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Abstract: Deep convolutional neural networks (CNNs) can achieve good performance in image
denoising due to their superiority in the extraction of structural information. However, they may
ignore the relationships between pixels to limit effects for image denoising. Transformer, focusing
on pixel to pixel relationships can effectively solve this problem. This article aims to make a CNN
and Transformer complement each other in image denoising. In this study, we propose a dynamic
network with Transformer for image denoising (DTNet), with a residual block (RB), a multi-head
self-attention block (MSAB), and a multidimensional dynamic enhancement block (MDEB). Firstly,
the RB not only utilizes a CNN but also lays the foundation for the combination with Transformer.
Then, the MSAB adds positional encoding and applies multi-head self-attention, which enables the
preservation of sequential positional information while employing the Transformer to obtain global
information. Finally, the MDEB uses dimension enhancement and dynamic convolution to improve
the adaptive ability. The experiments show that our DTNet is superior to some existing methods for
image denoising.

Keywords: image denoising; transformer; CNN; dynamic convolution

1. Introduction

Image denoising, as a vital research topic in computer vision, has established an im-
portant foundation for other high-level computer vision technologies [1]. The mathematical
model of image degradation can be represented by the formula y = H(x) + n [2], where y
represents a clean image, H is the degenerate function, and n is additive noise, including
Gaussian noise and salt and pepper Noise. According to this model, various models have
been exploited for modeling image priors, as follows. Wang et al. proposed a progressive
switching median (PSM) filter to remove salt–pepper impulse noise [3]. According to the
zero-mean Laplacian random variables with high local correlation, Rebbani et al. proposed
a new spatially adaptive denoising method [4]. Dabov et al. enhanced sparse representation
by the 3D transformation of 2D image fragments [5]. Image guidance was introduced into
image denoising by learning sparse representations of images [6]. However, the quality of
the guidance image is an important factor to address the blurring of denoised edges [7].
To solve the blurring problem, the joint image denoising algorithm measures the absolute
cosine value of the angle between the gradient vector of the guidance image and the gradi-
ent vector of the image to restore them in parallel [7]. Dong et al. presented a variational
framework unifying the local image module based on a dictionary of basic functions and a
nonlocal image module based on clustering. Although most of these prior methods demon-
strate good performance in image denoising, they have the following two disadvantages [8]:
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(1) these methods require complex optimization algorithms, causing low denoising effi-
ciency; and (2) they have the problem of requiring parameters to be manually selected.

To overcome the limitations of these prior methods, a large number of end-to-end
deep learning methods have been proposed [9], including generative adversarial networks
(GANs) [10], encoder–decoder architectures [11], CNN-based methods [6,8,12,13], and
Transformer-based methods [14–17]. Through end-to-end deep learning methods, the model
can automatically learn feature representations from the data and make final predictions for
the task [9]. There is usually a significant difference between the saliency of 3D views and
2D views [10]. To lower this difference, a multi-input multi-output generative adversarial
network (MIMO-GAN) is used in computer vision, which is also an effective architecture
for image perception [10]. By expanding the encoder–decoder architecture, a reconstructor
was introduced to a reconstruction network (RecNet) to reproduce video features after the
encoder–decoder structure [11]. This introduces a new method for computer vision architec-
ture. In this study, we will mainly discuss the research on CNNs and Transformer. Zhang et
al. used a residual learning strategy to remove latent clean images in the hidden layers [8].
CNNs may encounter situations where shallow information is difficult to transmit to deep
layers [6]. Therefore, Tian et al. used a long path to fuse information from both shallow and
deep layers [6]. In addition, a memory block includes multi-level representations of the
current state and reservations of previous states [18]. The use of an attention mechanism to
improve the granularity of extracting information in complex environments is possible [6].
Self-attention is the core idea in Transformer, which can capture global features [19]. Doso-
vitsky et al. [20] proposed the Vision Transformer model ViT and adopted the Transformer
structure for image classification for the first time. DeiT [21] proposed several strategies to
train ViT on smaller datasets, achieving better results. The application of Transformer to
promote the modeling of image generation sequences has achieved significant results in
image generation tasks. Afterwards, more Transformer applications were developed in other
image processing fields. Moreover, the use of Transformer to promote the modeling of image
generation sequences has achieved significant results in image generation tasks [22]. A tex-
ture converter for joint feature learning across reference images and low-resolution images is
used for image super-resolution [23]. There are also numerous studies in the field of image
denoising. Liu et al. proposed Swin Transformer to limit self-attention to non-overlapping
local windows for cross-window connection [15]. Reformer applies self-attention across fea-
ture dimensions instead of spatial dimensions, replacing the original ordinary multi-head
attention [24]. Wang et al. enabled the network layer to adaptively adjust and employed
specific attention mechanisms to serve its U-shaped structure [25]. But both CNN-based
methods and Transformer-based methods need large data and huge amounts of computing
resources. In addition, they may ignore the relationships between pixels to limit effects for
image denoising. Considering the advantages of CNNs in structural feature extraction and
Transformer’s perception of pixel relationships, we aim to combine these two advantages to
improve image denoising performance while overcoming their computational complexity.
Therefore, in-depth research and contributions are conducted.

In this study, we present a dynamic network with Transformer for image denoising
(DTNet). DTNet utilizes three modules, including a residual block (RB), a multi-head
self-attention block (MSAB), and a multidimensional dynamic enhancement block (MDEB).
In the RB, we use cutting operations and residual learning to segment images into feature
sequences that conform to the Transformer. This not only utilizes a CNN for local feature ex-
traction, but also facilitates the subsequent input of vectors into the Transformer. The MSAB
adds positional encoding and applied multi-head self-attention, which preserves sequence
order relationships and global features. The MDEB performs dimension enhancement and
dynamic convolution to improve adaptability and computational efficiency. DTNet uses
pixel relationships to extract salient information. In addition, multidimensional operation
fusion using multi-level information can improve the generalization ability of the obtained
denoiser. Experiments demonstrate that the proposed DTNet has good performance in
image denoising.



Electronics 2024, 13, 1676 3 of 14

The contributions of this paper are as follows.

1. A dynamic convolution is used in a CNN to adaptively learn parameters to improve
the robustness of an obtained denoiser, according to the given noisy images.

2. The combination of a CNN and Transformer can extract more structural information
and salient information in terms of network architecture and relationships between
image pixels.

3. The fusion of multi-level information designed into a CNN can improve the perfor-
mance of image denoising.

2. Related Work
2.1. Dynamic Convolutions for Image Applications

Common CNNs usually use certain parameters in the test phase to achieve good
performance of image applications [26]. However, they cannot adjust parameters to limit
the robustness based on different scenes. To address this issue, dynamic convolution [27]
was proposed. According to different inputs, it can leverage multiple parallel convolutions
in attention mechanisms to adjust weights, aiming to improve the adaptive abilities [27]. To
avoid the need to increase the model capacity when improving performance, conditionally
parameterized convolutions (CondConv) can obtain different convolution parameters when
the input is different. In addition, it parameterizes the convolutional kernel in CondConv
into a linear combination of multiple expert knowledge [28]. The final parameters used for
the convolution kernel may vary depending on the input [28]. To overcome the previous
model’s excessive reliance on static conditions, dynamic convolution aggregates multiple
parallel convolution kernels based on attention dynamics. Attention dynamically adjusts
the weight of each convolution kernel based on the input, thus generating self-adaption
dynamic convolutions, including different weight convolution kernels [27]. In line with the
input, the final parameters used for the convolution kernel vary [27]. However, these stud-
ies only focus on the information of a single one-dimensional convolution kernel, ignoring
information including convolution size, and number of input and output channels [29]. To
adopt all of the dimensional information, omni-dimensional dynamic convolution (OD-
Conv) utilizes a multidimensional attention mechanism to learn convolutional kernels from
four dimensions and applies these attention weights to the corresponding convolutional
kernels [30]. To deal with the issue of redundant information between convolutional ker-
nels, dynamic convolution is used in multiple CNN networks to maintain the performance
while lowering the costs [30]. Dynamic convolution is designed with coefficient prediction
on the basis of image contents and convolution kernels generation [30]. The main concern
is the application of dynamic convolution, which involves applying dynamic attention over
channel groups after the projection into a higher-dimensional latent space [31]. To tackle
this concern, the approach of dynamic channel fusion is used as a replacement for dynamic
attention over channel groups [31]. Dynamic channel fusion operates by condensing the
input channels into lower dimensions, followed by channel fusion through a matrix to
restore them to higher dimensions, which can effectively reduce the dimensionality of the
prospective space [31]. The fusion of a CNN and dynamic convolution does not increase
the computational complexity, but can effectively improve the image denoising perfor-
mance [32]. Capitalizing on its outstanding performance, this study integrates dynamic
convolution into a CNN for image denoising.

2.2. Transformer for Image Denoising

With the significant achievements of Transformer [19,26] in natural language process-
ing tasks, numerous researchers have started to investigate its application in the field of
computer vision. DeiT [21] proposed several strategies to train ViT on smaller datasets and
achieve better results. Owing to the presence of the self-attention mechanism, Transformer
can model the relationships between pixels at different positions in the image without
being constrained by the local receptive fields of traditional convolution operations. In
image denoising, this modeling of nonlocal correlations enables a more effective captur-
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ing of the global distribution of noise and the interplay between different regions in the
image, thereby enhancing the denoising accuracy. As a result, Transformer is gradually
gaining attention in research within the field of image denoising. Tian et al. employed a
deep layer as the current state to provide guidance for the preceding layer, serving as the
previous state, with the purpose of distinguishing between the foreground and background
to effectively suppress noise [6]. Nikzad et al. proposed a pyramid dilated lattice to better
utilize residuals and dense clustering in feature extraction, and train the model using a
new strategy about pyramid dilated convolution [33]. Following the multi-view concept,
image denoising incorporates multi-head attention, involving both a single network [25]
and multiple networks [34]. Wang et al. utilized multi-head attention within a single net-
work by leveraging diverse inputs to modulate specific layers within a CNN. Moreover,
this adaptation adjusts the influence of critical information, which can, thus, enhance the
efficiency of image denoising [25]. In addition, they constructed an attention mechanism
for U-Transformers to enable learning of biases between decoder layers and the extraction
of local contextual features, thereby improving the performance of image prediction [25].
To obtain more comprehensive structural information, the image is rotated in different
directions and multiple rotated images are input into a multi-head CNN using a multi-path
attention mechanism. This facilitates the integration of complementary salient information
within the context of image denoising [34]. Furthermore, Shi et al. utilized the attention
mechanisms of two parallel branches in space and spectrum, respectively, and extract
features from the fused spatial and spectral information at multiple scales [35]. Based on
the aforementioned discussion, it is evident that the adoption of Transformer proves to be a
favorable option for the image denoising task.

3. The Proposed Method
3.1. Network Architecture

The designed DTNet includes three parts: head, body, and tail. The head is a residual
block (RB); the main body includes a multi-head self-attention block (MSAB) and a multidi-
mensional dynamic enhancement block (MDEB); the tail is composed of a convolutional
layer, as shown in Figure 1. The RB performs cutting operations on the original image to ex-
tract low-level features, and refines feature extraction based on residual learning operations.
The MSAB extracts global structural features by combining the multi-head self-attention
mechanism with location information. The MDEB expands its dimensions and adjusts the
parameters of multiple-dimensional convolutions via dynamic convolution to enhance the
association with neighboring spatial dimensions. The MSAB and MDEB constitute the main
body of the encoder. The following equation is used for describing the network process:

IC = fConv( fMDEB( fMSAB( fRB(IN))))

= fDTNet(IN),
(1)

where IN and IC denote a noisy image and a clean image, respectively. fConv, fRB, fMSAB,
and fMDEB are functions of Conv, RB, MSAB, and MDEB, respectively. fDTNet indicates a
function of DTNet.

In addition, the multi-head self-attentions (MSAs) in the MSAB and MDEB are com-
bined into a basic encoder module, which can be adjusted in quantity to meet the accuracy
requirements of different hardware device limitations and tasks.
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Figure 1. Network architecture of DTNet.

3.2. Loss Function

Mean square error (MSE) was used in numerous popular methods, including a feedfor-
ward denoising convolutional neural network (DnCNN) [8] and a fast and flexible denoising
convolutional neural network (FFDNet) [13]. However, MSE still has certain limitations,
such as a significant difference in image quality between MSE and human perception [36].
This is because, different from the human visual system (HVS), which perceives images
in terms of overall structure, MSE is more sensitive to errors at the local pixel level [36].
Nevertheless, due to its ease of computation and differentiability, MSE has advantages over
other loss functions in image denoising [37]. To train our DTNet denoiser, MSE is used as our
loss function to determine the difference between the denoised images and real images [38].
Specifically, MSE calculates the square difference between the denoised image DTNet(Ii

N)
and the real image Ii

R. Then, the square differences of all the images are averaged to obtain
the result of the loss function. Based on the value of the loss function, the MSE is minimized
to optimize the model. The optimization of DTNet involves utilizing the Adam optimizer to
obtain suitable parameter values [39]. The above-mentioned process can be expressed using
a formula, as written in Equation (2) [37].

MSE =
1
n

n

∑
i=1

(
DTNet

(
Ii
N

)
− Ii

R

)2
, (2)

where MSE stands for the result of the MSE loss function, and Ii
N and Ii

R stand for the i-th
noisy image and the i-th real image, respectively. DTNet(Ii

N) represents the clear image
after our DTNet denoising.

3.3. Residual Block

The RB includes image segmentation operations and residual learning. To adapt to
the specific isometric vector format of Transformer, it is necessary to segment the image
and cut the original image into equal-sized image blocks. By assuming an image size of
x ∈ R3×H×W , segmentation of each image block size is P × P, so the original image will
be cut into HW/P2 P × P-sized tiles. Since the above direct image segmentation does
not make full use of lower-level features in the image, this study employs a convolution
operation to further segment the image and gives full play to the advantages of the CNN
in extracting lower-level features. Then, residual learning blocks are used to extract im-
age features from the original image and obtain the feature map x ∈ RC×H×W/P2×P×P
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(C represents the number of channels after channel expansion). Specifically, the RB consists
of a convolutional layer and two residual learning blocks. The residual learning block
includes the first convolutional layer, ReLU, and the second convolutional layer. The above
process can be represented by the following equations:

RL(y) = C(ReLU(C(y))) + y, (3)

ORB = fRB(IN)

= RL(RL(C(IN))),
(4)

where RL denotes a function of residual learning, and ORB refers to the output of the RB.
C and ReLU stand for a convolutional layer and the ReLU activation function, respectively.

3.4. Multi-Head Self-Attention Block

The MSAB includes the operation of adding positional information to feature maps
and MSA. The feature map ORB is transformed into a vector sequence similar to a word
sequence, aiming to adapt to the special format of the Transformer. Meanwhile, global
modeling in Transformer will lead to loss of image correlation, requiring a learnable position
code pos to be added for each vector in the sequence. The resulting encoded vector sequence
is input into the subsequent MSA. MSA obtains the encoding representation of the output
of this block. q is used for calculating the similarity with the given key k, thereby generating
the corresponding attention weights. q and k contain information for comparison, while
v contains the actual values corresponding to each query. These vectors are involved in
our model to calculate self-attention weights and generate the final output [19]. The MSAB
includes a convolutional layer, an embedding, a layer normalization, an operation to add
positional information to the q, k, and v vectors, and an MSA. In addition, the input before
position coding y performs cross-layer addition using dropout operations.

Positional encoding is obtained by adding an embedding layer. At first, the input
sequence is numbered from 0 to the maximum based on its length. The numbered sequence
is expanded into one row according to the original input dimension, corresponding to the
tensor of the column. This tensor is input into the embedding layer, with the output being
positional encoding. During the process of applying positional encoding, the positional
encoding is added to the input vector, where the input vector is treated as q, k, and the
original input vector is treated as v. Then, the module calculates attention using q, k, and v.

This process can be expressed as Equation (5).

y = v = LN(Embedding(Conv(ORB)))

q = k = y + pos

OMSAB = MSA(q, k, v) + y,

(5)

where y denotes the output vector sequence of LN, and pos is the position code. q, k, and v
represent the queries, keys, and values in the attention mechanism, respectively. MSA and
LN stand for multi-head self-attention and layer normalization, respectively. OMSAB is the
output of the MSAB.

3.5. Multidimensional Dynamic Enhancement Block

The multi-head attention module learns the global feature representation through
equal-dimensional transformations. To enhance the representation, the feedforward neural
network module in a pre-trained Image Processing Transformer (IPT) [40] extends the
dimensionality by linear transformations and introduces nonlinear transformations based
on activation functions. However, the feedforward network module does not focus on the
spatial relationships of the images, which is why it requires very large datasets for training.
However, spatial relationships between representations that are vital in vision are not taken
into consideration. This resulted in the original ViT requiring a large amount of training
data to learn the existing inductive biases.
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To solve the above problems and combine the advantages of a CNN and Transformer,
this section proposes a multidimensional dynamic enhancement module based on dynamic
convolution, aiming to replace the original feedforward network part in our baseline IPT.
In the encoder, the MSA module retains the capability of modeling global similarity, and the
feedforward network is replaced with the MDEB. Compared to the original feedforward
network, thanks to dimension expansion, our MDEB better captures spatial relationships in
images. Dynamic convolution enables our MDEB to have higher efficiency, also reducing
model complexity.

The MDEB first receives the OMSAB ∈ RN× C output from the MSA module, then
expands the vector to a higher dimension xup ∈ RN×R×λ by an ascending module, where
λ is a scale factor, introducing more powerful expression ability for the subsequent convo-
lutional operations. On the basis of location coding, the vector in the spatial dimension is
restored to xs

p ∈ R
√

N×
√

N×(⌉×C) in the image block in order to adapt to proceeding to the
two-dimensional convolution kernels. To enhance its correlation with the adjacent space
range, the subsequent dynamic convolution layer fits the corresponding dynamic convo-
lution kernel in four dimensions step by step according to the input image block. Finally,
the image block flattens the recovery for the xup ∈ RN×R×λ vector sequence, and performs
dimension reduction back to the dimension of the input before the MDEB x ∈ RN× C.
The MDEB includes a dimension expansion operation, a dynamic convolution operation
and a dimension reduction operation. The dimension expansion operation consists of a
convolutional layer, a batch normalization, and a GELU activation function. The dynamic
convolution operation includes a dynamic convolution, a batch normalization, and a GELU
activation function. The dimension reduction operation consists of a convolutional layer
and a batch normalization. The input OMSAB performs cross-layer addition using dropout
operations. The increase and decrease in dimensions can be achieved by changing the
number of dimensions through the corresponding convolutional layers of the module. The
implementation of ODConv depends on computing four types of attention: spatial position
attention, input channel attention, output channel attention, and entire convolutional kernel
attention. First, the input is compressed into a feature vector through a global average
pooling operation along the channel dimension. Then, through a fully connected layer and
four head branches, each head branch includes a fully connected layer and a softmax or
sigmoid function to generate normalized attention, which is gradually multiplied by the
convolution kernel to make the convolution operation different in all the dimensions of
spatial position, input channel, output channel, and the convolution kernel [30]. Finally, a
convolutional layer is used to obtain output in the tail.

The above process can be represented using the following formula:

IC = Conv(OMDEB)

= Conv(xdown + OMSAB)

= Conv(BN(Convdown(xOD) + OMSAB )

= Conv
(

BN
(
Convdown

(
GELU

(
BN

(
ODConv

(
xup

))))
+ OMSAB

)
= Conv

(
BN

(
Convdown

(
GELU

(
BN

(
ODConv

(
GELU

(
BN

(
Convup(OMSAB)

))))))
+ OMSAB

)
,

(6)

where OMSAB is the output of the MSAB and OMDEB is the output of the MDEB. xup ∈
RN×R×λ represents the vector after the dimension expansion operation, while xdown ∈
RN× C stands for the vector after the dimension reduction operation; xOD refers to the vector
after the dynamic convolution operation. Convup and Convdown indicate the convolutional
layer of the dimension expansion operation and convolutional layer of the dimension
reduction operation, respectively. BN, GELU, and ODConv are batch normalization, the
GELU activation function, and dynamic convolution, respectively.

The DTNet proposed in this section retains the attention mechanism, global feature fu-
sion, and generalization ability of Transformers, while utilizing the local receptive field and
subspace sampling advantages of a CNN. The experiment in the next section demonstrates
that the structure exerts a good effect.
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4. Experiments
4.1. Datasets

The datasets used for training consist of synthetic-noise image datasets and real-noise
image datasets. The Berkeley segmentation dataset (BSD432) dataset is chosen as the
synthetic-noise image training dataset, with 432 color images of different sizes [41]. We
choose the fuzzy image database named PolyU, provided by The Hong Kong Polytechnic
University, as the real-noise image training dataset, which includes 100 images captured
by five different cameras, each with a size of 512 × 512 [42]. All the above-mentioned
images are randomly selected for data augmentation using one of the eight methods during
training including original image; images rotated at 90, 180, and 270 degrees; vertically
flipped images; rotated 90 degrees after vertical flipping; rotated 180 degrees after vertical
flipping; and rotated 270 degrees after vertical flipping.

The datasets used for testing consist of synthetic-noise image datasets. Some public
datasets are chosen as the synthetic-noise image datasets, including the Berkeley Seg-
mentation Dataset (BSD68) [43], Set12 [43], and Color Berkeley Segmentation Dataset
(CBSD68) [43], to test our model in color- and gray-image denoising [17]. BSD68 is a part of
the image segmentation database provided by the University of California, Berkeley, which
includes a total of 68 images. Set12 is a part of the Super Resolution Benchmark Dataset,
which includes 12 images.

4.2. Experimental Settings

To train our model in this study, we adopt an initial learning rate of 1 × 10−4 and em-
ploy a learning rate decay strategy to optimize network training in subsequent stages, with
126 training epochs. The experiments are carried out with the development environment of
Ubuntu18.04 as the operating system, Python 3.9 as the development language version,
and Pytorch1.11 as the deep learning framework. In terms of hardware configuration, we
use the 24 GB memory GPU of model NVIDIA GeForce RTX3090, the 28-core CPU of model
Intel Xeon Gold 6330 CPU @ 2.00 GHz, and 93 GB RAM. Nvidia driver version 470.141.03
and CUDA 11.4 are used for the training acceleration.

4.3. Experimental Results and Analysis

This section evaluates the noise reduction performance of DTNet with both qualitative
and quantitative analyses. A qualitative analysis is performed by visual comparison of
different methods of noise reduction effects. The quantitative analysis employs evaluation
indicators such as PSNR [25], running time, and complexity to be compared with algorithms
with good results, such as block-matching and 3D filtering (BM3D) [5], DnCNN [8], and
attention-guided denoising convolutional neural network (ADNet) [44].

In terms of the qualitative analysis, this study uses some pictures from CBSD68 and
Set12 to visually show the comparison of the noise reduction effects of different methods.
Through the enlarged observation of the image after denoising, the excellent denoising
effect should have a high coincidence degree with the original image area, and be visually
clearer and more in line with human cognitive feelings.

The denoising results of the noisy gray image are shown in Figure 2. In Figure 3, we
can observe the denoising results of the noisy color image. The proposed DTNet model
yields a clearer image compared to the current best denoising methods (such as DnCNN [8],
ADNet [44], IPT [40]).

In terms of quantitative analysis, the PSNR index is used to evaluate the denoising
quality of the proposed DTNet model, and compared with current classic algorithms
and the best-performing algorithms, including BM3D [5], weighted nuclear norm mini-
mization (WNNM) [45], trainable nonlinear reaction diffusion (TNRD) [46], DnCNN [8],
image restoration CNN (IRCNN) [47], single-stage blind real-image denoising network
(RIDNet) [12], FFDNet [13], ADNet [44], graph convolution image denoising network
(GCDN) [48], basis learning network (NBNet) [49], enhanced convolutional neural denois-
ing network (ECNDNet) [50], and IPT [40]. In general, artificial-noise images, including
gray and color noisy images, were tested with additive Gaussian white noise levels of 15,
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25, and 50. For IPT, to ensure fairness, metrics were measured under the same hardware
configuration and environment. For BM3D, WNNM, TNRD, DnCNN, RIDNet, FFDNet,
ADNet, GCDN, NBNet, and ECNDNet, we used the data from the relevant papers.

Figure 2. Results of different denoising methods on one image from Set12 when σ = 25.

Figure 3. Results of different denoising methods on one image from CBSD68 when σ = 25.

For gray noisy images, experiments were conducted on BSD68 and Set12. The results
are shown in Tables 1 and 2. Based on the results of BSD68 shown in Table 1, DTNet
performed the best at noise levels of 15, 25, and 50. When the noise level is 15, our DTNet
is 0.05 dB higher than the baseline IPT’s PSNR. However, when the noise level is 25, our
DTNet is 0.03 dB higher than IPT. As the noise level is increased to 50, our DTNet still
exhibits a 0.02 dB advantage. For image denoising methods, an improvement in PSNR
is extremely rare [1]. Therefore, our DTNet’s ability to improve at all three noise levels
exhibits the effectiveness of our method. Based on experiments on Set12, presented in
Table 2, with a noise level of 15 our DTNet performs better than previous methods in
denoising most images. For example, in the Monarch image, our PSNR has an increase
of 0.07 when compared with the IPT. Nevertheless, on a few images, such as peppers, the
performance is poor. This can be attributed to the unique characteristics and structure of
peppers. However, it needs to be emphasized that our model has made progress as a whole.
This also shows that the DTNet model presented in this section remains stable regarding
characteristic noise level and blind denoising.
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Table 1. Average PSNR (dB) of different methods on BSD68. Red represents the best effect, blue
represents the second best effect.

Method σ = 15 σ = 25 σ = 50

BM3D 31.07 28.57 25.62
WNNM 31.37 28.63 25.87
TNRD 31.42 28.92 25.97

DnCNN 31.72 29.23 26.23
IRCNN 31.63 29.19 26.29
FFDNet 31.63 29.29 26.25
ADNet 31.74 29.25 26.29
RIDNet 31.81 29.34 26.40
GCDN 31.83 29.35 26.38

IPT 31.90 29.43 26.47
DTNet (ours) 31.95 29.46 26.49

Table 2. Average PSNR (dB) of different methods on Set12 with noise level of 15. Red represents the
best effect, blue represents the second best effect.

Method BM3D WNNM TNRD DnCNN FFDNet ECNDNet ADNet IPT DTNet (Ours)

C.man 31.91 32.17 32.19 32.61 32.43 32.56 32.81 32.64 32.73
House 34.93 35.13 34.53 34.97 35.07 34.97 35.22 35.29 35.31

Peppers 32.69 32.99 33.04 33.30 33.25 33.25 33.49 33.23 33.22
Starfish 31.14 31.82 31.75 32.20 31.99 32.17 32.17 32.54 32.52

Monarch 31.85 32.71 32.56 33.09 32.66 33.11 33.17 33.40 33.47
Airplane 31.07 31.39 31.46 31.70 31.57 31.70 31.86 31.85 31.93

Parrot 31.37 31.62 31.63 31.83 31.81 31.82 31.96 32.02 32.03
Lena 34.26 34.27 34.24 34.62 34.62 34.52 34.71 34.75 34.76

Barbara 33.10 33.60 32.13 32.64 32.54 32.41 32.80 33.22 33.27
Boat 32.13 32.37 32.14 32.42 32.38 32.37 32.57 32.59 32.64
Man 31.90 32.11 32.23 32.46 32.41 32.39 32.47 32.60 32.59

Couple 32.10 32.17 32.11 32.47 32.46 32.39 32.58 32.60 32.63
Average 32.37 32.70 32.50 32.86 32.77 32.81 32.98 33.07 33.10

For noisy color images, the currently popular denoising method of CBSD68 is chosen.
Based on Table 3, it can be seen that DTNet achieves good results on artificial noise color
images. At noise levels of 15, 25, and 50, our DTNet improves the PSNR by 0.06, 0.03,
and 0.01 relative to IPT, respectively. Clearly, our method also performs well for color
images. With the increasing noise level, the degree of improvement in the PSNR index
gradually decreases, suggesting that the difficulty of denoising is gradually increasing.
Perhaps DTNet has certain limitations in high-level noise. Our model’s denoising ability at
high noise levels may still require further research.

Table 3. Average PSNR (dB) of different methods on CBSD68. Red represents the best effect, blue
represents the second best effect.

Method σ = 15 σ = 25 σ = 50

BM3D 33.52 30.71 28.89
DnCNN 33.98 31.31 29.65
IRCNN 33.86 31.16 27.86
FFDNet 33.80 31.18 29.57
ADNet 33.99 31.31 29.66
NBNet 34.15 31.54 28.31

IPT 34.23 31.57 29.93
DTNet (ours) 34.29 31.60 29.94
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In terms of running time, four denoising methods were selected to be compared with
our DTNet for experiments on noisy images of different sizes: 256 × 256, 512 × 512, and
1024 × 1024. The results are shown in Table 4.

Table 4. Runtime(s) of different methods on images of different sizes.

Method Equipment 256 × 256 512 ×512 1024 × 1024

CBM3D GPU 0.59 2.52 10.77
DnCNN GPU 0.0344 0.0681 0.1556
ADNet GPU 0.0467 0.0798 0.2077

IPT GPU 1.2323 1.8047 3.0117
DTNet (ours) GPU 0.55933 0.7862 1.3295

In terms of computational costs, runtime, parameters, and FLOPS are used as metrics
to reveal the effectiveness of our model modules. In Table 4, we select different methods
for experiments to compare the running time of denoising noisy images of different sizes
with our DTNet, including 256 × 256, 512 × 512, and 1024 × 1024. It can be observed
that our method significantly reduces runtime compared to IPT, proving the effect of
ODConv applied in our MDEB module. Relative to IPT, our model has made significant
improvements in both parameters and FLOPS, as seen in Table 5. As presented in Tables 4
and 5, our method has an improved parameter count compared to DnCNN and ADNet,
while it also shows improvements in FLOPS. Compared to defects with larger parameter
quantities, ODCOnv performs more calculations to better capture features, exhibiting
greater flexibility. These advantages are greater.

Table 5. Complexity of different methods.

Method Parameters FLOPS

DnCNN 0.55 M 1.39 G
ADNet 0.52 M 1.29 G

IPT 35 M 0.95 G
DTNet (ours) 12 M 4.61 G

For an ablation experiment, CBSD68 is used as the baseline dataset with a Gaussian
noise level of 25. Considering the impact of the main structure of the network on the
overall performance, the multidimensional enhancement module and dynamic convolu-
tional module are gradually subtracted. The experimental results are shown in Table 6.
A single dynamic convolution has a significant improvement, and the applied multidi-
mensional enhancement module further enhances the performance, which is caused by
its advantage in multidimensional feature extraction. Moreover, the ablation experiment
further demonstrates the feasibility of the dynamic convolution and multidimensional
enhancement modules.

Table 6. PSNR (dB) results of some networks on CBSD68 with σ = 25.

Method PSNR (dB)

DTNet without dynamic convolutional module 31.11

DTNet without multidimensional enhancement module 31.57

DTNet (ours) 31.60

5. Conclusions

To conclude, in this study, a dynamic network with Transformer is proposed for image
denoising (DTNet). Our DTNet utilizes three modules, including a residual block (RB), a
multi-head self-attention block (MSAB), and a multidimensional dynamic enhancement
block (MDEB). In the first block (RB) of DTNet, we continuously employ cutting operations
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and residual learning to segment the image into a sequence conforming to the Transformer
and extract features using the CNN. This not only utilizes the CNN but also lays the foun-
dation for the combination with Transformer. The second block (MSAB) adds positional
encoding and applies multi-head self-attention, which can enable the preservation of se-
quential positional information while utilizing the transformer to obtain global information.
In the third block (MDEB), images undergo dimension enhancement and dynamic convolu-
tion to better represent image relationships. To improve the adaptive ability, a dynamic
convolution is used to learn adaptive parameters to enhance the robustness of a denoiser.
Dynamic convolution can effectively reduce the complexity and facilitate computation.
DTNet uses relations of pixels to extract salient information. In addition, using multi-
dimensional operation fusion of multi-level information can improve the generalization
ability of an obtained denoiser. The experimental work demonstrates that our DTNet is
effective for image denoising. In future studies, we will further explore other ways to
improve the performance of DTNet. It may be essential to continue to explore the effects of
combining and modifying existing blocks with other architectures. Then, we will continue
to expand the denoising range, generalization ability for different datasets, and real-world
applications. Finally, this study hopes to extend DTNet to other related image processing
tasks, such as image enhancement, and image super-resolution. Moreover, this may have
the potential to advance the technological development in the field of image denoising.
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