942213
http://dx.doi.org/10.1109/TIA.2017.2775179
http://dx.doi.org/10.1016/j.apenergy.2016.12.133
http://dx.doi.org/10.1149/1945-7111/ac2701
http://dx.doi.org/10.1038/s42256-020-0156-7
http://dx.doi.org/10.1109/ACCESS.2023.3292516
http://dx.doi.org/10.3390/forecast5030032
http://dx.doi.org/10.1109/ACCESS.2020.2980961
http://dx.doi.org/10.1109/ACCESS.2021.3057371
http://dx.doi.org/10.3390/en15134670
http://dx.doi.org/10.1016/j.est.2023.108420
http://dx.doi.org/10.3390/mi13060851
http://www.ncbi.nlm.nih.gov/pubmed/35744466
http://dx.doi.org/10.1016/j.iot.2023.100736
http://dx.doi.org/10.1109/IJCNN55064.2022.9892925
http://dx.doi.org/10.1016/j.segan.2023.101160
http://dx.doi.org/10.1109/EEEIC/ICPSEurope57605.2023.10194767
http://dx.doi.org/10.1109/ACCESS.2023.3337215
http://dx.doi.org/10.1109/ICCE-Berlin53567.2021.9720020
http://dx.doi.org/10.1109/ACCESS.2020.3007046
https://data.nasa.gov/dataset/Li-ion-Battery-Aging-Datasets/uj5r-zjdb/about_data
https://data.nasa.gov/dataset/Li-ion-Battery-Aging-Datasets/uj5r-zjdb/about_data
https://calce.umd.edu/battery-data#INR
https://calce.umd.edu/battery-data#INR
https://data.mendeley.com/datasets/6hyhsjbwkb/1
https://data.mendeley.com/datasets/6hyhsjbwkb/1

Electronics 2024, 13, 1964 17 of 17

40. Kalk, A.; Clemens Holocher, M.; Ohneseit, S.; Kupper, C.; Hiller, M. Effects of Realistic Driving Profiles on the Degradation of
Lithium-Ion Batteries. In Proceedings of the 2023 IEEE International Transportation Electrification Conference (ITEC-India),
Chennai, India, 12–15 December 2023; pp. 1–6. [CrossRef]

41. Frazier, P.I. A tutorial on Bayesian optimization. arXiv 2018, arXiv:1807.02811.
42. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http:

//www.deeplearningbook.org (accessed on 12 May 2024).
43. Krishnamoorthi, R. Quantizing deep convolutional networks for efficient inference: A whitepaper. arXiv 2018, arXiv:1806.08342.
44. Nahshan, Y.; Chmiel, B.; Baskin, C.; Zheltonozhskii, E.; Banner, R.; Bronstein, A.M.; Mendelson, A. Loss aware post-training

quantization. Mach. Learn. 2021, 110, 3245–3262. [CrossRef]
45. Nagel, M.; Fournarakis, M.; Bondarenko, Y.; Blankevoort, T. Overcoming Oscillations in Quantization-Aware Training. In

Proceedings of the 39th International Conference on Machine Learning, PMLR, Baltimore, MD, USA, 17–23 July 2022; Chaudhuri,
K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S., Eds.; Volume 162, pp. 16318–16330.

46. Nagel, M.; Fournarakis, M.; Amjad, R.A.; Bondarenko, Y.; Van Baalen, M.; Blankevoort, T. A white paper on neural network
quantization. arXiv 2021, arXiv:2106.08295.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ITEC-India59098.2023.10471482
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1007/s10994-021-06053-z

	Introduction
	State-of-the-Art SoC Estimation
	TinyML for SoX Etimation
	Paper Objective

	Dataset
	Model Definition
	Tested Models
	Evaluation Metrics

	Target Device
	IoT Device
	Quantization

	Results and Discussion
	Conclusions
	References

