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Abstract: Multi-channel audio signals provide a better auditory sensation to the audience. However,
missing data may occur in the collection, transmission, compression, or other processes of audio
signals, resulting in audio quality degradation and affecting the auditory experience. As a result, the
completeness of the audio signal has become a popular research topic in the field of signal processing.
In this paper, the tensor nuclear norm is introduced into the audio signal completion algorithm, and
the multi-channel audio signals with missing data are restored by using the completion algorithm
based on the tensor nuclear norm. First of all, the multi-channel audio signals are preprocessed and
are then transformed from the time domain to the frequency domain. Afterwards, the multi-channel
audio with missing data is modeled to construct a third-order multi-channel audio tensor. In the
next part, the tensor completion algorithm is used to complete the third-order tensor. The optimal
solution of the convex optimization model of the tensor completion is obtained by using the convex
relaxation technique and, ultimately, the data recovery of the multi-channel audio with data loss
is accomplished. The experimental results of the tensor completion algorithm and the traditional
matrix completion algorithm are compared using both objective and subjective indicators. The final
result shows that the high-order tensor completion algorithm has a better completion ability and can
restore the audio signal better.

Keywords: multi-channel audio signal; audio recovery; tensor nuclear norm; tensor completion;
signal processing

1. Introduction

Audio signal is ubiquitous in our daily life. With the development of science and
technology, audio has also developed from monophonic audio to dual-channel audio and
multi-channel audio, such as 2.1-channel, 5.1-channel, 7.1-channel, and so on [1]. The
pursuit of multi-channel audio technology is to restore the various sound effects that
humans hear in nature [2]. Therefore, multi-channel audio is closer to the real sound heard
by the human ear and provides a better immersive experience for the audience. At present,
multi-channel audio is widely used in the fields of movies, TV programs, music production,
and game development. However, the process of collecting and transmitting multi-channel
audio signal is accompanied by abnormal phenomena such as missing data and audio
damage. These phenomena will deteriorate the quality of the final audio, affect the auditory
sensation, and even reduce the intelligibility of the audio content. If the damaged audio is
applied to other tasks, such as audio recognition and classification tasks, it will affect the
final accuracy. Therefore, the restoration of damaged multi-channel audio has become one
of the current research hotspots [3].
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The core problem related to recovering audio signal is how to establish a link be-
tween lost data and known data [4]. At present, some traditional audio signal restoration
algorithms have some problems, including the fact that the algorithms are complex and
the effect of audio signal recovery is not satisfactory. For instance, the audio restoration
algorithm based on sparse decomposition [5] needs more iterations, in order to approach
the optimal result. The audio restoration algorithm based on the regression model [6]
needs to adjust the model order and other parameters; the problem with this algorithm is
hearing distortion. The traditional matrix completion algorithm [7] may incur the problem
of information loss and serious performance degradation. At present, these algorithms
are not especially used for the restoration of multi-channel audio signals. Therefore, these
algorithms do not take into account the spatial position of multi-channel audio and the
strong correlation between channels in relation to the impact of the audio completion effect.

As we know, the multi-channel audio signal can be thought of as a multi-dimension
model that contains channel, time, and spectrum [8]. However, the traditional matrix model
cannot directly process high-order data such as the multi-channel audio signal. It needs
to transform the high-order data into a matrix using dimensionality reduction operations.
This step will result in the loss of some structural information and alter the effect of signal
recovery. At the same time, the representation of multi-dimensional data by the matrix
is inefficient [9]. As an extension of the matrix in the high-dimensional space, the tensor
has been utilized for multi-dimensional array processing [10]. Therefore, the tensor model
can be used to represent high-order data and to directly analyze and process high-order
data [11]. This feature can reflect the inherent relationship of multi-factor signals well, so
the tensor model has been widely used in image processing [12], computer vision [13], and
other fields. Therefore, in order to make full use of the correlation between the various
factors of the audio signal [14], researchers have developed tensor completion algorithms.

The tensor completion methods can be roughly grouped into tensor factorization-based
methods and tensor completion-based methods [15]. Tensor decomposition can succinctly
represent the underlying structure of a tensor; therefore, various tensor factorizations
are applied to tensor completion. CANDECOMP/PARAFAC (CP) is one of the well-
known tensor factorizations. Currently, one of the most commonly used methods is the
CP weighted optimization (CP-WOPT) algorithm. This method is often used for audio
completion. CP is a special case of Tucker decomposition and so Tucker is also used for
completion. However, compared with Tucker, the tensor train (TT) decomposition has a
better ability to represent tensors and can avoid the curse of dimensionality, so it is better
for completion. Sedighin et al. [9] used a complete algorithm based on TT decomposition to
reconstruct the signal in the multiway delay space. In addition, the tensor nuclear norm is
the sum of the singular values of the frontal slices of the tensor after Fourier transformation
and it is the tightest convex relaxation of the L1 norm of the tensor. Studies have shown
that methods based on nuclear norm are superior to methods based on tensor factorization.
Therefore, the tensor nuclear norm is used by the researchers for signal completion. For
example, Ran et al. [15] adopted high-accuracy Low Rank Tensor Completion (HaLRTC) to
complete the traffic data.

In this paper, tensor completion based on the tensor nuclear norm is used to recover
the data of the multi-channel audio signal. First of all, the multi-channel audio signal is
preprocessed to complete the operations of the framework and adding window. Then, the
multi-channel audio signal is transformed from the time domain to the frequency domain.
The next step is to construct a third-order multi-channel audio tensor. Finally, the multi-
channel audio signal with missing data is recovered by using the completion algorithm
based on the tensor nuclear norm. By finding the connection between the missing data and
the known data, the lost data can be recovered, as much as possible, from some observation
data, so that the quality and auditory effect of the multi-channel audio signal are improved.

The rest of this paper is organized as follows: Section 2 introduces the notations and
methods. The settings of the experiment are described in Section 3. The experimental
results are discussed in Section 4. In Section 5, conclusions are discussed.
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2. Materials and Methods
2.1. Notation and Definitions

A tensor is a high-order generalization of a vector and matrix [16], which represents
an element of N-way multifactor space. The order of a tensor is the number of dimensions,
also known as modes [17]. An M-order tensor is denoted as H ∈ RI1×···×IM , where
Im (1 ≤ m ≤ M) is the size of the dimension m, and the elements in the tensor can be
represented by hi1···iM . For brevity, the main notations in this paper are summarized in
Table 1.

Table 1. The main notations in this paper are summarized in the table.

Notation Implication Notation Implication

h A scalar h A vector
H A matrix H A tensor

H(i, :, :) The i-th horizontal slice of H H(:, j, k) The column fiber of H
H(:, j, :) The j-th lateral slice of H H(i, :, k) The row fiber of H
H(:, :, k) The k-th frontal slice of H H(i, j, :) The tube fiber of H
∥H∥F ∥H∥F =

√
I1

∑
i1=1

· · ·
IM

∑
iM=1

h2
i1···iM

∥H∥ ∥H∥ = maxiσi(H)

∥H∥1 ∥H∥1 =
I1

∑
i1=1

· · ·
IM

∑
iM=1

∣∣hi1···iM

∣∣ ∥H∥∗ ∥H∥∗ = ∑i σi(H)

The inner product between two tensors is similar to the inner product between two
matrices. The inner product is a scalar, which is the sum of the product of the elements at
the corresponding positions. Given two tensors H, B ∈ RI1×···×IM that have the same size,

the inner product of tensors is defined as ⟨H,B⟩ =
I1
∑

i1=1
· · ·

IM
∑

iM=1
hi1···iM bi1···iM , accordingly.

The mode-d matricization (the mode-d unfolding) of a tensor is the rearrangement of the
fibers of the tensor into a new matrix H(d), according to the direction of dimension d; its

mathematical expression is H(d) ∈ RId×∏M
n ̸=d In .

Definition 1. (T-product [18]): Given two tensors H1 ∈ RI1×I2×I3 and H2 ∈ RI2×I4×I3 , the
t-product of them is defined as

H = H1 ∗ H2 = fold(bcirc(H1) · unfold(H2)) (1)

where bcirc(·) represents the block circulant matrix, unfold(·) represents the matricization of the
tensor, and fold(·) is the inverse operation. The result of t-product is also a tensor

H ∈ RI1×I4×I3 , whose (i, j)th tube fiber is H(i, j, :) =
I2
∑

l=1
H1(i, l, :)•H2(l, j, :), where • indi-

cates cycle convolution [19].

Definition 2. (T-SVD [20]): Given a tensor H ∈ RI1×I2×I3 , it can be factored as

H = U ∗ S ∗ V⊤ (2)

where S ∈ RI1×I2×I3 is an f-diagonal tensor, whose frontal slices are all diagonal matrices. U ∈
RI1×I1×I3 and V ∈ RI2×I2×I3 are two orthogonal tensors. V⊤ ∈ RI2×I2×I3 is the conjugate
transpose of V .

Definition 3. (Tensor Tubal Rank [20,21]): Given a tensor H ∈ RI1×I2×I3 with the t-SVD
decomposition H = U ∗ S ∗ V⊤, its tensor tubal rank that is denoted as rankt(H) is defined as the
number of non-zero singular tubes of S . The expression is

rankt(H) = ∑i 1(S(i, i, :) ̸= 0) (3)
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Since the tensor tubal rank is determined by the first frontal slice, S(i, i, :) in the expression of the
tensor tubal rank can be written as S(i, i, 1).

Definition 4. (Tensor Nuclear Norm [20]): Given a tensor H ∈ RI1×I2×I3 , whose t-SVD
decomposition is H = U ∗ S ∗ V⊤, the mathematical formula of tensor nuclear norm is defined as

∥H∥∗ = ⟨S , I⟩ =
r

∑
i=1

S(i, i, 1) (4)

where r = rankt(H) and I is an identity tensor.

2.2. Tensor Completion Algorithms

Tensor completion involves building an optimization model using a small amount
of known signal data and then recovering the original signal with a high probability, by
solving the model. An incomplete tensor with missing elements is given and, in order
to obtain the complete tensor, we need to obtain the global information by using the
rank function of the tensor. The rank function is an effective means to obtain the global
information of the data. However, the rank function is a non-convex function and the result
is not guaranteed to be optimal. As a consequence, traditional matrix completion involves
using the nuclear norm of the matrix to approximate the rank function and transforming it
into a problem of convex optimization [22], to obtain a global optimal solution. However,
the matrix model is two-dimensional, so it is necessary to reduce the dimension when
processing multi-dimensional data such as multi-channel audio signals. This operation
will result in the loss of structural information. Audio signal recovery cannot be performed
well and the recovery effect is not satisfactory [23]. The tensor completion algorithm is
a new technique for recovering lost data, which is developed from matrix completion
algorithms. It can be considered as a high-order extension of matrix completion. The
tensor completion method can directly process multi-dimensional signals with high-order
structures and can restore data. The convex relaxation technology is used by the tensor
completion algorithm to transform the rank minimization problem, which is an NP-hard
problem, into a convex optimization problem of nuclear norm [24]. The robust tensor
recovery problem is formulated as a convex problem, which can then be solved to obtain
the optimal solution. Afterwards, the data recovery for a high-order signal with data loss
is performed.

In this paper, the tensor nuclear norm is introduced into the multi-channel audio
signal recovery task; the tensor nuclear norm is an extension of the matrix nuclear norm.
The nuclear norm of a tensor can be considered as a convex combination of the nuclear
norms of the matrices obtained after the tensor is matrized at each order. The robust tensor
completion algorithm based on the tensor nuclear norm minimization (TC-TNN) [25] is
used to complete the multi-channel audio signal with missing data. The results of the exper-
iment are compared to the results of the robust tensor completion algorithm based on the
sum of the matrix nuclear norm minimization (TC-SNN) [26], CANDECOMP/PARAFAC
weighted optimization algorithm (CP-WOPT) [27], and the traditional matrix completion
algorithm [28]. The following primarily introduces the tensor completion algorithms.

2.2.1. Robust Tensor Completion Based on the Tensor Nuclear Norm Minimization

Classical algorithms are affected by large amounts of noise and, therefore, cannot work
properly. In order to better solve their sensitivity to noise and to improve their robustness,
the TC-TNN algorithm is used for restoration, whose aim is to recover the low-rank tensor
damaged by sparse errors. In this algorithm, the noise only needs to be assumed to be
sparse, regardless of the strength of the noise. It is able to recover intrinsically low-rank
parts from large and sparse noise-contaminated observations. Therefore, its robustness is
stronger than that of classical algorithms.
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The completion model of the TC-TNN algorithm [25] is defined as follows:

min
L,S

∥L∥∗ + λ∥S∥1, s.t. T = L+ S (5)

where λ = 1/
√

max(I1, · · · , IM−1)IM and T is a tensor which can be decomposed as L and
S . L is a low-rank part and S is a sparse part; both components are of arbitrary size. The
setup of S improves the robustness of the algorithm. In the audio completion experiment,
the low-rank part of the audio tensor is the original audio and the sparse part is the part
that causes damage.

The Lagrange function of (8) is written as follows:

L(L,S ,Z , µ) = ∥L∥∗ + λ∥S∥1 + ⟨Z ,L+ S − T ⟩+ µ

2
∥L+ S − T ∥2

F (6)

where Z is an auxiliary variable. Using the Alternating Direction Method of Multi-
plier (ADMM) [29] to solve the problem of the TC-TNN algorithm, the specific steps are
as follows:

(1) Update the original audio part L. The optimal solution of L is

Lk+1 = argmin
L

∥L∥∗ +
µk

2

∥∥∥∥∥L+ Sk − T +
Z k

µk

∥∥∥∥∥
2

F

(7)

(2) Update the sparse part S . The optimal solution of S is

Sk+1 = argmin
S

λ∥S∥1 +
µk

2

∥∥∥∥∥Lk+1 + S − T +
Z k

µk

∥∥∥∥∥ (8)

(3) Update Z . The update of the dual variable is given by

Z k+1 = Z k + µk
(
Lk+1 + Sk+1 − T

)
(9)

Finally, the errors of the obtained values are calculated according to the following
formula, and then the errors are compared with the allowable error. If the errors are less
than the allowable error, the completed result is returned.∥∥∥Lk+1 −Lk

∥∥∥
∞
≤ tol∥∥∥Sk+1 − Sk

∥∥∥
∞
≤ tol∥∥∥Lk+1 + Sk+1 − T
∥∥∥

∞
≤ tol

(10)

2.2.2. Robust Tensor Completion Based on the Sum of the Matrix Nuclear
Norm Minimization

The completion model of the TC-SNN algorithm [26] is defined as follows:

min
L,S

M

∑
m=1

λm

∥∥∥L(m)

∥∥∥
∗
+ ∥S∥1 , s.t. T = L+ S (11)

The robustness of this algorithm also lies in the fact that S only needs to be assumed to
be sparse, regardless of the strength. It has the ability to recover the intrinsically low-rank
part from large and sparse noise-contaminated observations. The low-rank part of the
audio tensor is the original audio and the sparse part is the part that causes damage.
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The following equivalent problem is obtained by introducing auxiliary variable Zm
for further optimization

min
L,S

M

∑
m=1

1
2
∥Lm −Zm∥2 + µ∥S∥1 (12)

where Zm = T + µΛm − S and Λm, m = 1, 2, · · · , M, is a Lagrangian operator related to
M constraints. The global optimal solution to the problem is the best rank-k approximation
of Z.

2.2.3. CP Weighted Optimization Algorithm

Given a tensor T ∈ RI1×I2×I3 , whose rank is R, and a weighted tensor W ∈ RI1×I2×I3 ,
whose elements is

wi1i2i3 =

{
1, ti1i2i3 is not lost
0, ti1i2i3 is lost

(13)

CP-WOPT minimizes the weighted function, by finding the matrices A ∈ RI1×R, B ∈ RI2×R,
and C ∈ RI3×R. The weighted function [27] is as follows:

W(A, B, C) =
I1

∑
i1=1

I2

∑
i2=1

I3

∑
i3=1

w2
i1i2i3

t2
i1i2i3 − 2ti1i2i3

R

∑
r=1

ai1rbi2rci3r +

(
R

∑
r=1

ai1rbi2rci3r

)2
 (14)

2.3. Modified Discrete Cosine Transform

Modified discrete cosine transform (MDCT) is a transform related to Fourier transform,
based on the fourth type of discrete cosine transform (DCT). The DCT is a transform in the
real number domain. The DCT has orthogonal transformation properties, and the basis
vectors of its transformation matrix are very similar to the eigenvectors of the Toeplitz
matrix, which reflects the correlation characteristics of the audio signal. Therefore, the
DCT is considered a quasi-optimal transformation when performing orthogonal transfor-
mations on audio signals. However, the DCT will produce boundary artifacts when the
signal is framed. As a consequence, the MDCT is proposed; this transformation performs
windowing and overlapping after framing. The MDCT can effectively eliminate boundary
artifacts because of the overlapping nature and its energy compressibility, which is similar
to that of the DCT. Therefore, the MDCT is widely used in audio processing. Assume that
the MDCT of a sequence zm of length M is Zk, and its forward and inverse transformation
expressions are

Zk =
M−1

∑
m=0

zm cos
[

π

2M

(
2m + 1 +

M
2

)
(2k + 1)

]
, k ∈

[
0,

M
2

− 1
]

(15)

zm =
M/2−1

∑
k=0

Zk cos
[

π

2M

(
2m + 1 +

M
2

)
(2k + 1)

]
, m ∈ [0, M − 1] (16)

3. Experimental Setup
3.1. Audio Signal Modeling

Although vectors and matrices are easier to process, in order to retain more structural
correlations, this paper constructs the multi-channel audio signal into a third-order tensor.
The multi-channel audio can have more than two axes of variation, such as channel, frame,
and feature [30]. First of all, the multi-channel audio signal is divided into frames and then
added the window. The frame length is generally set to 10–30 ms. There will be a partial
overlap between the frames, to avoid the discontinuity of the audio signal in the time
domain. The product of the frame length and sampling frequency is the number of samples
in each frame. After that, the MDCT is performed on the frame samples of the processed
audio signal and the audio signal is transformed from the time domain to the frequency
domain, to obtain the frequency domain coefficients of each frame sample. The MDCT
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transformation has anti-symmetric characteristics and, as a result of this, the number of
frequency domain coefficients is equal to half the number of samples in the time domain.
The frequency domain coefficients are selected as the characteristic parameters and as one
of the orders of the audio tensor. Next, the multi-channel audio signal can be constructed
into a third-order tensor, which is represented by H ∈ RIp×I f ×Ic , where Ip represents the
coefficients after frequency domain transformation, I f represents the frame samples, and Ic
represents the number of channels of the audio signal. Its structure is shown in Figure 1.
Then, the audio tensor is completed through the structural relationship within the audio
signal in the frequency domain. The process of audio signal recovery is shown in Figure 2.
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3.2. Experiment Settings

The multi-channel audio signals used in the completion experiment are the 5.1-channel
audio signals that are common in our daily life and that are downloaded from the Internet.
The specific content of the audio is popular music. The format of the multi-channel audio
used in the audio completion experiment is WAV. In total, 50 segments of audio are used in
the experiment, the sampling frequency is 48 kHz, and the sampling bit depth is 16 bit. The
duration of each audio segment is 10 s. Taking a piece of audio in the dataset as an example,
the dynamic range of the left channel of this piece of audio is 46.82 dB, the dynamic range
of the right channel is 50.77 dB, the dynamic range of the center channel is 47.62 dB, the
dynamic range of the low frequency enhanced channel is 47.04 dB, the dynamic range
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of the left surround channel is 50.92 dB, and the dynamic range of the right surround
channel is 45.37 dB. The dynamic range of music is generally 40–60 dB and the audio used
in the experiment is within this range. After framing, the length of each frame is set to
20 ms; thus, the number of samples contained in each frame is 960. The overlap between
two frames is set to 50%; thus, the frame shift is 10 ms. The time–frequency conversion
is completed through the MDCT transformation and the number of frequency domain
coefficients obtained is 480. Then, the three-order audio tensor can be constructed.

The missing data of the multi-channel audio signal is due to the method of random
loss, where data loss occurs at random locations. The total missing data rate is set to 15%,
30%, 45%, 60%, and 75%, respectively. According to the above experimental settings, a
third-order audio tensor with data missing can be constructed. Then, four kinds of audio
completion algorithms, the TC-TNN algorithm, the TC-SNN algorithm, the CP-WOPT
algorithm, and the robust matrix completion (RMC) algorithm, are used, respectively, to
carry out audio recovery experiments on audio signals with missing data. The allowable
error of the experiment is 10−8 and the maximum number of iterations is 500.

The recovery effect of the audio signal is evaluated using both objective and subjective
evaluation indicators. The objective evaluation indicator is the relative standard error (RSE),
while the subjective evaluation indicator is Multiple Stimuli with Hidden Reference and
Anchor (MUSHRA). The completion experiment is conducted on a DELL 7050 computer
with a 3.6 GHz CPU of Intel Core i7 and 16 GB RAM and the simulation software is Matlab
(R2019a).

4. Results and Discussion
4.1. Objective Evaluation

In the audio recovery experiment, for each missing data rate, the experiment was
repeated 10 times for each audio, to avoid coincidence. Then, the results of the recovery
experiment are objectively evaluated. The objective evaluation indicator is RSE, which is a
measure of the difference between the original signal and the recovered signal. The lower
the value of RSE, the better the effect of audio signal recovery. RSE is defined as follows:

RSE =

∥∥H∗ −H
∥∥

F∥∥H∥∥F

(17)

where H∗ represents the tensor after completion and H represents the tensor without
data loss.

Table 2 records the RSE of the multi-channel audio signals restored using the four
audio completion algorithms, as well as the RSE are the average values of the results of the
experiment of 50 pieces of multi-channel audio.

Table 2. The RSE of four audio recovery algorithms.

Missing Data Rate TC-TNN TC-SNN CP-WOPT RMC

15% 0.0115 0.0196 0.0239 0.0401
30% 0.0238 0.0282 0.0441 0.0598
45% 0.0391 0.0476 0.0603 0.0722
60% 0.0661 0.0731 0.0904 0.1048
75% 0.0948 0.1075 0.1093 0.1513

In addition, this experiment also counts the time taken, using different audio com-
pletion algorithms, to restore multi-channel audio signal, which is represented by CPU
running time (CPU time). The results of this experiment are shown in Table 3.
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Table 3. CPU time of four audio recovery algorithms (s).

Missing Data Rate TC-TNN TC-SNN CP-WOPT RMC

15% 86 112 94 67
30% 89 122 102 76
45% 94 135 117 86
60% 105 150 131 101
75% 127 171 154 121

It can be seen from Table 2 that, under all conditions of missing data rate, the value of
RSE obtained using the TC-TNN algorithm is the lowest. This phenomenon shows that the
audio recovery capability of the TC-TNN algorithm is the best, in all cases. It shows that the
operation of constructing the multi-channel audio signal into a tensor can make full use of
the inherent relationship of high-order structure, as well as recovering the missing data of
the multi-channel audio signal better, so that the recovery ability of this tensor completion
algorithm is stronger and the audio recovery quality is higher.

The recovery ability of the TC-SNN algorithm and the CP-WOPT algorithm are
medium, in terms of the four completion algorithms, and these algorithms also carry
out tensor modeling of multi-channel audio signals. Compared with the results of the RMC
algorithm, the RSE of the TC-SNN algorithm and the CP-WOPT algorithm are lower. The
TC-SNN algorithm is based on the matrix nuclear norm, while the TC-TNN algorithm is
based on the tensor nuclear norm. The tensor nuclear norm can be considered as a higher
extension of the matrix nuclear norm. As a result, the tensor nuclear norm has a high-order
structure and its intrinsic correlation is stronger, compared to the matrix nuclear norm. For
this reason, in each case of missing data rate, the RSE of the TC-SNN algorithm is slightly
higher than the TC-TNN algorithm, as well as the recovery ability of the TC-SNN algorithm
being slightly weaker than that of the TC-TNN algorithm. In the aspect of data completion,
the nuclear norm is superior to the tensor factorization. Therefore, the recovery ability of
the CP-WOPT algorithm is slightly weaker than that of the TC-TNN algorithm and the
TC-SNN algorithm.

It can be seen from the two tables that the RMC algorithm takes relatively less time to
recover the multi-channel audio signal compared to the other three algorithms, but the RSE
of this algorithm is the highest among the four methods, owing to the fact that the RMC
algorithm does not consider the spatial structure and other correlations of high-order data,
and even loses the high-order structural information in the process of restoring the audio
signal. As a result, its recovery ability is not as good as the tensor completion algorithm.

The tensor completion algorithm requires a large number of iterative operations to
obtain the optimal solution, which leads to a long time for multi-channel audio signal
recovery. However, compared to the traditional matrix completion algorithm, the audio
recovery quality of the tensor completion algorithm is better, indicating that this type
of algorithm increases the complexity of the algorithm, in exchange for a better audio
recovery effect.

In addition, for the reason that the TC-TNN algorithm has the best recovery effect
in the completion experiment, the spectrograms of the original audio and the audio that
is recovered using the TC-TNN and RMC algorithms are shown in Figures 3–5. From
top to bottom, they are the left channel, the right channel, the center channel, the low
frequency enhanced channel, the left surround channel, and the right surround channel. In
the spectrogram, the depth of the color indicates the energy of the frequency, the horizontal
stripes represent the formant information, and the vertical stripes represent the pitch
information. The denser the stripes, the higher the pitch. It can be seen that the energy of
the frequency points of the corresponding channels of the audios is slightly different in
Figures 3 and 4. However, the position and number of horizontal and vertical stripes are
roughly same. The difference between Figures 3 and 5 is greater and some of the horizontal
stripes are blurred. Hence, the spectrogram can also show that the audio recovery effect of
the TC-TNN algorithm is better.
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4.2. Subjective Evaluation

The purpose of recovering the multi-channel audio signal with data loss is to improve
the quality of the multi-channel audio, improve the intelligibility of the audio content,
and to obtain a better auditory sensation. As a consequence, it is necessary to subjectively
evaluate the results of the experiment and test the restoration quality of multi-channel
audio in subjective hearing. The subjective evaluation indicator is the MUSHRA method.
This test method is recommended by the International Telecommunication Union and
was first used for the subjective evaluation of streaming media and the relevant coding of
communication. The main feature of the MUSHRA method is to mix the lossless audio
into the test corpus as a reference, with the total loss audio as an anchor. Through the
double-blind listening test, the measured audio, the hidden reference audio, and the anchor
audio are subjectively scored. This test method requires experienced listeners that need
to be trained to be familiar with the test process and scoring rules before the formal test.
The original multi-channel audio without data loss is generally used as a reference signal.
During the formal test, the listeners scored the audio signal by comparing the multi-channel
audio signal without data loss to the multi-channel audio signal after completion. The
scores are integers ranging from 0 to 100 and the corresponding evaluations range from
poor to very good.

In this experiment, ten experienced listeners, including five men and five women,
were selected to conduct subjective audiometry and score the multi-channel audio. The
subjective audiometry is performed in a quiet audio lab and the room reverberation time is
0.5 s. The equipment is a kind of 5.1-channel stereo device, with a dynamic range of 86 dB,
and the equipment is placed according to the 5.1-channel schematic diagram, as shown in
Figure 6. L is the left channel, R is the right channel, C is the center channel, LFE is the low
frequency enhanced channel, SL is the left surround channel, and SR is the right surround
channel. The length of each piece of measured audio is 10 s. The interval test is performed
between the reference audio and the measured audio and repeated three times to prevent
misjudgment. The total time of a complete test is controlled within 15 min to 20 min, which
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is also aimed at preventing misjudgment due to auditory fatigue. The average score of the
MUSHRA test of 50 pieces of multi-channel audio is used as the subjective evaluation of
the audio restoration quality. The results are shown in Table 4.
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Table 4. Average MUSHRA test scores of multi-channel audio.

Missing Data
Rate TC-TNN TC-SNN CP-WOPT RMC

15% 95 88 85 81
30% 92 85 80 78
45% 88 81 76 73
60% 83 75 71 67
75% 76 70 65 59

It can be seen from Table 4 that, in the case of various missing data rates, the MUSHRA
test score of the TC-TNN algorithm is the highest among several completion algorithms,
and the MUSHRA test scores of the TC-SNN algorithm and the CP-WOPT algorithm
are also in the middle, which is consistent with the objective evaluation. For all these
completion algorithms, the MUSHRA test score decreases as the missing data rate increases,
which means that there is an inverse relationship between the audio recovery quality and
the missing data rate. In particular, when the missing data rate is more than half, the audio
recovery quality drops sharply. For the reason that when the data are lost too much, the
structural correlation is weakened and it becomes difficult to mine the connection between
the lost data and the known data, the multi-channel audio signal cannot be well recovered
and the audio recovery quality will eventually decline.

5. Conclusions

In the field of audio signal processing, audio restoration tasks have attracted wide
attention. In this paper, the tensor completion algorithm is used to restore the multi-channel
audio signal with data loss. First of all, the multi-channel audio signal with data loss is
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constructed as a third-order tensor, after signal preprocessing and time–frequency trans-
formation. Afterwards, the audio recovery is carried out using the completion algorithm
based on the tensor nuclear norm, and the optimal solution of the tensor completion convex
optimization model is obtained by using convex relaxation technology. Then, the com-
pleted audio tensor is obtained. At last, it will be converted into multi-channel audio. The
results of the experiment are compared to the experimental results of the traditional matrix
completion algorithm, based on the objective and subjective indicators. It can be seen
from the experimental results that the tensor completion algorithm is better able to recover
audio signal with data loss and has a higher recovery ability compared to the traditional
method. The tensor completion algorithm models the problem of audio data recovery
using a mathematical model and optimizes the model to solve the global value, so as to
achieve the purpose of data recovery. The tensor completion method provides a new way
to recover the lost data of multi-channel audio and effectively improves the quality of
the recovered audio. Therefore, the tensor completion algorithm has a good application
prospect in the field of audio signal processing.
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