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Abstract: In this paper, we present a study investigating the impact of jamming in a Dual-Hop
free-space optical (FSO) communication system assisted by reconfigurable intelligent surfaces (RIS)
in the presence of a malicious jammer. We analyze the combined effects of atmospheric turbulence
(AT), pointing error (PE), and angle of arrival (AoA) fluctuation of unmanned aerial vehicles (UAVs).
Closed-form expressions for the overall average bit error rate (ABER) are derived while considering
these impairments. To mitigate the jamming effect, we explore a Single-Input Multiple-Output
(SIMO) FSO system and derive the end-to-end Average Bit Error Rate (ABER) under various jamming
scenarios. Additionally, we conduct a comprehensive study by examining different placements of
the malicious UAV jammer and RIS, drawing insightful conclusions on system performance. The
analytically derived expressions are validated through Monte Carlo simulations.

Keywords: ABER; jamming; SIMO; RIS; FSO; UAVs

1. Introduction

With the advancement of society towards full automation and remote management
systems, there is a significant demand for network systems capable of handling a large
number of transceivers [1]. Primary attributes of fifth-generation and future communication
systems consist of robust security protocols, ultra-low latency (as low as 0.1 milliseconds),
and remarkably high data transfer capacities (up to 1 Terabit per second) [2,3]. FSO
technology is capable of providing very high data transmission rates, high security, and
low latency compared to radio frequency (RF) technology, offering advantages in these
aspects [4,5]. Furthermore, FSO offers advantages such as unlicensed spectrum usage and
low installation costs [3,4]. These features make FSO an optimal technological solution for
the imminent advent of fifth-generation and the subsequent sixth generation of wireless
communication systems [6]. However, due to the nature of FSO as a line-of-sight (LoS)
technology, it is highly susceptible to AT [7], PE [8], and other factors [9], which make
long-distance communication challenging [3,10]. Numerous methodologies have been
developed to enhance FSO communication [7–9].

In recent times, RIS have emerged as a promising innovation in the research field.
Their objective is to mitigate LOS limitations for FSO links through active control over
the direction of reflected beams [11,12]. RIS modules are passive components that operate
autonomously without the need for a dedicated power source [13]. Since RIS only needs to
reflect incident waves in the desired direction, there is no need for analog-to-digital/digital-
to-analog converters or power amplifier circuits, thereby avoiding the impact of receiver
noise [14,15]. These advantages make RIS a cost-effective, easy-to-deploy, and energy-
efficient relay that can be used in wireless RF and FSO communication systems [16,17].
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In [12], Najafi et al. investigated the use of intelligent reflecting surfaces to relax the LoS
requirement of FSO systems. Naik et al. in [8] implemented an RIS-assisted FSO system in
a smart city scenario and studied the impact of signal blockage and Gamma-Gamma (G-G)
turbulence on the system performance. In [18], Ndjiongue et al. gave an analysis of RIS-
Based Terrestrial-FSO Link Over G-G Turbulence With Distance and Jitter Ratios. In [19],
Huang, J. et al. have presented a feasible multi-branch wireless optical communication
setup utilizing optical reconfigurable intelligent surfaces. In [18,20], the authors introduced
a unified end-to-end Probability Density Function (PDF) expression for a terrestrial FSO RIS
system considering the combined impact of G-G atmospheric turbulence, pointing error
on the S-IRS/IRS-D links, pointing error ratios, and the placement of the RIS. In summary,
RIS integration in FSO communication indeed offers several compelling advantages that
directly address the mentioned challenges:

(1) Mitigation of Atmospheric Transmission Losses: By leveraging RIS, we can ma-
nipulate the propagation path of signals, thereby reducing losses incurred due to
atmospheric transmission [19]. RIS facilitates directing signals towards the intended
receiver, effectively minimizing transmission distances and associated losses within
the atmosphere [12].

(2) Compensation for Pointing Errors: RIS provides the capability to adjust phase and
amplitude during signal propagation, offering compensation for pointing errors.
Through the intelligent modulation capabilities of RIS, we can achieve more precise
signal alignment, thus enhancing system stability and performance [18,20].

However, FSO systems are mainly vulnerable to malicious jamming signals due to
three key factors. (1) In FSO communications, the selection of operational wavelengths
is very limited. Some operational wavelengths for FSO transmission include 830 nm,
1300 nm, and 1550 nm [21]. Considering eye safety and lower optical losses, 1550 nm is
the most commonly used operational wavelength in many FSO-based applications [21].
Consequently, it is relatively easy for jammer to determine the operational wavelength of
dedicated FSO communication links; (2) To mitigate the impact of fading effects such as AT
and PE on FSO systems, it is common practice to increase the receiver aperture Field-of-
View (FoV) [22]. Enlarging the receiver FOV also makes it feasible to jam optical beams.
Many terrestrial applications, such as storage area networks and enterprise connectivity,
require aperture averaging and a wide FoV to mitigate the effects of building sway, seismic
activity, or physical obstruction, even when the transceiver is stationary [23]. In the satellite
communication, a wider FoV is particularly crucial due to the mobility of transceivers and
their significant distance from each other [24]; (3) In FSO communication, which belongs to
LoS communication, communication antennas are typically installed at the top of build-
ings along streets or in elevated and easily accessible locations to avoid obstructions [21].
Consequently, malicious jammers may easily identify the locations for jamming.

Researchers have proposed analytical models and methods to mitigate malicious
jamming, analyze its impact on the communication performance of FSO systems. In [25]
the authors investigated the impact of pulse jamming on FSO systems, focusing primarily
on the system’s Bit Error Rate (BER) and Outage Probability (OP). The study explored
the impact of jamming on the system using different receiver apertures in [25]. In [24], an
examination was conducted to analyze the impact of jamming on FSO systems, including
both single-input single-output (SISO) setups and multiple-input single-output (MISO)
configurations. The study assessed the efficacy of these systems by examining the BER and
OP in the presence of negative exponential atmospheric turbulence. In [26], A Buffer-Aided
Relaying Approach is employed to mitigate jamming in FSO cooperative networks. In [27],
Saxena et al. explore the consequences of jamming instigated by a malicious UAV on the
performance of an FSO communication system. They utilize a trustworthy UAV as a relay
and incorporate an intelligent reflecting surface to improve signal coverage.

However, in all of these works, research on FSO jamming and mitigation techniques
is primarily focused on single-hop systems. Furthermore, while literature has conducted
jamming mitigation analysis using MISO for single-hop systems, SIMO is relatively easier
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to implement compared to MISO. Therefore, this prompts us to delve into examining the
ABER of dual-hop FSO systems supported by RIS in the presence of jamming. Additionally,
we aim to evaluate the improvement of ABER under different jamming scenarios utiliz-
ing SIMO technology. In summary, the key contributions of this study can be outlined
as follows:

• The closed-form expression of the PDF of the legitimate channel in the RIS-assisted
dual-hop FSO system is derived. Additionally, The PDF of the UAV jamming receiver
and the RIS channel is derived. Novel closed-form expressions for the end-to-end
ABER in both jamming scenarios have been derived based on the obtained link statis-
tics. These expressions are derived considering the impact of non-Gaussian additive
noise, which varies depending on the jammer’s location.

• The closed-form PDF of the legitimate channel in a 1 × N SIMO-FSO system and the
channels under various jamming scenarios were derived using Mellin transforms to
mitigate the impact of jamming. Analytical expressions for the end-to-end ABER in
the two jamming scenarios were subsequently provided.

• A comprehensive system ABER analysis is conducted in terms of atmospheric turbu-
lence strength, N (the number of receiving apertures), the probability of jamming and
different RIS positions. Moreover, some useful insights are obtained.

The rest of the paper is organized as follows. The FSO system, along with the jammer
and optical channel models, is introduced in Section 2. In Section 3, The closed-form
expressions for ABER in the SISO System are derived. In Section 4, ABER analysis is
carried for a generalized N receiving apertures with a jammer. The numerical results and
discussion are presented in Section 5, and we conclude this paper in Section 6.

2. System and Channel Model
2.1. System Model

RIS-assisted FSO communication is shown in Figure 1. There is no direct LoS between
the source (S) and the destination (D) due to the obstruction caused by some building and
obstacles. The source is equipped with a LD which transmits symbols employing intensity
modulation and direct detection (IM/DD) and on-off shift keying (OOK) modulation
schemes. A malicious jammer, which UAVs are equipped with, is randomly present,
attempting to disrupt the legitimate transmission link by opportunistically sending an
optical signal. Thus, at any given instant, the jammer can jam either the received signal
at the RIS or the received signal at the destination. Therefore, we consider two jamming
scenarios: Scenario 1 involves a malicious jammer causing jamming at the destination, as
depicted in Figure 1a, and Scenario 2 involves a malicious jammer causing jamming at the
RIS, as depicted in Figure 1b.
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Figure 1. The proposed system model. (a) Jamming at the destination, (b) Jamming at RIS. Figure 1. The proposed system model. (a) Jamming at the destination, (b) Jamming at RIS.

2.1.1. System Model for Scenario 1

The signal from S is transmitted to D through the RIS consisting of N reflecting
elements. Each component of the RIS receives the incident light and adjusts the phase
and amplitude under program control, and then transmits it to the receiver. It is assumed
that the signal transmitted through the RIS is fully radiated and undergoes full phase
compensation. The received signal is given as
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y1 = R
√

Pshis + R
√

NJhJΛsJ + n (1)

where R is related to the responsivity of the photodetector, whose value is considered as
1; s represents the modulated information symbol; hi = hp∂ejΨp hq, hp, hq and hJ are the
S-RIS, RIS-D and jammer channel fading coefficient, respectively; ∂ejΨp characterizes the
IRS element at a position P, with ∂ representing the amplitude reflection coefficient and Ψp
denoting the induced phase; sJ is the injected jamming signal, whose value is considered as
unity; Ps represents the peak transmit energy of the legitimate transmitter; n is the additive
white Gaussian noise (AWGN) with zero mean and variance N0; Λ represents the state of
jamming, modeled using a Bernoulli distributed random variable, Thus, the probability
distribution of Λ is given by [24] {

P(Λ = 1) = ρ
P(Λ = 0) = 1 − ρ

(2)

where P(Λ = 1) represents the probability of the occurrence of a jamming event; P(Λ = 0)
represents the probability of the jamming event being idle. we define PJ as the average
power of jamming. When the jamming event is in an active state and starts to jam legitimate
information, the energy it emits is denoted as NJ = PJ/ρ.

The signal-to-jamming-and-noise ratio (SJNR) can be obtained from (1) when the
jamming is active.

γ1 =
(hi)

2Ps

NJh2
J + N0

(3)

When the jamming is idle, the signal-to-noise ratio (SNR) can be calculated as follows:

γ2 =
(hi)

2Ps

N0
= γD(hi)

2 (4)

where γD = Ps
N0

represents the average signal-to-noise ratio (SNR).

2.1.2. System Model for Scenario 2

As shown in Figure 1b, the RIS is jammed by the UAV. Assuming that the jammer can
effectively align to the RIS unit of the legitimate signal. Thus, the received signal at the
destination is denoted as

y2 = R
√

Pshis + R
√

NJ gJΛsJ + n (5)

where gJ = hJ∂ejΨp hq.
From (5), it can be derived that the SJNR is obtained when the jamming is active.

γ3 =
(hi)

2Ps(
gJ
)2NJ + N0

(6)

When the jamming is idle, the expression of SNR follows (4).

2.2. Channel Model

FSO communication links are affected by three main sources of signal attenuation:
path loss, PE, and AT. These sources of attenuation affect the transmitted optical signal in
various ways. The PDF of the channel attenuation factor hx is as [27]

fhx (hx) =
αxβxξ2

x
A0x Γ(αx)Γ(βx)

G3,0
1,3

(
αxβxhx

A0x

∣∣∣∣ ξ2
x

ξ2
x − 1, αx − 1, βx − 1

)
, x ∈ {p, q} (7)
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Since the jamming event is caused by UAV, the PDF of the channel attenuation factor
hJ , considering the fluctuations of AT, PE, and AoA, is as [27]

fhJ (hJ) = exp
(
− φ2

AoA
2σ2

AoA

)
δ
(
hJ
)
+

[
1 − exp

(
− φ2

AoA
2σ2

AoA

)]
× αJ β J ξ2

J

A0J Γ(αJ)Γ(β J)
G3,0

1,3

(
αJ β J hJ

A0J

∣∣∣∣∣ ξ2
J

ξ2
J − 1, αJ − 1, β J − 1

) (8)

Here φAoA is AoA [27], σAoA is the standard variation of UAV’s orientation [28]; αx, βx
(x ∈ {p, q, J}) is the parameters for G-G turbulence for xth link, i.e., they attain the values
{4, 1.9} and {4, 1.4} for moderate and strong AT regimes, respectively [28]. ξx characterizes
the PE faced by legitimate or jammer signal: higher the value of ξx, lower the PE [24,27].
Gm,n

p,q (· | ) is the Meijer-G function [29]. A0x (x ∈ {p, q, J}) is the fraction of collected power
at the center of beam footprint [27].

According to [30], it is known that hi = hp∂ejΨp hq. Thus, we can obtain

fhi (hi) =
∫ ∞

0
fhp

(
hp
)

fhq

(
hi
hp

)
1
hp

dhp (9)

By substituting (7) into (9) and integrating using 07.34.16.0002.01 [29] and
07.34.16.0002.01 [29], we obtain

fhi (hi) =
αp βpξ2

p

A0p Γ(αp)Γ(βp)
αq βqξ2

q

A0q Γ(αq)Γ(βq)

×G6,0
2,6

(
αp βpαq βqhi

A0p A0q

∣∣∣∣∣ ξ2
p, ξ2

q
ξ2

p − 1, αp − 1, βp − 1, ξ2
q − 1, αq − 1, βq − 1

) (10)

Since gJ = hJ∂ejΨp hq, we can obtain

fgJ

(
gJ
)
=
∫ ∞

0
fhq

(
hq
)

fhJ

(
gJ

hq

)
1
hq

dhq = I1 + I2 (11)

By substituting (7) and (8) into (11), integrating using 07.34.16.0002.01 [29], we obtain

I1 = exp

(
−

φ2
AoA

2σ2
AoA

)
δ
(

gJ
)

(12)

I2 =
αq βqξ2

q

A0q Γ(αq)Γ(βq)

[
1 − exp

(
− φ2

AoA
2σ2

AoA

)]
αJ β J ξ2

J

A0J Γ(αJ)Γ(β J)

×G6,0
2,6

(
αJ β J αq βqgJ

A0J A0q

∣∣∣∣∣ ξ2
J , ξ2

q
ξ2

J − 1, αJ − 1, β J − 1, ξ2
q − 1, αq − 1, βq − 1

) (13)

3. Analysis of BER for SISO System
3.1. Scenario 1

In this section, the BER performance is evaluated for the SISO FSO system under the
presence of jamming or AWGN.

3.1.1. BER during Jamming Active

Let us define a random variable, T ≜
√

NJhJ =
√

Pj/ρhJ . Using (8), the PDF of T is
given as
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fT(T) = 1√
pJ /ρ

exp
(
− φ2

AoA
2σ2

AoA

)
δ

(
T√
pJ /ρ

)
+ 1√

pJ /ρ

[
1 − exp

(
− φ2

AoA
2σ2

AoA

)]
× αJ β J ξ2

J

A0J Γ(αJ)Γ(β J)
G3,0

1,3

(
αJ β J T

A0J

√
pJ /ρ

∣∣∣∣∣ ξ2
J

ζ2
J − 1, αJ − 1, β J − 1

) (14)

When jamming is present, the energy of the jamming significantly outweighs that of
Gaussian white noise, which allows us to disregard the Gaussian white noise. Therefore,
we can derive that T = y1 −

√
Pshis. By using (14), we can further deduce that

fy1(y1) =
1√
pJ /ρ

exp
(
− φ2

AoA
2σ2

AoA

)
δ

(
y1−

√
Pshis√

pJ /ρ

)
+ 1√

pJ /ρ

[
1 − exp

(
− φ2

AoA
2σ2

AoA

)]
× αJ β J ξ2

J

A0J Γ(αJ)Γ(β J)
G3,0

1,3

(
αJ β J(y1−

√
Pshis)

A0J

√
pJ /ρ

∣∣∣∣∣ ξ2
J

ζ2
J − 1, αJ − 1, β J − 1

) (15)

(15) can be expanded based on the value of the symbol s.

fy1(y1) =



1√
pJ /ρ

exp
(
− φ2

AoA
2σ2

AoA

)
δ

(
y1√
pJ /ρ

)
+ 1√

pJ /ρ

[
1 − exp

(
− φ2

AoA
2σ2

AoA

)]
× αJ β J ξ2

J

A0J Γ(αJ)Γ(β J)
G3,0

1,3

(
αJ β J(y1)

A0J

√
pJ /ρ

∣∣∣∣∣ ξ2
J

ζ2
J − 1, αJ − 1, β J − 1

)
, for s = 0

1√
pJ /ρ

exp
(
− φ2

AoA
2σ2

AoA

)
δ

(
y1−

√
Pshi√

pJ /ρ

)
+ 1√

pJ /ρ

[
1 − exp

(
− φ2

AoA
2σ2

AoA

)]
× αJ β J ξ2

J

A0J Γ(αJ)Γ(β J)
G3,0

1,3

(
αJ β J(y1−

√
Pshi)

A0J

√
pJ /ρ

∣∣∣∣∣ ξ2
J

ζ2
J − 1, αJ − 1, β J − 1

)
, for s = 1

(16)

ABER can be expressed based on the occurrence of jamming states.

Pe1 = P(Λ = 1)[P(x = 1)P(ν|x = 1) + P(x = 0)P(ν|x = 0)] + P(Λ = 0)Pei (17)

where Pei represents BER during jamming idle states and ν denotes the occurrence of a bit
error event. Here, we assume P(x = 1) = P(x = 0) = 0.5, indicating that the symbols ‘1’
and ‘0’ are transmitted with equal probabilities.

When jamming is active and the jamming noise significantly exceeds the additive white
Gaussian noise, the additive white Gaussian noise can be disregarded when calculating
BER. As a result, the expression for calculating the BER under jamming active, derived
from (17), is as follows

Pe1a = ρ

[
0.5
∫ ∞

th
fy(y|s = 0 )dy + 0.5

∫ th

0
fy(y|s = 1 )dy

]
(18)

According to [25], th =
√

Pshi. Substituting (19) into (21) and integrating using
07.34.21.0084.01 and 07.34.21.0085.01 is as

Pe1a(hi) =
ρ
2

[
1 − exp

(
− φ2

AoA
2σ2

AoA

)]
αJ β J ξ2

J
√

ργJDhi

A0J Γ(αJ)Γ(β J)

×G4,0
2,4

(
αJ β J hi

√
ργJD

A0J

∣∣∣∣∣ ξ2
J , 0

−1, ξ2
J − 1, αJ − 1, β J − 1

) (19)

According to [25], in the presence of jamming, we can derive the expression for ABER
from (19) as follows

Pe1a

(
γJD

)
=
∫ ∞

0
Pe1a(hi) fhi (hi)dhi (20)

By substituting (10) and (19) into (20) and integrating using 07.34.21.0011.01 [29], we
can obtain
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Pe1a

(
γJD

)
=

ξ2
p

Γ(αp)Γ(βp)
ξ2

q

Γ(αq)Γ(βq)
ρ
2

[
1 − exp

(
− φ2

AoA
2σ2

AoA

)]
αJ β J ξ2

J
√

ργJD

A0J Γ(αJ)Γ(β J)

×
A0p A0q

αp βpαq βq
G4,6

8,6

(
αJ β J A0p A0q

√
ργJD

αp βpαq βq A0J

∣∣∣∣∣ −ξ2
p,−αp,−βp,−ξ2

q ,−αp,−βq, ξ2
J , 0

−1, ξ2
J − 1, αJ − 1, β J − 1,−1 − ξ2

p,−1 − ξ2
q

) (21)

where γJD = Ps
PJ

is average signal jamming ratio (SJR).

3.1.2. BER during Jamming Idle

In the absence of jamming, when the system is only subjected to AWGN, we can derive
the following expression from (4) and (10)

fγ2(γ2) =
αp βpξ2

p

2
√

γ2γD A0p Γ(αp)Γ(βp)

αq βqξ2
q

A0q Γ(αq)Γ(βq)

×G6,0
2,6

(
αp βpαq βq
A0p A0q

√
γ2
γD

∣∣∣∣∣ ξ2
q , ξ2

p
ξ2

p − 1, αp − 1, βp − 1, ξ2
q − 1, αq − 1, βq − 1

) (22)

According to [31], ABER in a system affected by AWGN is given by

Pe1i(γD) = 0.5
∫ ∞

0
erfc
(√

γ2

2
√

2

)
fγ2(γ2)dγ2 (23)

where erfc can be expressed by Meijer-G function [32].

erfc(
√

y) =
1√
π

G2,0
1,2

[
y
∣∣∣∣ 1
0, 1/2

]
(24)

By substituting (22) and (24) into (23) and integrating using 07.34.21.0013.01, the ABER
under jamming idle can be obtained as follows

Pe1i(γD) =
1√
π

2(αp+βp+αq+βq−7)

(π)2
ξ2

p

Γ(αp)Γ(βp)
ξ2

q

Γ(αq)Γ(βq)

×G2,12
13,6

(
32γD

(
A0p A0q

αp βpαq βq

)2
∣∣∣∣∣ Ξ1, Ξ2, Ξ3, 1

0, 1
2 ,

1−ξ2
p

2 ,
2−ξ2

p
2 ,

1−ξ2
q

2 ,
2−ξ2

q
2

) (25)

where Ξ1 =
1−ξ2

p
2 ,

2−ξ2
p

2 , 1−αp
2 , 2−αp

2 , Ξ2 =
1−βp

2 , 2−βp
2 ,

1−ξ2
q

2 ,
2−ξ2

q
2 , and Ξ3 = 1−αq

2 , 2−αq
2 ,

1−βq
2 , 2−βq

2 .
The overall ABER of the proposed system for scenario 1 can be expressed as follows

Pe1a = ρPe1a

(
γJD

)
+ (1 − ρ)Pe1i(γD) (26)

3.2. Scenario 2

Similar to scenario 1, ABER under jamming for scenario 2 can be obtained as

Pe2a

(
γJD

)
=

A0p ξ2
p

αp βpΓ(αp)Γ(βp)
ξ2

q

Γ(αq)Γ(βq)
ρ
√

ργJDξ2
q

2Γ(αq)Γ(βq)

×
[

1 − exp
(
− φ2

AoA
2σ2

AoA

)]
αJ β J ξ2

J

A0J Γ(αJ)Γ(β J)

×G7,6
9,9

(
αJ β J A0p

√
ργJD

A0J αp βp

∣∣∣∣ Θ1, Θ2
Θ3, Θ4

) (27)

where Θ1 = −ξ2
p,−αp,−βp,−ξ2

q , Θ2 = −αq,−βq, ξ2
J , ξ2

q , 0, Θ3 = −1, ξ2
q − 1, αq − 1,

βq − 1, ξ2
J − 1, and Θ4 = αJ − 1, β J − 1,−1 − ξ2

p,−1 − ξ2
q .
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When the jamming is idle, the system and channel models in scenario 1 and scenario 2
are identical. Therefore, the BER between scenario 2 and scenario 1 is the same when the
jamming is idle. Consequently, we can obtain the ABER in scenario 2 as follows

Pe2a = ρPe2a

(
γJD

)
+ (1 − ρ)Pe1i(γD) (28)

4. Methods for Mitigating Jamming

In this section, the study extends to the evaluation of error performance in the presence
of a jammer for a general SIMO FSO communication system. SIMO technology can mitigate
jamming factors such as signal attenuation and atmospheric turbulence in the transmission
link, thereby enhancing the reliability of communication systems. Even if one receiver
encounters jamming, other receivers can still receive the optical signal. They can then
perform merging and processing in the signal processing unit to recover the original data.
Now, we analyze the impact of jamming on the communication performance of SIMO
FSO systems.

4.1. Scenario 1

When the jammer is located at the destination, we can obtain the value of the n-th
receiving aperture after photoelectric conversion as follows:

yn = Ranhin
√

Pss + R
√

NJhJΛsJ + nn (29)

where hin represents the attenuation coefficient of the n-th channel; an represents the
weighted value of the n-th channel; For the purpose of simplifying calculations, we assume
that an = 1

N ; nn is the AWGN with zero mean and variance N0; 1
N represents the jamming

from N receiving apertures at the receiver, which follows a uniform distribution. Therefore,
the probability of jamming for any one of them is 1

N .
The receiver combines the received electrical signals by using the equal gain combining

(EGC) [33] as follows:

yD =
N

∑
n=1

yn = R
√

Pss
N

∑
n=1

anhin + R
√

NJhJΛsJ +
N

∑
n=1

nn (30)

From (30), we can obtain the received SJR as follows

γSJR−D =

Ps

(
N
∑

n=1
anhin

)2

NJ
(
hJ
)2 =

ργJD

(
N
∑

n=1
anhin

)2

(
hJ
)2 (31)

We can also obtain from (30) the received SNR as follows

γSNR =

Ps

(
N
∑

n=1
anhin

)2

NN0
=

γD

(
N
∑

n=1
anhin

)2

N
(32)

4.2. Scenario 2

When the jammer jams the IRS, we assume that the jamming optical path can effectively
align with the legitimate optical path unit of the IRS. As a result, we can obtain the received
signal for the n-th path as follows

yn−IRS = Ranhin
√

Pss + R
√

NJbnhJnΛsJ + nn (33)

where bn represents the weighting value of the nth interfering branch, similarly, we assume
bn = 1

N .



Electronics 2024, 13, 1730 9 of 17

The receiver combines the received electrical signals by using the EGC as follows

yI−D =
N

∑
n=1

yn−IRS = R
√

Pss
N

∑
n=1

anhin + R
√

NJ

N

∑
n=1

bngJnΛsJ +
N

∑
n=1

nn (34)

From (34), we can calculate the SJR at the receiver as

γSJR−R =

Ps

(
N
∑

n=1
anhin

)2

NJ

(
N
∑

n=1
bnhJn

)2 =

ργJD

(
N
∑

n=1
anhin

)2

(
N
∑

n=1
bnhJn

)2 (35)

4.3. ABER Calculation
4.3.1. Analysis of the ABER for SIMO in Scenario 1

The PDF of the received signal can be derived from Equations (8) and (30) as follows

fyD (yD) =



1√
pJ /ρ

exp
(
− φ2

AoA
2σ2

AoA

)
δ

(
yD√
pJ /ρ

)
+ 1√

pJ /ρ

[
1 − exp

(
− φ2

AoA
2σ2

AoA

)]
αJ β J ξ2

J

A0J Γ(αJ)Γ(β J)

×G3,0
1,3

(
αJ β J yD

A0J

√
pJ /ρ

∣∣∣∣∣ ξ2
J

ζ2
J − 1, αJ − 1, β J − 1

)
, for s = 0

1√
pJ /ρ

exp
(
− φ2

AoA
2σ2

AoA

)
δ

 yD−
√

Pss
N
∑

n=1
anhin

√
pJ /ρ


+ 1√

pJ /ρ

[
1 − exp

(
− φ2

AoA
2σ2

AoA

)]
αJ β J ξ2

J

A0J Γ(αJ)Γ(β J)

×G3,0
1,3

 αJ β J

(
yD−

√
Pss

N
∑

n=1
anhin

)
A0J

√
pJ /ρ

∣∣∣∣∣ ξ2
J

ζ2
J − 1, αJ − 1, β J − 1

, for s = 1

(36)

Let hsum =
N
∑

n=1
anhin, then by substituting (18) and (36), we obtain

Pe1a(hi) =
ρ
2

[
1 − exp

(
− φ2

AoA
2σ2

AoA

)]
αJ β J ξ2

J
√

ργJ hsum

A0J Γ(αJ)Γ(β J)

×G4,0
2,4

(
αJ β J

√
ργJ hsum

A0J

∣∣∣∣∣ ξ2
J , 0

−1, ξ2
J − 1, αJ − 1, β J − 1

) (37)

Then, we apply the Mellin transform to (43) using 07.34.22.0004.01 [29], which results in

φhin(z) =
αq βqξ2

q

A0q Γ(αq)Γ(βq)

[
1 − exp

(
− φ2

AoA
2σ2

AoA

)]
αJ β J ξ2

J

A0J Γ(αJ)Γ(β J)

(
αJ β J αq βq
A0J A0q

)−z

× Γ(ξ2
J−1+z)Γ(αJ−1+z)Γ(β J−1+z)Γ(ξ2

q−1+z)Γ(αq−1+z)Γ(βq−1+z)

Γ(ξ2
q+z)Γ

(
ξ2

J+z
) (38)

Considering the independent channels, the Mellin transform of hsum can be expressed as

φhsum(z) =
N

∏
n=1

φhin(z) =
(

φhin(z)
)N (39)
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By substituting (38) into (39) and performing the Mellin inverse transform, the PDF of
hsum can be obtained as follows

fhsum(x) =
(

αp βpξ2
p

A0p Γ(αp)Γ(βp)
αq βqξ2

q

A0q Γ(αq)Γ(βq)

)N

×G6N,0
2N,6N

((
αp βpαq βq
A0p A0q

)N
×
∣∣∣∣ S1

S2, S3, S4

) (40)

where S1 =

N︷ ︸︸ ︷
ξ2

p, · · · , ξ2
p,

N︷ ︸︸ ︷
ξ2

q, · · · , ξ2
q, S2 = ξ2

p − 1, · · · , ξ2
p − 1︸ ︷︷ ︸

N

, αp − 1, · · · , αp − 1︸ ︷︷ ︸
N

,

S3 = βp − 1, · · · , βp − 1︸ ︷︷ ︸
N

, ξ2
q − 1, · · · , ξ2

q − 1︸ ︷︷ ︸
N

, and S4 = αq − 1, · · · , αq − 1︸ ︷︷ ︸
N

, βq − 1, · · · , βq − 1︸ ︷︷ ︸
N

.

Now, using (37), (40), and 07.34.21.0011.01 [29], after some rigorous mathematics, the fi-
nal closed-form expression of the ABER during jamming active is given by Appendix A (A1).

When the jamming is idle, according to [34], and assuming perfect Channel State
Information at the receiver, the expression for BER is as follows:

Pe1i−SIMO(γD) =
∫ ∞

0

∫ ∞
0 · · ·

∫ ∞
0 fγ11(γ11) fγ12(γ12) · · · fγ13(γ13)

×Q

(
1

2
√

N

√
N
∑

n=1
γ1n

)
dγ11dγ12 · · · dγ1N

(41)

where, γ1n represents the SNR from the transmitter to the nth receiver, while N denotes
the total number of receivers. The Q-function can be approximated as Q(x) ≈ 1

12 e−x2/2 +
1
4 e−2x2/3, we can obtain

Pe1i−SIMO(γD) ≈ 1
12

N
∏

n=1

∫ ∞
0 fhin(hin) exp

(
− γDh2

in
4N

)
dhin

+ 1
4

N
∏

n=1

∫ ∞
0 fhin(hin) exp

(
− γDh2

in
3N

)
dhin

= 1
12

N
∏

n=1
F1 +

1
4

N
∏

n=1
F2

(42)

where
F1 =

ξ2
p

Γ(αp)Γ(βp)
ξ2

q

Γ(αq)Γ(βq)
2(αp+βp+αq+βq−7)

√
π(π)2

×G1,12
12,5

(
64γD

N

(
αp βpαq βq
A0p A0q

)−2
∣∣∣∣∣ E1, E2, E3

0,
−ξ2

q
2 ,

1−ξ2
q

2 ,
−ξ2

p
2 ,

1−ξ2
p

2

) (43)

F2 =
ξ2

p

Γ(αp)Γ(βp)
ξ2

q

Γ(αq)Γ(βq)
2(αp+βp+αq+βq−7)

√
π(π)2

×G1,12
12,5

(
256γD

3N

(
αp βpαq βq
A0p A0q

)−2
∣∣∣∣∣ E1, E2, E3

0,
−ξ2

p
2 ,

1−ξ2
p

2 ,
−ξ2

q
2 ,

1−ξ2
q

2

) (44)

where E1 =
1−ξ2

p
2 ,

2−ξ2
p

2 , 1−αp
2 , 2−αp

2 , E2 =
1−βp

2 , 2−βp
2 ,

1−ξ2
q

2 ,
2−ξ2

q
2 , E3 =

1−αq
2 , 2−αq

2 , 1−βq
2 , 2−βq

2 .
Now, we can calculate the ABER for Scenario 1 of SIMO-FSO as follows

Pe1−SMIO = ρPe1a−SIMO

(
γJ

)
+ (1 − ρ)Pe1i−SIMO(γD) (45)

4.3.2. Analysis of the ABER for SIMO in Scenario 2

Since Scenario 2 has the same system model as Scenario 1 when jamming is idle, we
only need to calculate the BER when jamming is active in Scenario 2.
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Let gJsum =
N
∑

n=1
gJn, then applying the Mellin transform to (11) with the transformation

function 07.34.22.0004.01, we can obtain

φhJn(z) =
[

1 − exp
(
− φ2

AoA
2σ2

AoA

)]
αJ β J ξ2

J

A0J Γ(αJ)Γ(β J)

×
(

αJ β J
A0J

)−z Γ(ζ2
J−1+z)Γ(αJ−1+z)Γ(β J−1+z)

Γ
(

ζ2
J+z

) (46)

Thus we have

φgJsum(z) =
N

∏
n=1

φgJn(z) =
(

φgJn(z)
)N

(47)

The Mellin inverse transform of (53) can be obtained as:

fgJsum(x) =
(

αq βqξ2
q

A0q Γ(αq)Γ(βq)

[
1 − exp

(
− φ2

AoA
2σ2

AoA

)]
αJ β J ξ2

J

A0J Γ(αJ)Γ(β J)

)N

×G6N,0
2N,6N

((
αJ β J αq βq
A0J A0q

)N
×
∣∣∣∣ C1

C2, C3, C4

) (48)

where C1 =

N︷ ︸︸ ︷
ξ2

J , · · · , ξ2
J ,

N︷ ︸︸ ︷
ξ2

q, · · · , ξ2
q, C2 = ξ2

q − 1, · · · ξ2
q − 1︸ ︷︷ ︸

N

, αq − 1, · · · , αq − 1︸ ︷︷ ︸
N

,

C3 = βq − 1, · · · , βq − 1︸ ︷︷ ︸
N

, ξ2
J − 1, · · · , ξ2

J − 1︸ ︷︷ ︸
N

, and C4 = αJ − 1, · · · , αJ − 1︸ ︷︷ ︸
N

, βJ − 1, · · · , βJ − 1︸ ︷︷ ︸
N

.

From (48), we can obtain

fyI−D (yI−D) =



1√
NJ

(
αq βqξ2

q

A0q Γ(αq)Γ(βq)

[
1 − exp

(
− φ2

AoA
2σ2

AoA

)]
αJ β J ξ2

J

A0J Γ(αJ)Γ(β J)

)N

×G6N,0
2N,6N

((
αJ β J αq βq
A0J A0q

)N
yI−D√

NJ

∣∣∣∣ C1
C2, C3, C4

)
, for s = 0

1√
NJ

(
αq βqξ2

q

A0q Γ(αq)Γ(βq)

[
1 − exp

(
− φ2

AoA
2σ2

AoA

)]
αJ β J ξ2

J

A0J Γ(αJ)Γ(β J)

)N

×G6N,0
2N,6N

( αJ β J αq βq
A0J A0q

)N yI−D−
√

Ps
N
∑

n=1
hin

√
NJ

∣∣∣∣ C1
C2, C3, C4

, for s = 1

(49)

From (18) and (49), and hsum =
N
∑

n=1
anhin, we get:

Pe2a−SIMO(hisum) =
ρ
2
√

ργJDhisum

(
αq βqξ2

q

A0q Γ(αq)Γ(βq)

[
1 − exp

(
− φ2

AoA
2σ2

AoA

)]
αJ β J ξ2

J

A0J Γ(αJ)Γ(β J)

)N

×G6N+1,0
2N+1,6N+1

((
αJ β J αq βq
A0J A0q

)N√
ργJDhisum

∣∣∣∣ C1, 0
−1, C2, C3, C4

) (50)

By using (48) and (50), ABER can be obtained by Appendix A (A2).
Now, we can calculate the ABER for Scenario 2 of SIMO-FSO as follows:

Pe2−SMIO = ρPe2a−SIMO

(
γJ

)
+ (1 − ρ)Pe1i−SIMO(γD) (51)

5. Numerical Results

Unless otherwise stated, ξp = 1.2528, φAoA = 8 mrad, dp = 1 mm, dq = 3 mm, and
φp = 0.175 mrad. The following simulation results were obtained by using MATLAB 2022.
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When ξq = 1.2528, ξ J = 1.2528, αp = 2.49, βp = 3.9, αq = 4.0, βq = 1.9, αJ = 4.0,
β J = 1.9, Figure 2 illustrates the variation of ABER with SJR obtained by (21), and Monte
Carlo simulation at ρ = 1. It can be observed from Figure 2 that the concordance between
the analytical and simulation plots validates the accuracy of the derived expression. It can
be observed from Figure 2 that as the receiving aperture N increases, the ABER shows
significant improvement. However, with the increase of SJR, the degree of improvement
decreases. This is because the jamming signal only jams one of the receiving apertures, and
under high SJR, each receiving aperture can effectively receive signals. Since the additive
white Gaussian noise is not considered in Figure 2, when SJR is high, increasing the number
of receiving apertures cannot significantly improve the ABER when the SJR is large. When
N = 5, the improvement of ABER with SJR increasing is not very obvious. The reason is
that increasing the number of receiving apertures can effectively suppress the influence
of jamming. At the same time, even though the additive Gaussian white noise is not
considered, the FSO system are also affected by path loss, PE, and AT, which are a static
variable, so the changing trend of ABER with SJR is not obvious.
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Let k =
PJ
N0

= 100. In scenario 1, the relationship between SJR and ABER is illustrated
in Figure 3, which is derived from (26) and (45). Similarly, the relationship between SJR
and ABER for scenario 2 is depicted in Figure 4, derived from (28) and (51). From Figures 3
and 4, it can be observed that for SISO-FSO systems, as the jamming probability ρ increases,
the ABER also increases; For SIMO-FSO systems, when SJR is greater than 20dB, the
ABER shows a positive correlation with ρ. Conversely, when SJR is less than 20dB, ABER
decreases as ρ increases. This is because the use of SIMO technology enables effective
signal recovery at high SJR. By comparing Figures 3 and 4, it is observed that jamming at
the receiver has a significant impact on the system’s BER at the RIS. For instance, when
ρ = 0.01 and γJ = 60 dB, ABER for Scenario 1 with SISO and SIMO are 3.49 × 10−4 and
4.77 × 10−5, respectively. For Scenario 2, ABER with SISO and SIMO are 9.08 × 10−5 and
1.35 × 10−6, respectively. This indicates that jamming at the receiver has a greater impact
on the system compared to interference at the RIS.

In Figure 5, we analyze the impact of different atmospheric turbulence on the ABER
in two scenarios. The analytical plots closely align with the Monte Carlo simulations
conducted, thereby confirming the accuracy of the derived expressions. It can be observed
from Figure 5 that the system’s overall performance improves as the turbulence ranges
from strong (αp = 4.0, βp = 1.9) to moderate (αp = 2.49, βp = 3.9). Nevertheless, under
the same turbulence parameters, the ABER performance for Scenario 1 is notably inferior
to that of Scenario 2. This suggests that jamming at the RIS has a smaller impact on the
system compared to jamming at the intended receiver of the legitimate signal. One possible
reason for this is that the RIS distributes the power of the jamming signal.
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Figures 6 and 7 analyze the impact of the RIS location on the system ABER in two
scenarios. Let η = Lp/Lq, where Lp is the link length between S and RIS and Lq is the
link length between RIS and the destination [19]. Based on the value of η, the value of ξ2

q
can be calculated according to [20], with other simulation parameters set to ξp = 4.5856,
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αp = αq = 5.4, βp = βq = 3.77, and ρ = 0.5. As η decreases, it indicates that the RIS is
relatively closer to the source node than the destination node. From Figures 6 and 7, it can
be observed that a smaller value of η leads to better system ABER performance. Therefore,
it should be positioned as close to the source node as possible. Furthermore, it is noted that
under weak turbulence with jamming present, the adoption of SIMO technology does not
effectively enhance the ABER in Scenario 1, as depicted in Figure 6. However, in Scenario 2,
SIMO notably improves the ABER, as shown in Figure 7. This phenomenon is attributed to
the minimal channel attenuation in weak turbulence conditions, where the introduction of
multiple additive Gaussian noises in SIMO results in an increase in the ABER. Therefore, it
is not recommended to employ SIMO technology to mitigate jamming in Scenario 1 under
weak turbulence conditions.
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Computational complexity analysis: From (45), and (51), it can be concluded that
the computational complexity of ABER using SIMO is O

(
N3). When N is large, the

computational complexity of (45), and (51) is high. When N is small, the complexity is
relatively small. Since SIMO is typically employed in FSO with 2 receiving apertures [24],
our proposed ABER calculation can be effectively applied to FSO systems.
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6. Conclusions

We have conducted a study on the impact of jamming in an RIS-assisted Dual-Hop
FSO Communication system in the presence of a malicious jammer. A novel PDF for the
S-IRS-D, UAV-IRS-D, and UAV-D links under the combined influence of AT, PE, and AoA
fluctuations has been developed. Based on the jamming scenario, closed-form expressions
for the end-to-end ABER have been derived for SISO-FSO systems. To mitigate the impact
of jamming in an RIS-assisted Dual-Hop FSO Communication system, a SIMO FSO system
has been implemented. We have utilized the Mellin transform to derive the PDF of the
legitimate channel and the jamming channel in the SIMO FSO system and the end-to-end
ABER have been derived for SIMO-FSO systems under different jamming Scenarios. The
simulation results are compared with the analytical results to validate the accuracy of
the derived expression. It has been observed that as the number of receiving apertures
increases, the system shows a significant improvement in bit error performance. For the
SISO and 1 × 2 FSO systems, we conducted separate analyses on the impact of different
jamming probabilities. In Scenario 1, the jamming occurs at D, while in Scenario 2, the
jamming occurs at the RIS, affecting the system’s ABER. In regions with low SJR regions, it
was found that ABER is inversely proportional to the jamming probability ρ; conversely, in
relatively high SJR regions, ABER exhibits a direct proportionality with ρ. Simultaneously,
the jamming in Scenario 1 has a greater impact on the system’s ABER compared to the
interference in Scenario 2. The impact of different positions of the RIS on the overall system
performance has also been investigated. The system achieves optimal performance when
the RIS is situated in closer proximity to the source.
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Appendix A
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where X1 =

N︷ ︸︸ ︷
−ξ2

p, · · · ,−ξ2
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−ξ2
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